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Introduction. Aerodynamic characteristics of flying vehicles shaped as bodies of revolution with
a curvilinear surface generator are interested first of all to find parameters of flow around a body. On
the one hand, it is necessary to analyze, from a practical point of view, aerodynamic characteristics of such
vehicles moving along different trajectories in the earth’s atmosphere. On the other hand, if supersonic
flows are considered, it is needed to study complex flow phenomena around a body, specifically related
to oblique shock wave and contact (slip) surface. Shock waves and contact surfaces are discontinuities in
fluid dynamics problems [1]. The features of supersonic flow start manifesting themselves markedly for
different-shape bodies (sphere, cone, cylinder, disc, etc.) at sufficiently large, but different Mach numbers
M. The boundary separating a supersonic flow from a hypersonic one is highly conditional. Some of
the characteristic properties of hypersonic flows appear in the vicinity of the nose of a blunt body already
atM=31]1,2].

The presence of shock waves is the main feature of flow when a thin pointed or a blunt body moves
at supersonic speeds upstream [1, 2]. Flow is considered to be undisturbed up to some boundary in
the vicinity of the body nose. The front part of the body is enveloped by the shock wave propagating
downstream in the form of a slightly expanding surface. Flow parameters along the compression shock
remain invariable. Of main interest are the features of a narrow region between the shock wave and
the body. It is called the shock layer. In this layer, temperature and pressure will be much larger than
those in the undisturbed flow; temperature and pressure ratios can infinitely grow with increasing Mach
number. On the contrary, the density ratio is limited, although the shock layer density is larger than the un-
disturbed flow density. Therefore, the physical meaning of the formation of a compression shock (shock
wave) consists in separating undisturbed and disturbed gas flow regions. Far behind the body, the shock
wave becomes weak, whereas downstream the rear wake is positioned. As the compression shock moves
farther and farther away from the body, it transits into a wave of weak disturbances [1, 2]. In addition to
the shock wave, another type of discontinuity termed as a contact surface is an interface that separates
two flow regions, but moves with those regions. The velocity and the pressure of the gas on each side of
the contact surface are the same, but the other thermodynamic properties may be different. Unlike
the shock wave, there is no flow of the gas across the contact surface [1, 2].

It is essential to evaluate the abilities of the computational fluid dynamics (CFD) technique that can
solve problems in which shocks and contact surfaces occur. In particular, it is necessary to understand
the details of the construction of a numerical mesh, which will allow discontinuities to be resolved [3].
When new CFD software is under development, there always arises the question of confidence of nu-
merical computation results obtained by use of this software. The validity of the results obtained can be
determined in three ways: a) comparison with the tabular data for a considered body; b) comparison with
the analytical formulas obtained within the framework of the theory of supersonic inviscid gas flows;
¢) comparison with the numerical computation results obtained with the use of well-known reliable software.
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Fig. 1. Parameters of flow around circular cone (a), circular cone with the spherically blunt nose of radius R (b),
and truncated cone (c) at zero angle of attack (o = 0)

The objective of the present work is to model aerodynamic processes involving the supersonic move-
ment of an axis-symmetrical body having a conical shape in the air environment at zero angle of attack
with the implication of CFD [4]. It is assumed to obtain reasonable data on aecrodynamic characteristics of
a circular cone, a circular cone with a spherical nose, and a truncated cone (Fig. 1) at zero angle of attack
(o = 0) and to analyze their accuracy in comparison with the results obtained by empirical formulas in
the region of their validity. It is the important confidence criterion.

It is thought that the most complete information on aerodynamic characteristics of pointed cones of
different length is outlined elsewhere in works [5-9] (in the form of tables, plots, and approximate for-
mulas for calculation of flow parameters). This is very valuable for their direct use in CFD software for
supersonic flow predictions in the vicinity of bodies of revolution, as well as in Tables [10—12].

