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Ob6veouHeH bl UHCUMYM dHepeemuyecKux u A0epHuix ucciedosanuii — CocHul
Hayuonanvnou akademuu nayk benapycu, Munck, benapyco

HOBBIE SKCIIEPUMEHTAJIBHBIE U TEOPETUYECKUE 3AJAYHU
B COBPEMEHHOM ®U3UKE YACTHUIL U IAEPHOI ®U3UKE

AnnoTtanusi. O6CyKaaeTcs CyIeCTBOBAHNE HOBBIX SBJICHUN M CBOICTB HellepTypOaTHBHOI YBOJIIOLNY IBETHBIX KBap-
KOB, TIIOOHOB M JIPYT'HX COCTOSTHMH B CTOXaCTHYECKOM BaKyyMe KBaHTOBOH XPOMOJWHAMUKH, TUCCUIIALINS IBeTa U KOH(DaTi-
HMEHT; HEYCTOHYHMBOCTD JABHIKCHHUS IIBETHBIX YACTHIl B 00JacTH KOH(AaHMEHTa; BOSHUKHOBEHHE CIKAThIX M EepPeITy TAHHBIX
COCTOSIHUH CHIIBHO B3aUMOJICHCTBYIONINX YAaCTHUI], KOPPEISIIUOHHBIE CBOMCTBA PACIIaJJOB CHJIHBIX HHCTAHTOHOB; aCCHCTH-
POBaHHOE Xa0COM TYHHEIHNPOBAHNE HHCTAHTOHOB; ONTMCAHNE CBOMCTB KBAPK-TIIIOOHHOM IIIa3MBI Ha SI3bIKE CTATHCTHYCCKOH
Mozenu OyTerpana XK I0pHA.

KiroueBble c10Ba: KBAaHTOBAs XPOMOJNHAMHKA, KOH(PAHHMEHT IIBETa, HEYCTONYMBOCTD ABMKCHHUS, CXKAThIE U MEepeIry-
TaHHBIC COCTOSTHHS KBAapKOB M TJIIOOHOB, CHIIbHBIE HHCTAHTOHBI, Xa0C-aCCUCTHPOBAHHOE TYHHEINPOBAHNE HHCTAHTOHOB,
KBapK-TTIOOHHAS TJ1a3Ma, MOZIENb X3AKI0pHA.

Jas uuTupoBaHusi. HoBble SKcieprMEHTAJIbHBIC M TEOPETUYECKUE 3aa4l B COBPEMEHHON (PM3UKE YaCTHIL U SACPHON
¢usuke / B. U. Kysumnos [u ap.] / Bec. Hau. akan. naByk bemnapyci. Cep. ¢i3.-mat. HaByk. — 2017. — Ne 4. — C. 51-66.

I. Colour Dissipation by Propagation Through QCD Vacuum

I.1. Decoherence in quantum systems. The density matrix of some quantum system in the environ-
ment is obtained by averaging with respect to degrees of freedom of the environment. Interactions
with the environment result in decoherence and loss of quantum superpositions and color. Information
on the initial state of the quantum system is lost after sufficiently large time. Quantum decoherence
is the loss of coherence or ordering of the phase angles between the components of a system in a quantum
superposition. Decoherence occurs when a system interacts with its environment in a thermodynamically
irreversible way. This process can be viewed as the loss of information on a system. Dissipation is a de-
cohering process by which quantum states are changed due to entanglement with an external envi-
ronment.

1.2. Stochastic QCD vacuum. The model of stochastic vacuum of quantum chromodynamics (QCD)
is one of the popular phenomenological models which explains quark confinement (Wilson loop de-
creasing), constant string tension and field configurations around static colour charges [I.1, 1.3, 1.4]. In this
model only the second field correlators are important and the others are negligible (Gauss domination) [L.1].
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It has been confirmed by lattice calculation [1.2]. The most important evidence for this is Casimir scaling.
The stochastic vacuum approach is based on the assumption that one can calculate vacuum expectation
values of gauge invariant quantities as expectation values with respect to some well-behaved stochastic
gauge field.

1.3. QCD vacuum as environment. We consider QCD stochastic vacuum as the environment for
colour quantum particles. To get the density matrices describing the states of these particles we average
over the external QCD stochastic vacuum implementations. Thus, instead of considering nonperturbative
dynamics of Yang-Mills fields one introduces external environment and average over its implementations.
As a consequence, we obtain decoherence, loss of quantum superpositions and information, and con-
finement of colour. White objects can be obtained as colourless mixtures of states described by the dia-
gonal density matrix as a result of evolution in the QCD stochastic vacuum treated as an environment.

