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Abstract. The primordial spectrum of scalar particle s̓ density perturbations is calculated. On the assumption of spectrum 
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low-frequency modes. 
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Рождение материи и анизотропия микроволнового реликтового излучения  
в безынфляционных космологиях 

Аннотация. Рассматривается рождение материи в альтернативных безынфляционных космологиях, в которых 
масштабный фактор растет линейно со временем. Вычисляется первоначальный спектр неоднородностей плотности 
родившихся скалярных частиц. Если потребовать универсальность спектра, т. е. чтобы среднюю плотность энергии 
и характерную величину неоднородности плотности энергии можно было задавать произвольно, то форма спектра 
оказывается полностью фиксированной. Спектр близок по форме к плоскому спектру Хариссона – Зельдовича, но  
с подавлением низкочастоных мод.
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Milne-like cosmologies again attract an attention lately [1–8]. However, although the original Milne 
universe [9] is open and empty, the flat universes filled with some exotic matter with the overall equation 
of state = 1 / 3w −  is usually considered. Moreover, there could be a deeper background for these cos
mologies, relying on the residual vacuum fluctuations [10]. 

One of the attractive points for such a model is that it solves the horizon problem without inflation. 
The most accurate cosmological datum is the anisotropy of the cosmic microwave background. However, 
the confrontation of the Milne-like cosmologies with the experimental data is far to be complete. One  
of the problems is the primordial spectrum of the density perturbation. In the absence of the inflation, 
one needs another model for the primordial density perturbation spectrum. Some steps have been done 
in this direction [7, 11], but they refer to the methodology of the old inflationary paradigm and do not 
discuss the origin of matter in the universe. In the inflationary scenario, the matter appears as a result  
of the inflaton field decay. If there is no inflation, then there is no inflaton field and no matter. 

1. Wave packet description of the quantum field in the expanding universe. Quantum fields on 
the classical background were carefully considered earlier [12]. The main instrument for the description 
of the quantum field are operators of creation and annihilation used for quantization of the field oscil
lators. For the expanding universe, it seems, another formalism could be convenient. In fact, in a vicinity 
of singularity, there are no field oscillators because they do not begin to oscillate yet. From the other 
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hand, it was shown that there exist some finite quantities in the singularity, namely momentums of the dy
namical variables despite the infinity of the dynamical variables itself [13]. State of the quantum field 
can be described in terms of the wave packet over eigenfunctions of these momentums.

Let us begin from the conventional formalism for the scalar field ( , )φ η r  in the expanding universe 
described by the Lagrangian 

	
( )2 2 2 31= ( ) ,

2
'L a dφ − ∇φ∫ r 	 (1)

where a(η) is the scale factor. 
It is suggested that the metric tensor of the universe corresponds to the interval 

	
2 2 2 2= ( )( ),ds a d dη η − r

where η is the conformal time. Expanding of scalar field over Fourier series 

	
( ) = ieφ ϕ∑ kr

k
k

r 	 (2)

allows rewriting the Lagrangian (1) as 

	

2
2= .

2
' 'aL k− −ϕ ϕ − ϕ ϕ∑ k k k k

k
	 (3)

Corresponding momentums are 2= .'
'

L a −
∂

π = ϕ
∂ϕ

k k
k

 In the terms of momentums, the Hamiltonian 
'

'
LH L ∂

= − ϕ
∂ϕ

∑ k
k k

 is 

	
2 2

2
1= .
2

H a k
a

−
−

π π
+ ϕ ϕ∑ k k

k k
k

 	 (4)

Each k-mode satisfies the equation of motion  

	
22 = 0.

'
'' 'a k

a
ϕ + ϕ + ϕk k k 	 (5)

Quantization in terms of the creation and annihilation operators consists in postulating [12] 

	
*ˆ ˆ ˆ= ( ) ( ),k ka u a u+

−ϕ η + ηk k k 	 (6)

where functions uk satisfy to the equation of motion (5) and the relation

	
2 * *( )( ) = .' '

k k k ka u u u u iη − 	 (7)

Let us prove that for a wide class of dependencies a(η), such that the kinetic (first) term is dominating 
over the potential (second) term in Eq. (5) in the vicinity of the singularity, the momentums are finite 
quantities. Momentum corresponding to the k-mode can be written

	 ( )2 2 *ˆˆ ˆ ˆ= = ( ) ( ) ( ) .' ' '
k ka a a u a u+

− −π ϕ η η + ηk k k k 	 (8)

Near singularity, the function ( )ku η  satisfies the equation (5) without the last term asymptotically. This 
equation can be converted into the form

	
( )2( ) ( ) = 0.'

k
d a u

d
η η

η
	 (9)
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From the equations (8) and (9) one may conclude that the momentums π̂k are asymptotically some 
constant operators in the vicinity of singularity. The assumption, that the kinetic term is dominant in  
the vicinity of singularity, is valid, for instance, for dependencies ( ) .na η η  In particular, these depen
dencies include ( )a η η  (radiation background) and 2( )a η η  (matter background). Above assumption 
is not valid for Milne-like cosmology in which ( )( ) expa η η   , but in the next section we argue that  
the Milne-like behavior begins not from the singularity but some later.

