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Abstract. The possibility of introducing coherent states of particles moving in constant homogeneous non-Abelian gauge
fields is shown. An important feature of the model considered in the article is that each color degree of freedom corresponds
to its characteristic size.
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KBAPK BO BHEIIHEM HEABEJIEBOM KAJIMBPOBOYHOM INOJIE MATTHUTHOI'O THUIIA:
KOT'EPEHTHBIE COCTOsIHUSA

AnnoTtanus. [Toka3zana BO3MOXHOCTH BBEAICHHS KOT€PEHTHBIX COCTOSIHHI JaCTHI], ABIDKYIINXCSA B TIOCTOSTHHOM OJTHO-
ponHOM HeabeneBoM mosie. OTHON U3 0COOEHHOCTEH PaCCMOTPEHHON MOJENHU SBISAETCS TO 0OCTOSITENBCTBO, YTO B 0OLIEM
CiIyyae KakJI0H U3 «LBETOBBIX» CTEHECHEH CBOOOIBI COOTBETCTBYET CBOM XapaKTEPHBIN pa3Mep.

KaroueBble c/10Ba: KOT€pEeHTHbBIE COCTOSTHUSI, HeabeneBo KalTnOpOBOYHOE T0JIE, KI[BETOBOI 3apsij, ypaBHeHue Jupaka,
spmuToBa Matpuia, SU(3)-npeodpa3oBanusi, pelieHus

Jast nutupoBanusi. KBapk Bo BHENTHEM HeaOeleBOM KaJMOPOBOYHOM I10JIe MATHUTHOTO THIIA: KOTEPEHTHBIE COCTOSI-
uus / 10. A. KypoukwuH [u np.] / Bec. Hai. akan. HaByk Bemapyci. Cep. ¢i3.-mat. HaByk. — 2017. — Ne 4. — C. 39—-43.

Introduction. In general, the problem of constructing coherent states for systems described by rela-
tivistic wave equations has not been solved. However, in the case of motion of a charged particle in a mag-
netic field, the relativistic problem is equivalent to a nonrelativistic problem because of the conservation
of the momentum modulus in the classical case and the existence of the corresponding integrals of mo-
tion in the quantum-mechanical case. Thus, for the quantum-mechanical problem of the motion of a char-
ged particle in the constant homogeneous magnetic field, coherent states can be introduced regardless
of whether the relativistic or the non-relativistic case is considered. The approach to the description
of coherent states in the magnetic field provides a clue for the possible connection of the hadron model
proposed in [1, 2] with the field (quantum-chromodynamics) approach.

Indeed, the initial step in constructing of coherent states is the creation and annihilation operators
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where

In the expressions (2), m is the mass of a particle in the oscillator potential, and  is the frequency of oscil-
lations.
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As known, transverse motion to the direction of the magnetic field of motion of a particle in classical
and quantum-mechanical case are described by an oscillator with a Larmor frequency
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where e is the particle charge, c is the speed of light, m is the mass of the particle, and B is the induction
of the magnetic field. Substituting (3) in to (2) for x, we obtain
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In the model of the hadrons developed in [1], the quantity x, plays the role of the hadron size R, and

equating R to x,in (4), we obtain
hc
R=, /— 5
2eB ©)

Since nature R must be determined by strong interactions, it can be assumed that e in formula (5) it
might be regarded as a charge of a quark, and B as a strength of a chromodynamics field.

Thus, the task of the present article is to investigate the existence of configurations of the chromo-
dynamics field which allow the introduction of coherent states.

Below, we formulate and solve the problem of determining the coherent states in a non-Abelian gauge
field.