L.4. Colour decoherence. Consider propagation of heavy spinless colour particle along some fixed
path v. The amplitude of such process is obtained by parallel transport [1.5-1.7]:

Oulo)=idy|o), (L)

|<P(v)>=Pexp(iI dx%}lma (1.2)

Y

where P is the path ordering operator and /Alu is the gauge field vector.
In order to consider mixed states we introduce the colour density matrix, taking into account both
colour particle and QCD stochastic vacuum (environment):

P(¥F) =|o () (o (v)]- (13)

Here we average over all implementations of stochastic gauge field (environment degrees of freedom) —
and decoherence arises due to interaction with environment. In the model of QCD stochastic vacuum
only expectation values of path ordered exponents over closed paths are defined (in order to keep
the gauge invariance). Closed path corresponds to a process in which the particle-antiparticle pair
is created, propagates and finally annihilates. With the help of (1.1), (1.2), (I.3) we obtain the expression
for density matrix [L.5, 1.7]:

p(yy)=Nc' +(|<pm><<pm|—N;1)Wad,-(y7). (1.4)

Here N_' is the inverse number of colours, and w dj(ﬁ) is the Wilson loop in the adjoint represen-
tation. In fundamental representation it is defined as

Weg (V7) = TrPexp[ [ idyadx* J (1.5)

Y

Colour density matrix in colour neutral stochastic vacuum can be decomposed into the pieces that
transform under trivial and adjoint representations [1.5, 1.7]

p1=N."1+piT,, (L6)

where / is the unit operator. In confinement region Wilson loop decays exponentially with the area
spanned by loop, so for the rectangular loop spanning the time interval 7 and distance R we get:

p()= NG +(pin — ING' )exp(~0.ayRT), (17)

p(y:RT >o)=IN.", (18)
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where o, 0ndCaiiCina 18 the string tension in the adjoint representation, G i Gl ATC the eigen

values of quadratic Casimir operators. Under Gaussian dominance string tension is
2
g ;2 2
O fund = B Leow F 7, (1.9)

g is coupling constant, /  — correlation length in the QCD stochastic vacuum, F'— average of the second
cumulant of curvature tensor [1.2, 1.4]. As follows from (1.8), all colour states are mixed with equal
probabilities and all information on initial color state is lost.

L.5. Decoherencerate, purity, von Neumann entropy, information. The decoherence rate of tran-
sition from pure colour states to white mixture state can be estimated on the base of purity [L.8]:

p=Trp°. (1.10)

This characteristic represents the closeness of a quantum state to a pure one. In our case,
_ -l -1 -1
p=N"+(1-N")exp(~26 funs Gty G juna RT ). (L11)

When RT tends to 0, p — 1, which corresponds to a pure state. When the composition R7 tends

to infinity, the purity tends to N, !, which corresponds to the white mixture [1.7]. The rate of purity
decrease is

Tiet =26 fiund GadiG fima R. (L12)

Left side of the equation is the inverse characteristic time of decoherence proportional to QCD string
tension and distance R. It can be inferred from (I.11) that the larger is the distance between particle and
antiparticle, the quicker the initial state tends to white mixture as a result of interaction with the QCD
stochastic vacuum. Thus white states can be obtained as a result of decoherence process. The information
on quark colour states is lost in hadrons due to interactions between quarks and confining non-Abelian
gauge fields. Von Neumann entropy can be used as a measure of the loss of information:

S=-Tr(plnp). (1.13)

Initial density matrix gives us S = 0 and we will have S = In/, for large RT. In order to obtain a more
suitable characteristic to work with, we might want to define the information on the basis of the given
entropy parameter. As it can be seen, the entropy ranges from 0 (for a pure, unperturbed quantum state,
which in our approach corresponds to the maximum amount of quantum information) to InN..
So it would be quite natural to define the information measure as

_hN.-S_ S

1 - .
InN, InN,

(114)

So the overall range of this measure is [0, 1]: in case of zero entropy it is equal to 1 and in case
of maximum entropy it is equal to 0. The latter case corresponds to the asymptotically big values
of RT (Wilson loop area). Thus, as we might see, during the interaction with QCD vacuum the entropy
increases and the information is being lost due to interactions between quarks and confining non-Abelian
gauge fields.

1.6. Instability of colour particle motion in confinement region. Wilson loop definition in QCD
is similar with the definition of fidelity, the quantity which describes the stability of quantum motion
of the particles [1.9]. Using the analogy between the theory of gauge fields and the theory of holonomic
quantum computation [1.9-1.11], we can define the fidelity as an integral over the closed loop, with particle
traveling from point x to the point y:
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= (ol Perofiac* o). @13

The final expression for the fidelity of the particle moving stochastic vacuum is
1
f= exp[-E gzzfszsy]. (1.16)

Thus fidelity for colour particle moving along the contour decays exponentially with the surface
spanned over the contour, the decay rate being equal to the string tension (1.9). The motion becomes
more and more instable with the increase in the area.