Let us define a time-independent operator  

	
*ˆ ˆ ˆ= ,k kP a a +

−α + αk k k 	 (10)

where complex constants are 2
0= ( ) ( ) |'

k ka u η→α η η  and define one more operator 

	
ˆ ˆ ˆ= exp( ) exp( ) .k k k kX b i a b i a +

−θ + − θk k k 	 (11) 

The requirement that the commutation relations are satisfied  

	 ,ˆ ˆ[ , ] = .P X i− δk q k q 	 (12) 

allows finding the constants bk. Taking into account that ˆ ˆ[ , ] =1a a +
k k  we come to

	
*= .k i ik kk k

ib
e e− θ θ−

α −α
	 (13) 

With the help of the equations (10), (11) and (13) we can express creation and annihilation operators 
through X̂ k  and P̂k :

	

2
*

2 * * 2

ˆ ˆˆ ˆˆ ˆ= , = .
i k

k ki ik kk k k k

P e Pa i X a i X
e e

+ θ +
+
−θ θ− α + α

α − α α −α
k k

k k k k 	 (14) 

Substituting (14) into (6) we come to 

	

( ) ( )
2 *

* *
* 2

ˆ ( ) ( )
ˆˆ ( ) = ( ) ( ) .

i kk k
k k k ki kk k

P u e u
i X u u

e

+ θ

θ

η − η
ϕ η + α η −α η

α −α

k
k k 	 (15) 

Realization of the operators P̂k  and X̂ k  is convenient to take in the form ˆ ˆ= , = .P P X i
P
∂
∂

k k k
k
 The equa

tion (13) allows describing the quantum evolution of the fields using the wave packet ( )C Pq  which is set 

in the singularity. For instance, mean value of ˆ ( )ϕ ηk  over a wave packet takes the form  

	

( )

( ) ( )

* * * *
*

** * *

( ) ( )ˆ< | ( ) | >= ( ) ( )

( ) ( ) ( ) ( ) ,

i ik kk k
i ik kk k

k k k k

e u e u C P P C P P P
e e

u u C P C P P P
P

− θ θ

− θ θ
η − η

ψ ϕ η ψ −
α − α

∂
− α η − η α

∂

∫

∫

k q k q q q

q q q q
k

 

 

 	 (16) 

where integration implies 0 1 1 2 2
* *= ...	.P dP dP dP dP dPk k k k k  The integral over * ,

2
d ddzdz

i
ρ ρ φ

≡
π  

= iz e φρ  
is understood in the holomorphic representation [14]. Let us consider the transformation of the wave 
packet ( )*( ) ( )exp qC P C P i g P P→ − ∑k k q qq  in Eq. (16), where gk are some real constants. Under sum
mation on q one should take into account that *= .P P−q q  As can see, the transformation is equivalent  
to the change of the phase θk as  
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( )( )
( )( )

2 *2 * 2

* 2 2 *2

tan 2 ( )
arctan .

2 ( ) tan

k k k k k k k
k

k k k k k k

ig g

g i

 θ + α −α − α −α θ →  − α + α θ + α −α 
 

	 (17) 

That is the phases θk could be considered twofold: mathematically they are the phases of the basis 
functions uk(η), but physically they are the property of the quantum state under the chosen basis uk, 
because they are equivalent to the constants gk. Further, we shall consider the Gaussian wave packets 

( )*( ) = exp ,C P P P− ∆∑k q q qq  with the real constants ∆k  and, besides, characterize a quantum state by  

the phases kθ . In another word, we may consider θk as some phase of the function uk(η), and this phase 
is a property of the quantum state as well as a width Δk of the Gaussian distributions. Let us emphasize, 
that the matter is encoded in the singularity here. It is not created from the vacuum. Even for massive 
particle amount of matter created from the vacuum is not sufficient to explain the content of the universe 
in Milne-like cosmology [15], if to take observed conformal Hubble constant H.

2. Model of the universe expansion. It is evident that the Milne-like behavior is hardly extendable 
to the vicinity of singularity. Let us consider a heuristic model to describe the way in which the universe 
could come to the Milne-like expansion. Consider Hamiltonian in which the universe metric is suggested 
to be uniform, but the non-uniform scalar field presents [10, 16]: 

	
2 2 2 2

2
1 1= .
2 2

'
pH M a a k

a

+
+π π

− + + φ φ∑ k k
k k

k
	 (18) 

Initially, the last term corresponding to the potential energy of the field oscillators does not play a role.