Coherent states of quarks in the constant magnetic chromodynamics field. The Dirac equation
describing three quarks in the gluon field has the form

iyu(pu+gTaAS)\|/=mw. 6)

Here Y, are the Dirac matrices p = 0,1,2,3; AS is the vector potential of the external gluon field; a =
1,2...8; T* are the generators of the group SU(3) of the color symmetry group, y =\|/B, B=1,2,3 are
bispinors with respect to the space-time symmetry transformations and the spinor (quark representation)

with respect to the SU(3) group, and A4y is the vector with respect to the transformations of both groups.
Matrix representations for generators 7* have the form
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Now we introduce an constant homogeneous gluon field of the magnetic type. By analogy with
the problem of the motion of an electrically charged Dirac particle in the constant uniform magnetic
field [3], we choose the non-Abelian vector potential in the form

A¢ :(0,0,H“xl,O). ®)
The vector potential satisfies formally the homogeneous equations of a non-Abelian gauge field

Vo Fi =0, Fh +gf “P Fh AL =0, ©)
where
Fl =0, A% 0,48 +gf “Pe 4l 4S. (10)
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By direct substitution, we verify that the 4-vector potential (8) satisfies equations (9), (10) and especially
note that the nonlinear terms in equations (10) and (11) vanish.
The tension tensor contains a single component of the magnetic type:

Fe =(0,0,H“,0,0,0),

when the tensor is considered as a complex three-dimensional vector.
Thus, with the vector potential (8), the theory is linearized, but retains the symmetry with respect
to the color group. The theory remains invariant under SU(3)-gauge transformations.

Substituting the expression for the vector potential (8) in (6), we obtain

iYu(pu +gT”H”X1)\v=mw- (11)

By a similarity transformation with the help of a constant unitary matrix, the Hermitian constant
matrix can be reduced to a diagonal form, so equation (11) is written as

iV (P +gAilxy )y =my, (12)

where [ is the unit matrix in the space of SU(3)-spinors, A, (k= 1,2,3) are the eigenvalues of the matrix

H3+%H8 H'-iH* H*-iH>
T“H“:% H'+iH? —H3+%H8 HS—iH |, (13)
H*+iH?® HS+in? -8
NE)
which are the roots of the cubic equation
TeH* —A‘ =0. (14)

We will not use expressions of eigenvalues because they are cumbersome. Their specific expressions
are not important. It is important that these roots are constant and real.

In the general case, all three roots can be different, so the equation splits into three separated equa-
tions with different eigenvalues A, .

Equation (12) for stationary states y — "y (here and everywhere c=%=1) for each A, can be
written in the form [3]

S(p+gAilx))p=(e+m)y

o : (15)
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In the equations (15), G is a vector of Pauli matrices, p is a vector from the projection operators of
the quark momentum. Further we follow the monograph [3]. Eliminating y in (15), we obtain the qua-
dratic equation

{p7+2”Ax” + gAi(o3 +2x1pa)f 9= (" —m”)e. (16)
Choosing the spinor as an eigenfunction of the projection operator of the spin o,
O30 =L,

where p = £1,, we find the solution in the form

Dy (x)) =/ PPPIIY L (). (17)
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The function Y, , () satisfies the Schrodinger-like equation for a harmonic oscillator
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The energy spectrum is determined by the formula
2_ .2, 2
e =m"+p3s+gA;2n+1-p). (19)

We will not reproduce the wave functions of the problem here. They can be obtained from the wave
functions in [3] by a change eH — gAj.

As known, coherent states arise naturally in the quantum-mechanical problem of a harmonic oscilla-
tor to which the problem has been reduced. Taking into account the definition of the creation and annihi-
lation operators (1) and (2), the left side of the equation expressed in terms of the product of such opera-
tors and the wave function can be represented [4] as an integral over coherent states |z>:
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Multiplying equation (18) by the conjugate coherent state <z'| and using the definition of coherent states,
we obtain the formula for the energy spectrum for (15).

Conclusion. Thus, we showed the principal possibility of introducing coherent states of particles
moving in constant homogeneous non-Abelian gauge fields and interacting with these fields due to the pre-
sence of particles of the color type. An important feature of the considered model is that here each
“color” degree of freedom corresponds to its characteristic size

Ry = fic ’
2gAk

in contrast to the case of motion in a homogeneous constant magnetic field. We have, for clarity, returned
to the notation with 7 and c. We also note that A, expressed in terms of the intensity of the gauge field
(in this case of the magnetic type), which in principle are immeasurably considered as a single quantity
in a product gA, with a charge and determine the dynamics of a particle in such a field.
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