L.7. Order to chaos transition, critical energy, Higgs mass. The increasing of instability of motion
in the confinement region is also connected with existence of chaotic solutions of Yang-Mills field
[L.5, 1.12], possible chaos onset [1.13]. Yang-Mills fields already at classical level show inherent chaotic
dynamics and have chaotic solutions [1.12, [.13]. It has been shown that Higgs bosons and its vacuum
quantum fluctuations regularize the system and lead to the emergence of order-chaos transition at some
critical energy [1.14, 1.15]:

3u4 o
E = exp| 1——-|. (L.17)
° 64n? [ g4]

Here p is mass of Higgs boson, a is its self interaction coupling constant, g is coupling constant
of gauge and Higgs fields. Important here is the value of mass of Higgs boson. In the region of con-
finement there exists the point of order-chaos transition where the fidelity begin to decrease exponentially.
This connects the properties of stochastic QCD vacuum, Higgs boson mass and self interaction coupling
constants.
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I1. Gluon Squeezed and Entangled States in QCD
Many experiments are devoted to hadronic jet physics, since in particular, detailed studies of jets are
important for better understanding and testing both perturbative and nonperturbative QCD. Predictions

of the PQCD are limited by small effective coupling a(0?)<1 and nonperturbative phase is usually

taken into account either through a constant factor which relates partonic features with hadronic ones
(within local parton-hadron duality-LPHD) or through the application of various phenomenological
models of hadronization. Usually both stages should be taken into account. So as the width of the multi-
plicity distribution (MD) according to the predictions only of PQCD is larger than the experimental one.
The discrepancies between theoretical calculations and experimental data suggest that after perturbative
stage the quark-gluon cascade undergoes non-perturbative evolution after that hadronization effects
come into play. For example, such a contribution to the multiplicity distribution can be made in the form
of the sub-Poissonian distribution [I1.3, I1.4]. Calculations performed within PQCD [IL.5, I1.6] show that
multiplicity distribution at the end of the perturbative cascade is close to a negative binomial distribu-
tion. At the same time, gluon MD in the range of the small transverse momenta (thin ring of jet) is
Poissonian [I1.7]. Thus parton MD in the whole jet at the end of the perturbative cascade can be repre-
sented as a combination of Poissonian distributions each of which corresponds to a coherent state.
Studying a further evolution of gluon states at the non-perturbative stage of jet evolution we obtain new
gluon states that are squeezed states (SS) [I1.8—I1.11]. These states are formed as a result of nonperturba-
tive self-interaction of the gluons expressed by nonlinearities of Hamiltonian. In this paper we prove that
nonperturbative stage of jet evolution can be source of a gluon SS by analogy with nonlinear medium for
photon SS [I1.12—11.15]. Squeezed states posses uncommon properties: they display a specific behaviour
of the factorial and cumulant moments [II.16] and can have both sub-Poissonian and super-Poissonian
statistics corresponding to antibunching and bunching of photons. Moreover oscillatory behaviour MD
of photon SS is differentiated from Poissonian and Negative binomial distributions (NBD). Because
of analogy between photon and gluon, MD of gluon SS must have oscillations and using Local parton
hadron duality (LPHD) we can compare derived gluon MD with hadron MD. It is clear that in this case
behaviour of hadron MD in jet events is differentiated from NBD and this fact is confirmed by experi-

ments for pp, p; -collisions [11.17-11.19]. As pion contribution to the jet events is dominant, calculation

of the pion characteristics is an important task at investigation of the different physical phenomena.
Within LPHD we can calculate correlation characteristics extend to the pions. It is reasonable that
the distinctive features of the gluon squeezed state correlations will be reflected in the pion correlation
behavior. In this work using LPHD we estimate nonperturbative contribution of the gluon squeezed
states without taking into account its polarization to the pion correlation functions in the jet narrow ring,.
At the same time two-mode photon SS [I1.13, I1.20] in the limit of infinite squeezing are isomorphic
to the Bell states [11.21] which have been introduced in relation to the Einstein-Podolsky-Rosen (EPR)
paradox [I1.22] and they are one of the examples of the entangled states for two polarizations. The states

[0)=(12),12), +|) ), ) V2. q>—>:(|¢> ), -Jo),[eo) A2
)= (101, +loh [0, )N per)=() e, o) 0, ) 2

