УДК 530.1+535.3

А. М. ГОНЧАРЕНКО

О РАСПРОСТРАНЕНИИ ОПТИЧЕСКИХ СОЛИТОНОВ В АНИЗОТРОПНЫХ СРЕДАХ

Институт физики им. Б. И. Степанова НАН Беларуси

(Поступила в редакцию 06.06.2014)

В большинстве работ, посвященных свойствам оптических солитонов, рассматриваются солитоны в изотропных средах (см., напр., [1–3]). Это обусловлено определенной сложностью теории солитонов. Но нелинейные среды во многих случаях являются анизотропными. Поэтому желательно рассмотреть основные свойства солитонов в анизотропных (кристаллических) средах.

В работе [4] частично исследованы свойства постоянных солитонов в кристаллах. При этом использованы функции Гаусса для представления пространственного профиля солитонов [5–8]. В данной статье рассмотрены пространственные солитоны переменного профиля, распространяющиеся в главных плоскостях кристаллов. Последнее обусловлено сложностью получения решения нелинейного уравнения в общем случае. Отметим также, что наиболее характерные особенности свойств солитонов в кристаллах проявляются при их распространении в плоскости оптических осей. В этом случае тензор диэлектрической проницаемости может быть представлен в виде

$$\boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_{11} & 0 & \varepsilon_{13} \\ 0 & \varepsilon_{22} & 0 \\ \varepsilon_{31} & 0 & \varepsilon_{33} \end{pmatrix}.$$
(1)

Уравнения Максвелла для анизотропных сред удобнее свести к дифференциальному уравнению относительно поперечной компоненты H_y вектора магнитного поля. Предполагая, что солитон распространяется вдоль оси *ог*, получаем

$$H_{v} = A\psi(x, y, z)\exp(-ikz).$$
⁽²⁾

При этом постоянная распространения k определяется уравнением Френеля для анизотропных сред [9, 10], а функция $\psi(x, y, z)$ – решением следующего уравнения:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\varepsilon_{33} \partial^2 \psi}{\varepsilon_{11} \partial y^2} - 2ik \frac{\varepsilon_{33} \partial \psi}{\varepsilon_{11} \partial z} - 2ik \frac{\varepsilon_{13} \partial \psi}{\varepsilon_{33} \partial x} + \beta |\psi|^2 \psi = 0.$$
(3)

Здесь $\beta = \alpha A^2$ – параметр нелинейности.

Решение уравнения (3) ищем в виде следующей функции:

$$\Psi = \exp\left[i\gamma_{1}(z) - \gamma_{2}(z) - \frac{(\varepsilon_{33}x - \varepsilon_{13}z)^{2}}{\varepsilon_{33}x_{0}^{2}f(z)} + i\frac{(\varepsilon_{33}x - \varepsilon_{13}z)^{2}}{\varepsilon_{33}x_{0}^{2}g(z)} - \frac{\varepsilon_{11}y^{2}}{\varepsilon_{33}y_{0}^{2}h(z)} + i\frac{\varepsilon_{11}y^{2}}{\varepsilon_{33}y_{0}^{2}l(z)}\right].$$
(4)

Здесь функции f,h определяют пространственную форму солитона, функции g, l — его фазовую поверхность, а γ_1, γ_2 — фазовую скорость и коэффициент затухания. Подставляя (4) в уравнение (3), получаем систему уравнений, решения которых достаточно сложные и громоздкие. Поэтому рассмотрим только пространственную форму солитона.

Функции f(z) и h(z) определяются следующими уравнениями:

$$\frac{df}{dz} = \frac{4\varepsilon_{11}}{k\varepsilon_{33}x_0^2\sqrt{f_0}} \left(f - f_0 - \delta_1 f_0 f \ln\frac{f}{f_0}\right)^{\frac{1}{2}},\tag{5}$$

$$\frac{dh}{dz} = \frac{4\varepsilon_{11}}{k\varepsilon_{33}y_0^2\sqrt{h_0}} \left(h - h_0 - \delta_2 h_0 h \ln \frac{h}{h_0}\right)^{1/2}.$$
(6)

Здесь f_0, h_0 — значения функций f, h при $z = 0, \delta_1 = 1/2\beta x_0^2, \delta_2 = 1/2\beta y_0^2$.