Circular cone. In supersonic flow around a circular cone, a shock shaped as a conic surface (Fig. 1, a)
is initiated ahead of it. To define aerodynamic characteristics of a body at zero angle of attack, it is needed
to calculate parameters of a gas flow between a body and a shock, as well as an inclination angle of a shock
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generator. The known quantities are: B, is the half-angle at the cone vertex (in deg); M is the Mach number
of the incoming flow far from the body; L, is the cone length; P_ is the pressure of the gas incoming flow
far from the body; thermodynamic properties depending on the atmosphere altitude: in particular, p_ is
the density of the gas incoming flow far from the body; v is the specific heats ratio (for air y = 1.4). It is
needed to determine the following parameters: the wave drag coefficient equal to the pressure coefficient
at the cone surface ¢, . = (P, — Py)/ (pooV2 /2) where P is the pressure at the cone surface; the cone sur-

face-to-incoming flow pressure ratio P,/ P_; the dimensionless density at the cone surface p, / p_.; the de-
flection angle 0, of the shock wave from the cone surface.

There are a number of analytical solutions to the above-stated problem that have been obtained in
the constant density approximation [1, 5, 6]. This means that the density remains approximately constant
between the body and the shock wave.

The ratio of shock layer density to density far from the cone is denoted as

poo Y_l 2
g=12 = — .
psn Y+1|  (y—1)M“sin“ 0y,

In [13], the formula is proposed, which ties the quantities €, B and 0 , by

esh_Bc=0.5y_l 1+— 22 (1+ij95h.
y+1 MO g(y-1) 12

After some assumptions [14] are made, one can determine the deflection angle of the shock wave

1543 +810v2 +990y + 350 11y% + 50y +35
esh=Bc+\/B%+ ey by (1)
2y +1)*M 12(y+1)

The shock layer thickness A = H; — h_ can then be calculated in terms of the following radii:
h,=d,/2=L, tgP,and H, = L_tg 0. The dimensionless pressure and the dimensionless density at

con

the cone surface are as follows:

2 . -1 1 . -1 .
P./ P, =—YM251n26S/1 —y—, Pe/Poo =(&Mzsm2Gshj/(l+y—M2sm20Shj. 2)
y+1 y+1 2 2

The dimensionless pressure at the cone surface is related to the wave drag coefficient: P. / P, =1+c¢), .YM 2)2.
To calculate the wave drag coefficient, a number of the formulas are available

Cpe=2sin*B./[(1-&/4)cos* (B4 —PB.)]
or

¢pe=(0.8+M2)BL7 /500. (3)

In the course of practical calculations over a wide range of M and B, these formulas yield the accu-
racy not worse than 5% [6]. In [5], it is defined more exactly. Better results are obtained over the ranges
1.5 <M <5 and 5° <, < 25° when the upper bound is set on the angles (B, < 50°) and the Mach numbers
(M <7 -28), as well as the lower bound — on the conditions of flow around the cone. The formula, by
which the estimated error of Cpe with respect to the one assessed by exact theory does not exceed 2—3%
at 2 < M < 6 and increases above 3—5 % at M < 1.5, has the following form [7]:

Cpe=2-sin?B.[1+4/(1+16sinB NM? -1)]. 4)

Formula (5) approximating another set of data [10] is more accurate. The formula, by which the maxi-
mum estimated error of Cpe does not exceed 1 % at M > 2 and increases not more than ~2.5 % at M < 1.5,
has the following form:
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Fig. 2. Wave drag of the circular cone vs. incoming flow Mach number (a — B, = 10° b — 20°):
1 —formula (3), 2 — (4), 3 —(5), * — numerical computation

Cpe=2e"sin’ B, &)

where x =0.18145 — (2.0923 — »(9.092 + y(6.876 — ¥(62.25 +97.1y)))), y =0.1-In(sin B .V M 2_ 1).

ANSYS Fluent 14.5 [15] was adopted to conduct a series of numerical computations for definition
of gas dynamic quantities in supersonic inviscid gas flow around circular cones with half-angles B_ =5,
10, 20°. Comparison was made with the above-mentioned analytical formulas and a series of tables and
nomograms [10-12, 14], which allowed one to define P,/ P_, p_./ p,, and O, for pointed cones (Tab. 1).
The numerical computation results for the dimensionless density and the dimensionless pressure near
the cone surface coincide with the tabular values, and the analytical formulas confirm the correctness
of the numerical computations performed (within 10 % of error).