(IL1)

are the basis of the Bell states. Each of these entangled states, for example, ‘(I)i>, has a uncommon

property: if one photon is registered with defined polarization (for example, with polarization J ), the other
photon immediately becomes opposite polarized (longitudinal polarization). If we suppose that two-
mode gluon entangled states with two different colours can lead to ggq -entangled states then interaction
of the quark entangled states with stochastic vacuum has a remarkable property, namely, as soon as some
measurement projects one quark onto a state with definite colour, the another quark also immediately
obtains opposite colour that leads to coupling of quark-antiquark pair, string tension inside gq -pare and
free propagation of colourless hadrons.
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I1.1. Gluon single-mode squeezed states in QCD jet model. The solution of the Schrédinger
evolution equation for small time ¢

|f) =|in) —izV|in) (11.2)
provides a possibility to observe an evolution of an initial state vector |in> for small time. Here the Ha-

miltonian of gluon self-interaction for the jet ring model (Fig. 1) of thickness d6 in the momentum rep-
resentation can be represented in the form [I11.9-I1.11]

3/2
_ kg q(% 2 6]3 bede bede bcede
V——4(2n)3 [1—— 8 " abe fade 2__k2 [01212 +01313}+az323+

2
ko 0
.2 2
sin“ 0 .
+ 1= 28 1203555 - alsts - afsfs | psin6do. (1L3)
2 kg
bede b+ c+ d e b+ ¢ d+ e b _c+ _d+ e b b+ )
Here a,,, =a, a, a; a, +a; apa; a,+ajay a; a, +hc., a (al ) is the operator annihilat-

ing (creating) a gluon of colour » and vector component /, qg and k are correspondingly the virtuality
and energy of the gluon at the end of the perturbative cascade, g is the coupling constant, f, ~are
the structure constants of the SU.(3) group, 0 is the angle between a gluon momentum k and its pro-
genitor (0 <0 < 0yax,0max 18 half of the opening angle of the jet cone).

Since product of the gluon coherent states with different colour and vector indices corresponds
to Poissonian distribution of the multimode gluon states in thin ring of jet [I1.7], present state vector may

be considered as initial state vector |in> prepared by the perturbative stage, that is

zoo

[in)=[a) = TTTT|otf)- (I14)

1/=

—_

C

Gluon coherent state vector ‘af> is the eigenvector of the corresponding annihilation operator a;

with the eigenvalue o; which can be written in terms of the gluon coherent field amplitude |o; | and

phase v; of the given gluon field o} =|a; | ¢'". Thus evolution of this initial state vector within a small
interval of time ¢ is defined according (I1.2) as

|f>=]§[]§[‘ocf(t)>:(l—itV)ﬁf[‘af>. (IL5)
c=1[=1 c=11[=1

In this case the time is reckoned up from the beginning of nonperturbative stage and the Hamiltonian
of the gluon self-interaction V in the jet ring is determined by formula (I.3). The explicit form of

the evolved state vector |f > is given in [I1.10, 11.23]. The Hamiltonian of the gluon self-interaction
in the jet ring includes the squares of the creation and annihilation operators for gluons with specified

doe

Fig. IL.1. Jet ring
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colour and vector indices. As is known from quantum mechanics and quantum optics, the presence
of such structure in the Hamiltonian and, consequently, in the evolution operator is a necessary condi-
tion for emergence of squeezed states [I1.14], since the unitary squeezing operator involves quadratic
combinations of the creation and annihilation operators

S(z)zexp{§a2 —%(ﬁ)z}, (IL6)

where z=re' is an arbitrary complex number, r is a squeeze factor, phase 9 defines the direction
of squeezing maximum [II.14]. In order to verify whether the final gluon state vector describes the single-

mode SS, it is necessary to introduce the phase-sensitive Hermitian operators (X lb)l = [alb +(a lb )1 /2
and (X ,b )2 = [a,b —(a,b)+] /2i by analogy with quantum optics and to establish conditions under which

the variance of one of them can be less than the variance of a coherent state. Condition of the sin-
gle-mode squeezing for gluons is expressed in the form of the inequalities [11.9—11.11]

2

AX)),
2

2
AX) )1] <0. (11.7)

2
A(X;’)IJ =(N
2

2

+l<l or (N
4 4

Here N is the normal-ordering operator

A(le);T =ii{<(a;’)2>—<a;’>2}i{<(a;’+)2>—<a;}+>z +2[<a,”+a,’3>—<a}’+><a}’>]}. (IL8)

The expectation values of the creation and annihilation operators for gluons with specified colour

N

and vector components are taken for the vector |f> (IL.5). Let us consider the specific case where
the colour index is » = 1 and the vector index / is arbitrary. Then we have

2

N A(X]l)l =i4nu2tsin9d6{(l+u1)[811(Z33 +222)+(1—8]1)Z“]+[8]2233 +8[3222]+
2 (I1.9)

. 1 1 1
+uy sin? 9[—5511(222 +7Z33)+312(Z33 —5211)+513(222 —5211)}}

7
Here Zy = ¥ (X510 ){(X£)2) (mn=1,23).
k=2
In final state being consideration fluctuations of one of the squared components of the gluon field,