Уравнения (5), (6) не имеют решений в известных функциях. Но некоторые особенности свойств солитонов в кристаллах можно определить из общих соотношений. Из уравнений (5) и (6), в частности, следует, что функции f(z), h(z) имеют точку перегиба при

$$f = f_0 \exp(1/\delta_1 f_0 - 1),$$
(7)

$$h = h_0 \exp(1/\delta_2 h_0 - 1).$$
(8)

Существование точки перегиба этих функций означает, что поперечные размеры солитона ограничены по величине. А из этого следует устойчивость пространственных пульсирующих солитонов.

Из выражения (4) следует, что поперечные сечения солитона представляются уравнением

$$\frac{\left(\varepsilon_{33}x - \varepsilon_{13}z\right)^2}{\varepsilon_{33}x_0^2 f(z)} + \frac{\varepsilon_{11}y^2}{\varepsilon_{33}y_0^2 h(z)} = 1.$$
(9)

Это уравнение переменного с глубиной эллипса. При этом солитон распространяется в направлении, составляющим угол $\delta = \arctan \varepsilon_{13} / \varepsilon_{33}$, с направлением распространения фазы (оси *oz*). Следовательно, и осциллирующий солитон сохраняет основные особенности свойств анизотропных сред.

Наконец, отметим, что при небольших колебаниях поперечных размеров солитона, уравнения (5) и (6) можно решить приближенно. В таком случае получаем

$$f(z) \cong \frac{1+\delta_1 f_0}{2\delta_1} - \frac{1-\delta_1 f_0}{2\delta_1} \cos\left(\sqrt{\frac{\delta_1}{f_0}} \frac{4\varepsilon_{11}}{kx_0^2 \varepsilon_{33}} z\right),\tag{10}$$

$$h(z) = \frac{1 + \delta_2 h_0}{2\delta_2} - \frac{1 - \delta_2 h_0}{2\delta_2} \cos\left(\sqrt{\frac{\delta_2}{h_0}} \frac{4\varepsilon_{11}}{k y_0^2 \varepsilon_{33}} z\right).$$
(11)

Это означает, что солитон представляет собой осциллирующий импульс с различными периодами осцилляций в главных плоскостях (*xz*), (*yz*).

Литература

1. Rosanov N. N. // Progr. in Opt. 1996. Vol. 35. P. 1-60.

2. Silberberg Y. // Opt. Lett. 1990. Vol. 15, N 22. P. 1282-1284.

3. Snyder A. W., Mitchell D. J. // Science. 1987. Vol. 276. P. 1538-1541.

4. Гончаренко А. М. // Докл. НАН Беларусі. 2011. Т. 55. С. 32–34.

5. Гончаренко А. М. Гауссовы пучки света. М., 2005.

6. Гончаренко А. М. // Весці НАН Беларусі. Сер. фіз.-мат. навук. 1999. № 3. С. 43-45.

7. Гончаренко А. М. // Докл. НАН Беларусі. 2000. Т. 44. С. 43-45.

8. Гончаренко А. М. и др. // Весці НАН Беларусі. Сер. фіз.-мат. навук. 2002. № 4. С. 60-64.

9. Федоров Ф. И. Оптика анизотропных сред. М., 2004.

10. Гончаренко А. М. и др. Основы теории оптических волноводов. Минск, 2009.

A. M. GONCHARENKO

PROPAGATION OF OPTICAL SOLITONS IN ANISOTROPIC MEDIA

Summary

The properties of changeable optical solitons in anisotropic media are considered. It is shown that variable solitions also keep the basic specific features of light propagation in crystals.