Table 1. Comparison of numerical computation results, tabular values, and analytical formulas (1), (2)

N g o PP, PJP, 05

< Tables [12] Fluent Tables [12] Fluent Tables [12] Fluent Formula (1)
5 10 1.8022 1.796 2.3083 2.3090 15.6083 15.55 15.01
7 10 2.3092 2.276 3.3962 3.3190 13.5405 13.10 13.28
5 20 3.0370 3.027 5.5582 5.6800 | 24.9427 24.61 24.37
7 20 3.8707 4.010 9.6810 9.9796 | 23.5298 23.22 23.20

Numerical computations showed that according to the conical-flow theory, the pressure and the density
at the surface of the cone retain their value, except a small region in the vicinity of its vertex. The larger
the Mach number, the smaller is the angle of the shock wave departure from the cone surface. The cal-
culation results for the wave drag obtained by analytical expressions (3)—(5) (Fig. 2) are compared with
the numerical computation data. As a result, expression (5) for the wave drag coefficient of circular cones
can be recommended for verification.

Cone with the spherically blunt nose. The distance A, at which the curvilinear shock wave departs
from the spherical blunt nose, is determined as

Ag=Copo / peoR (6)

where C, = 0.85 in [14] and 0.78 in [16], p,, and P, are the density and the pressure near the flow
stagnation point of the cone nose that are determined by the expressions:

P 14+0.5(y=DM3
Pco PCO/POO

b
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The wave drag coefficient, the deflection angle of the shock wave of the conic part of the body,
the dimensionless pressure at the body surface are the same as for the circular cone, whose length is equal
to L, = L +R/sin B — R. The radii 4, and H j are calculated as h, = L tg B.and H, = L tg 0 ,, as well as
the shock layer thickness A = H;, — h . The stagnation temperature is found by the known relation [1, 2, 13]:

T =To(1+0.5(y = )M ?). (7)

The wave drag coefficient of the cone with the spherical nose is determined as Cp. =

=0.5C po(1+ sin? Bc)a?2 +cpe(l-d 2) where €, s the wave drag coefficient of the circular cone, whose
length is equal to L, and d = R cos B/ h,. The pressure coefficient Cyls determined similar to the sphere
body at the stagnation point: C o =2—(y-1)/(y+1)=2/[(y + )M .

For comparison of the results obtained by the analytical formulas and the CFD technique, the super-
sonic inviscid gas flow around the cone with the spherical blunt nose (B, =20° L, =1 m, R = 0.048087 m)
was considered (y = 1.4, 7, =216 K, P_ = 5474 Pa). Numerical computations showed that the pressure
growth in the shock layer (near the vertex of the spherical nose) coincides with the same for a sphere and
is determined only by incoming flow Mach number values. The dimensionless pressure P /P falls from
61 (spherical nose) to 9.2 characteristic for conical flows (Fig. 3, a).

The calculated stagnation temperature and shock layer thickness for the cone with the spherical nose
were compared with the same obtained from formulas (6) and (7) (Tab. 2). As a result, expressions (6) and
(7) can be recommended for verification and estimation of numerical mesh features.

Table 2. Stagnation temperature and the shock layer thickness for the cone with the spherical nose

T, K Ay m
M B..°
¢ Fluent Formula (7) Fluent Formula (6)
20 ~ 1306 1296 ~0.007621 0.00751
7 20 ~ 2345 2332.8 ~0.00702 0.00693

Truncated cone. A truncated cone is a particular case of bodies with a blunt nose, i. e., those having
an aerodynamic shape, around which the flow is accompanied by the formation of a curvilinear shock
wave, the development of local sub-and supersonic zones, internal shock waves. The wave drag coef-
ficient of the truncated cone is found as [17]

2, T K¢
Poo _
60 | 2000
50
1500 -
40t
307 1000
20+ —
500 -
10 B .
0 — I A 1 . 1 . 1 R O 1 1 1 1 )
0 0.2 0.4 0.6 0.8 X 0 0.2 0.4 0.6 0.8 X
a b

Fig. 3. Dimensionless pressure () and temperature (b)
in the shock layer around the cone with the spherical nose (CFD data): B, = 20°, M =7

80



Cpe =0.915C o (1+sin*B.)d* +cp (1-d?) (®)

where d = h, cos B/ h,.
One of the important flow characteristics is a distance A, at which the shock wave departs from the head
of the truncated cone. For comparison, the following empirical relations are used:

Ao/ 2y =0.23\(M 2 +5)/ (M2 -1), )
Ao/ ho=1.03po/ (Peo —Poo)- (10)

The wave drag coefficient, the deflection angle of the shock wave, and the dimensionless pressure of
the conical part of the truncated cone are the same as for the circular cone, whose length is equal to L.