A(X })2, are less than those in the initial coherent state under the following conditions:
<(X,lf,)1> < O,<(X,lf,)2> <0 or <(X,]f,)1> >0, <(X,’,‘1)2> >0 (k#1lm=/). In this case we have phase-

squeezed gluon states by analogy with quantum optics [11.13, I1.14].
If the conditions <(X,]§,)1> > O,<(X,"f,)2> <0 or <(X,]f,)1> <0 and <(X,ﬁ)2> >0 (k#lL,m=#l[) are
satisfied, fluctuations in another squared component of the gluon field, A(X 11)1, will be less in the final

8 3
state vector HH‘oclc(t)> than in the coherent state. In this case we come to the amplitude-squeezed
c=11=1

gluon states (as in the case of photons [11.13, I1.14]). Since at small value of the squeeze factor we have

2
N A(X}’)IJ =$%r,b cos 9. (1L.10)

2
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. by )2 T 3n by )2
Evidently that { N (A(X ! )zj < 0 (phase-squeezed gluon states) if 5 <9< - and ( NV (A(X / )1j <0
(amplitude-squeezed gluon states) if —g <9< g Taking into account formula (I1.9) and (I1.10) the ex-

pression for the squeezing parameter in terms of the amplitude and phase of the gluon coherent states

b
1A . .
(oc;’ :‘aﬂe 11 ) is written as

7 3
1l cos 9 =—8mu, tsin0d0 Y {(1+u1 —%sm2 e){s,l 3 ok 1P sin2y5) +(1-8,) Jaf |? sin(zy{‘)}
k=2 n=2

+(14+u; sin> e)[slz ok 12 sin(2y5) + 83 ok 2 sin(zy’g)]}. (IL11)

Obviously that effect of the single-mode squeezing is absent (r;l cosd = 0) then the initial gluon

coherent fields are either real (yﬁ =0,n-lLk# 1) or imaginary (yﬁ =n/2n#lLk+ 1). Similar conclu-

sions will also be valid for a gluon field with other colour indices. Thus, the evolved vector
8 3,
I H‘a; (,)> (IL12)
c=11=1

describes the single-mode squeezed state of gluons that are produced at the nonperturbative stage
of the jet evolution within a small interval of time ¢.

I1.2. Gluon squeezed states contribution of the to the pion correlation functions in QCD jet.
Normalized second order correlation function for the gluons with colour » and vector component / is

b
Py2)(01,02)
Kii3)(01,02) =——2———- (IL13)
91(1)(91)91(1)(92)
where
Py @ =(7O.0)|al*al| £(8.0)), "
Plia) (01,02) = (/(02,0), /01,0 [l a}” af af | £ (01,0), /(B2,1))
| 10, t)> is a final state vector defined within small time interval as
8 3 8 3
|f>zHH‘af(@l,t),alc(eg,t)>:(1—itV)HH‘af(Gl),af(62)>. (IL15)

c=11=1 c=11=1

By taking the expectation values over the final vector' and taking into account correlations in jet thin
ring thickness of which is defined by A, the slope angle of which is defined by 6, we obtain the explicit
form of the normalized second-order correlation function for squeezed gluon states

b 14 b12
Ki2(0,) = —Ml(e,A)/{‘(xl | —2]af| a10,0) +M2(9,A)}. (IL16)

As a approximation of the external field (a? =[a|e™ and of =|B|e> at c#b for VI,
Y1—Y2=9/2+mn/4) functions M(0,A) and M,(0,A) have the next forms

' That this vector also describes squeezed gluon states can be proven by verifying the squeezing condition.
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M (0, A)=241uy o) || sin(8+§){(1+6“ )2 +uy —8,1) =ty (38, —1)(sin 0+ Acos0)sin 0}, (I1.17)
My(8, A)=8017u, Tc|oc|3 |B|3 sin[%+%}{(l+8“)(2+u1 —81) —u; (38,1 —1)(sinO+ AcosB)sin0}. (IL.18)

Here u ,u, are given in [11.23], 8 defines the direction of squeezing maximum [I1.14] (the squeezing con-
dition is fulfilled at 9 1t/2,3n/2 ). We use LPHD, summarize over color and vector components with

weights 03? at transition to pion correlations. In this case nonperturbative contribution to the pion cor-
relation functions appear as the second order normalized correlation function

3

8
K(z)(e,A)Z—Z z (J)f7 M](@,A)/{

‘4
I=1b=1

3 8
>3 ol

[=1b=1

3 8 ) 3 8
_zlzlbzlooﬂaﬂ Ml(e,A)+lZlem§’M2(e,A)}. (IL.19)

Let us perform a comparative analysis of the correlation function (I1.19) for gluon squeezed states
and the corresponding function for photon squeezed states, in quantum optics [I1.15]

ST
Koy =g? —1=<aa—>—1. (I1.20)

a
()
a
Here the expectation values are taken over the evolved state vector at the time z. If the correlation func-

tion is positive, occurs photon bunching (super-Poissonian distribution); otherwise (K @) < O), we have
photon antibunching (sub-Poissonian distribution) [11.13, I1.15]. For a coherent field obeying Poissonian

statistics, the normalized second-order correlation function vanishes (K Q)= 0).

For the photon squeezed coherent states |[oc, &]} =S (E,)ﬁ(a)| O> [11.13] the corresponding correlation
function has the form (at small values of the squeezing parameter r)

r[aze_if’ + (oc*)ze"a}

|OL|4 —2r|on|2 [ocze_"8 + (a*)ze’ﬂ'

Ko = (11.21)

In contrast to the correlation function for squeezed photon states, the corresponding function for

the squeezed gluon states, K(2)(0,A), includes, as follows from (II.19), the M,(0,A) which appears
because the Hamiltonian of the gluon self-interaction involves a nonlinear combination of the creation
and annihilation operators of gluons with different colours and vector components. Nonperturba-
tive contribution in the angle dependence of the pion correlation function is graphically investigated

(Fig. 11.2) at the parameters qg =1 GeVZ; g2 =4m;, k =x/§/(2<ng1uon >), xf=91 GeV; oo{’ =c012’,

08 =0; <ng1u0n> =|a |2 +7|B |2 is an experimental value which applies restriction on the amplitude
values of the coherent fields (investigated and external fields), for the two-jet events — <n gluon> =10.

Taking into account the nonperturbative cophase squeezed states of the soft gluons (8 = 0) we obtain
the angular correlations which lie in a negative area. In this case we observe the effect of the pion
antibunching with corresponding sub-poissonian distribution (Fig. I1.2, a) at any values of the coherent
field amplitudes. In the case of the nonperturbative antiphase squeezed states of the soft gluons (8 = 7)
we have the positive angular correlations. In this case there is the effect of the pion bunching with
corresponding super-poissonian distribution (Fig. I1.2, b) at any values of the coherent field amplitudes.
As derived conclusions are similar in case of the photon squeezed states we can say about finding of
decreasing (or increasing) of the pion correlations (Fig. 11.2) that may be evidence of the gluon squeezed
states at the nonperturbative evolution of a hadron jet.
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Fig.I1.2. Angular dependence of the pion correlation function at (ngluon> =10and (@) -8 =0); (b))—- 9 ==

I1.3. Gluon two-mode squeezed states in QCD. In order to verify whether the gluon state vector describes
the two-mode squeezed state on colours / and g, it is necessary to introduce the phase-sensitive Hermitian ope-

rators (th’g)l =[th +af +a't + alg+]/(2\/5) and (th’g)z =[alh +af —a" —alg+}/(2i\/§) by
analogy with quantum optics [11.13] and to establish conditions under which the variance of one of them
can be less than the variance of a coherent state. Here a lh, af(a lh+, af") are the operators annihilating

(creating) of gluons with colours 4, g =1,8 and vector indexes /=1,3. The condition of the two-mode
squeezing of the gluons with different colours 4,g is expressed in the form of the inequality

2

N/ AX[#),

2

<0. (IL.22)

The expectation values of the creation and annihilation operators for gluons with specified colour and

vector index are taken over the vector |f >
|f) =in—it H\(to)|in), (11.23)

where Hi(tg)=H 1(3)(t0)+l-1 1(4)(t0) is the Hamiltonian three-gluon (H 1(3)) and four-gluon (H 1(4))
self-interactions which explicit forms are given in [I1.25] in momentum representation, in> is an initial
state vector of the virtual gluon field (I1.4). Averaging the annihilation and creation operators

a lh .ar,a lh *a H * over the evolved vector |f > vector we write the two-mode squeezing condition in the form

2

NI AX %),

2

:i%{<0t|[[H1(0),a;1+],a;l+]|°‘>+<“|[[HI(0),azg+]aalg+]|°°>+

+2(a|[LH1(0),a/" baF )~ hef <O0. (11.24)

It is easy to show that the three-gluon self-interaction (as for single-mode squeezing of the gluons)
does not lead to squeezing effect since

[[Hp)(o)’alzﬁ]’aliﬁ] _o, [[Hfm(o)’algq,algq _0, HHI(”(O)’“;”}‘ZF} )

[azg ’[alh H I(3>(O)H =0, [a,”,[a b O (O)ﬂ _o, [a,g,[a 5 1O (O)H W (11.25)
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Thus, only the four-gluon self-interaction can yield a two-mode squeezing effect.
For collinear gluon corresponding squeezing condition is

2
2

_+t_(fahbfahc+fagbfagc+fahbfagc+fagbfahc)2|a ||a]|51n(Yj+Yj)<O (1126)

N A(X 8
(X" ok, Py

2

. b .. C
. 1y Ly .
Here we have taken into account that ocl} =| oalj’- le '/ and af =[aj|e /. The two-mode squeezing con-

dition is fulfilled for any cases apart from yl} +75 =0,7. In particular, if all initial gluon coherent fields
are real or imaginary then the two-mode squeezing condition is not fulfilled as in the single-mode case.