ANSYS Fluent 14.5 [15] was used to perform numerical computations and to compare them
with the experimental data [17]. The diameter of the cone tail is d,,, = 24, = 30 mm, the diameter of
the cone nose is 4, = 2 h /3, and the half-angle is B, = 20°. The calculated stagnation temperature and
shock layer thickness for the truncated cone were compared with the same obtained from formulas (7),
(9) and (10). As a result, these parameters found from the numerical analysis are in a good agreement with

the analytical values of formulas (7), (9) and (10) (Tab. 3).

Table 3. Stagnation temperature and the shock layer thickness for the truncated cone

M Ty, K Ty K, Ay, m Ay, m Ag, m
Formula (7) Fluent Fluent Formula (9) Formula (10)

5 1296.0 =1300.0 ~0.00495 0.00510 ~0.00486

7 2332.8 ~2337.6 ~0.00480 0.00488 ~0.00466

Conclusions. The numerical data for wave drag coefficient, stagnation temperature, and shock
layer thickness were used to show a good agreement between the numerical and empirical solutions for
supersonic flow around the circular cone, the circular cone with the spherical nose, and the truncated cone.
Through this computational analysis, a better interpretation of these physical phenomena can be made.
One can conclude that the used empirical solutions can be recommended for CFD software verification
and estimation of numerical mesh features. It all is capable of predicting accurate results and also of
capturing flow discontinuities, e.g., oblique shock waves and contact surfaces.
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X. AJIBXYCCAH, T. B. CHIJOPOBHY, A. J]. YOPHBIH

CBEPX3BYKOBOM HEBSI3KUI ITOTOK OKOJIO TEJI BPALIIEHUS:
SMIIUPUUYECKUN M YUCJEHHBIN PACUET

Pe3rome

PacuerHbie JIaHHBIC 110 BOJIHOBOMY KO3(1)(1)I/IIII/IGHTy COIIPOTUBJICHUS, TEMIICPATYPE TOPMOKCHUS, TOJIIUHE YAapHOTO CJIOSL
U JpyTruM ra3oiMHaMU4€CKUM I1apaMeTpam OBLIH UCIIOJIB30BAHBI JJIs1 TOTO, 4TOOBI MIOKA3aTh MpUEMJIEMOE COoITIaCue MEKAY YHnC-
JICHHBIMU U SMITUPUYECKUMU PE3yJIbTaTaMU JJIs1 00TeKaHus CBEPX3BYKOBBIM IMOTOKOM 3a0CTPEHHOI'0 KPYTOBOI'O KOHYCa, Kpy-
TOBOI'0 KOHYCa CO Cq)epI/I‘IeCKI/IM HOCHUKOM U YCC€UCHHOI'0O KOHYCa. W3 ananm3a 4MCIICHHBIX JI@HHBIX, TMO3BOJIAOMINX IOJYYUTH
NPEACTAaBIICHUE O PACCMOTPEHHBIX (1)I/I3I/I‘{eCKI/IX SABJICHUAX, MOXKXHO CA€CJIaTh BbIBO, YTO MCHOJIB30BAHHBIC SMIIMPUICCKUE COOT-
HOLICHHUSA MOT'YT OBITh PEKOMCHAOBAHbL JJIs1 BepI/I(I)I/IKaHI/II/I pa3pa6aTLIBaeMoro HOBOI'O IPpOrpaMMHOI0O o0ecIieueHUs BbIUYHCIIN-
TEJILHOMI TUApOra3oAuHaMUKH, a TaKXKE JJIs1 OLCHKHU CBOWCTB MIPUMCHSAEMbIX BBIYUCIIUTEIIbHBIX CETOK. DTO TI03BOJISIET 1oJjry4arb
0oJiee TOuHbIC PE3YJIbTAThI, a TAKKE PAa3pCIIUTh TAKHUE 0COOEHHOCTH CBEPX3BYKOBOI'O IIOTOKA, KaK YJapHBIC BOJIHBI U KOHTAKTHBIC
T'paHUIIbL.