I1.4. Entangled collinear gluon states. At finite squeezed » a continuous variables entangled state
is known from quantum optics as a two-mode squeezed state [11.13, 11.20]

1z .
|f) =S12(r)]0),]0), =mn§0(tanhr) |n),|n), (11.27)

where Spp(r)= exp{r(arfr ay —alaz)} is operator of two-mode squeezing. It is not difficult to demon-
strate that the state vector |f > describes the entangled state. At small value of the squeeze factor we have

2
r=2| N|A(XE )1} . (11.28)

2

The squeeze factor for the collinear gluons is defined as
g ’ b b
r :tST(fahbfahc + fagbfagc + fahbfagc + fagbfahc)z | a, H O‘j’ | Sin(Yj + "/j) (H-29)
0 Jj#l

From the obtained expression (30) it follows that the squeeze factor is not equal to zero for any cases
apart from y_l} +75 =0,m. The dimensionless coefficient

172

+12 1 A 2
e la1a3 |~ +]a14;, | (I1.30)
2(aifa; +1/2)aza; +1/2)

is the measure of entanglement for two-mode states [11.26], 0 < y <1 (entanglement is not observed
when y = 0). Averaging the annihilation and creation operators in the expression (31) over the vector |f >
(I1.27) at small squeeze factor we have

y=pn, (11.31)

Rewriting the expression (I1.30) for the entanglement coefficient in case two-mode gluon states as
we can write the condition of the entanglement with taking into account (11.29) and (I1.31)

(fahbfahc + fagbfagc + fahbfagc +fagbfahc)z | al | (X] | SHI(YJ + 'Y]) <l. (11'32)
4\/7]{0 J#l
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Obviously squeezed gluon states are simultaneously entangled if the amplitudes of the initial gluon
coherent fields are small enough. Thus, by analogy with quantum optics we have obtained the two-mode
squeezed gluon states which are also entangled as a result of the four-gluon self-interaction. We have
proved theoretically the possibility of existence of the gluon single-mode SS at nonperturbative stage
of the QCD jet evolution. As one of identification criterion of existence of such gluon states can served
correlation function. On the base of LPHD we have analyzed the behaviour of angular correlations
of the pions in the hadron jet narrow ring and have compared our results with the corresponding correla-
tion function for photon squeezed states, which was comprehensively investigated in quantum optics.
Thus the nonperturbative contribution of the gluon squeezed states to the pion correlation functions
has been estimated. Antibunching and bunching of the pions was revealed. QCD evolution leads both
to squeezing and entanglement of gluons.Two-mode gluon states with two different colours can lead

to gq -entangled states role of which could be very significant for explanation of the hadronization and
confinement phenomenon.
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II1. Strong QCD instantons

A possibility of strong growth of the cross-section of the instanton transitions in high energy
collisions was mentioned first for electroweak theory [IIL.1]. Shortly after this it was shown [I11.2] that
QCD-instantons can appear as a new channel of deep inelastic scattering andbe observed at the present-
day experiments unlike electroweak instantons.QCD instantons provide quantum tunneling between
QCDvacuapotencial energy wells with different Chern-Saimon numbers N

2
Ny = é ~[d’xe (AﬁajA,f +§s”bcA,~”AfA,fj. (IIL1)
T

QCD-instantons can be produced in quark-gluon subprocess. A set of important features of the pro-
cess (large number of secondary particles, specificbehavior of cross-section and structure functions,
large transversal energy flow and others)was already discussed by Schrempp, Ringwald et al [111.3, I11.4].
Correlation properties of instanton-induced processes can be considered as new criterionsof the QCD-in-
stanton identification in addition to criterions of Schrempp, Ringwald. Two-particle correlation function
[1IL.5], factorial and Hg-moments [II1.6]) showed that instantoninduced processes are characterized
by specific form of correlation characteristics at partonlevel. Footprints of these features persist after
hadronization [III.10]. In particular normalizedfactorial moments for instanton processes grow very
slowly, Hgq-moments are characterizedby first minima at ¢ = 2 unlike ordinary DIS [IIL7, IILS].
Hadronization was takeninto account by means of Monte-Carlo package QCDINS [II1.3, 111.4, I11.10]
(the program which generatesQCD-instanton-inducedevents). Usually it is supposed that only minimal
number of quarks is produced after “decay” ofinstanton (number of final gluons is supposed to be arbi-
trary): ¢ + g — (2n,— 1)g + ngg. This supposition was used by authors of the package QCDINS [IIL.3, I11.4]
as well as in [II1.7].Let us we consider instanton-induced processes with arbitrary number of quarks.
Contributionof these processes is determined by nonzero fermion propagator [I11.9]. After calculation
we obtain Poisson distribution on number of quark pairs (for light quarks), which are produced in
the instanton processes.Bjorken variable of instanton subprocess x’ > 0.5. Average number of quark pairs
for small z (z = (1 — x')/x") reads < n >~3(1 + %), Bjorken variable of instanton subprocess x' > 0.5.
Contribution of non-zero modes [II1.9] can lead to another behavior of characteristics of instantonpro-
cesses and be important for the experimental search of QCD-instantons [II1.11].

Thus, key differences of QCD-Instanton induced final states in comparison to perturbative QCD
final states are flavour democracy, isotropic decay, high average multiplicity, Poisson distribution of
gluons and also specific behaviour of correlation moments.
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IV. Chaos assisted instanton tunneling

It was discovered recently that very important in different branches of science, including nuclear
processes of fission and fusion, phenomenon of quantum tunneling, can be accelerated [IV.1] or slowing
down [IV.2] up to several orders of magnitude by the small perturbation leading to chaos in classical case.
Approach based on instanton technique [IV.3] and namely on chaotic instantonapproach [IV.3, IV.4]
gives an analytical prediction for the influence of theperturbation on quantum properties of nonlinear
systems . We discuss here the method on a simple quantum mechanical example with the Hamiltonian:

_ 0 _
H=51_92+w(2)cosx—8x > 5(t—nT).

n=—w

The systems with spatially periodic potential are well-studied in solid-state physics [IV.5] and
instanton physics [IV.6]. Perturbationusedhere was widely exploited in the systems exhibiting quantum
chaos [IV.7]. Chaotic instanton is the solution of the Euclidean equations of motion of the perturbed
system [IV.3, IV.4]. This configuration is responsible for the enhancement of tunneling. Dynamical
tunneling amplitude with the contribution of the chaotic instanton solutions is [IV.3, IV.4]

A= NAde_,cho S[x"”’ (r,é)] exp(—S[xi"” (ri)]) ~ N\[8woTe exp[nﬁf]_

It has exponentially enhancing factor 4 = 4 exp ( nAH
o

miltonian without perturbation. Thus, small perturbation leading to chaos can essentially enhance
the tunnelling rate in comparison with non-perturbed system. Theory of strong interactions (QCD)
is the most interesting example, for the method where the investigation of instanton gas (or instanton
liquid) could shed light on the structure of hadrons and in applied sphere on details of thermonuclear
fusion.

J, where 4 is tunneling amplitude for the Ha-
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V. Fractal properties of hadron clusters in Hagedorn bootstrap model

It is demonstrated that widely known Hagedorn statistical bootstrap model in the framework of which
for the first time conception of phase transition critical temperature in quark gluon plasma was introduced
describes intermittent behavior (fractal dimension) in high energy ion-ion collisions [V.1-V.7].
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Conclusion. By analytical and numerical calculations it was obtained that:

L. Interaction of colour particles during evolution with stochastic QCD vacuum considered as envin-
ronment leads to the decoherence,mixed quantum states, instability of motion, loss (confinement)
of colour (decreasing of information of colour, Von Neumann entropy, purity, fidelity), to order to chaos
transition.

II. Nonperturbative interaction of quarks and gluons through four gluon self-interaction part of QCD
Lagrangian (in particular in jets at nonperturbaive stage of jet evolution) leads to squeezed and entangled
states of gluons, quarks (under interaction of gluons with different colours) and hadrons (under con-
dition of local parton-hadron duality), thus not only for electromagnetic but also for strong interactions.
As one of identification criteria of existence of squeezed gluon states can serve correlation function
behaviour of angular and rapidity correlations of the pions (antibunching and bunching) in the hadron jet
narrow ring,.

III. Strong (QCD) instantons which provide quantum tunneling between QCD vacua of potential
energy wells with different Chern-Saimon numbers N, except usual key differences (flavour democracy,
chirality violation, isotropic decay) have specific correlation properties : high average multiplicity,
Poisson distribution of gluons (hadrons), very slow growth of normalized factorial moments and Hq-mo-
ments characterized by first minima at ¢ = 2 unlike ordinary case (at ¢ = 6).

I'V. Chaotic instantons are introduced and discussed being the solutions of the Euclidean equations
of motion of the periodic perturbed system, leading to chaos in classical case and provide accelerated or
delayed quantum tunneling and are very useful for analysis in particular of nuclear processes of fission
and fusion.

V. It is demonstrated that widely known Hagedorn statistical bootstrap model in the framework
of which for the first time conception of critical phase transition temperature in quark gluon plasma
was introduced describes intermittent behavior (fractal dimension) in high energy ion-ion collisions.
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