Consequently, ( )a η η   under the small conformal time, because 
*

2
2

'a
a

π πk k
  and const.πk   When 

the field oscillators begin to oscillate, the expansion changes from ( )a η η  to ( ) exp( )a η η   , i.e. 
( )a t t   in cosmic time [10]. The late-time rate of the universe expansion also differs from the Milne-

like, because universe accelerates due to residual vacuum fluctuations [10]. Here, for simplicity, we will  
not take this acceleration into account.

Due to UV cut off of the comoving momentums, high energy oscillators at the Planck frequencies 
give the main contribution to the universe expansion [10, 16]. Thus, the change of the expansion rate 
occurs near the Planck time and can be described by the model 

	 ( )
1

1,

,   0 < < ,
( ) =

exp ,   >
a

B

γ η +βη η ηη 
η η η 

 	 (19) 

where η1 is of the order of the Planck time. For the smooth splicing of the function and their derivatives, 
the linear term βη has been introduced in the Eq. (19). Values of the coefficients are equal to

	

1 11 1

11

2 (1 ) (1 2 )= , = .Be Beη η− η − η
γ β −

ηη

    	 (20) 

Milne-like models seem attractive because it could solve the horizon problem without inflation, but 
this puts the constraint on the coefficient B in Eqs. (19), (20). One of the formulations of the horizon 
problem is that the last scattering surface consists of some causally disconnected regions. Let η0 will be 
today number of conformal time corresponding to the present-day scale factor a0. The horizon is the pre
sent observable part of the universe which could be reached by the light:

	

0
0 0 0( ) = ( ) .

( )

'
t

'
dtR t a t

a t∫ 	 (21) 
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In comoving coordinates 0 0( ) / ( ),R t a t  the horizon is simply 0
00 = ,dη η η∫  i.e. conformal time from  

the beginning of the universe, thus, 0 0 0( ) = .R t a η  The size of the region corresponding to the present 
horizon at the time of the last scattering is 0

0
( ) .LSaR t

a
 This size should be an order of or less than  

the horizon at last scattering time ( ) :LSR t

	
0

0
( ) ( ) = ,LS

LS LS LS
aR t R t a
a

≤ η 	 (22) 

otherwise it will consist of a number of causally disconnected regions. Substituting of 0
0

1= ln a
B

η


  and 
1= ln LS

LS
a
B

η


  to Eq. (22) gives

	
0ln ln ,LSa a

B B
≈ 	 (23) 

where the sign ≤ is changed by ≈  because the first one is principally impossible. The red shift of the last 
scattering surface is 1100,LSz ≈  i.e. 2

0 / 10 ,LSa a −≈  thus B must be sufficiently small. For instance, 
taking 0 1a ≡  and 30= 10B −  one has 30 28ln10 ln10 .≈  The problem of the horizon is solved in the linear 
cosmologies by the minimal way: although the region at last scattering surface corresponding to the present  
horizon is less than the horizon at last scattering, they equal approximately if the constant B is sufficiently 
small.

Solutions of the equations (5) (although this equation is for ,ϕk  uk obeys it, as well) in the different 
regions can be written as

	

( ) 1

2 2

14 2 2

2 21 2ln ln( ) ,   0 < < ,
2

( ) =

,   > .
2

k
i k

i

u
e

B k

− η− η

   π γ
 + − γ + b η + η η η    γ π γ + b η   η 

−
η η

 −

 



 	 (24) 

Since η1 is very small compared to the 1/k of interest, an approximate non-oscillating solution is 
taken in the expression (24) at 10 < < .η η  Besides, there is an overall phase in the functions uk which 
influences the matter production through the quantities αk. For calculations, in fact, only last time pieces  
of the function of uk(η) are needed and, besides, complex quantities αk discussed in section 1.

2. Mean energy density. Let us calculate a mean energy density of the created particles defined as

	 ˆ ˆ=< [ ] | | [ ] > < 0 | | 0 >,C P C Pr r − r 	 (25) 

where an average vacuum density is extracted and 

	

2 2
3 2

2 2 2

ˆ ˆ1 ( ) 1ˆ ˆ ˆ ˆ ˆ= = ,
2 2 2

'
' '

V d k
V a a a

− −
 φ ∇φ

r + ϕ ϕ + ϕ ϕ  
 

∑∫ k k k k
k

r 	 (26) 

where V is the normalization volume.  Substituting the expression (15) into (26), taking into account that 
ˆ ˆ= +

−ϕ ϕk k  and performing integration over *P Pq q    we find  

(

) (
( ) ( )

2 2 2 * 2 * 2 2 *
2 * 2

| |>

* 2 *2 2 2 * 2 * 2 2 * 2

2* * * 2 *

1 1= ( ) 2 ( ) ( ) ( ) ( ) 2 ( ) ( )
4 ( )

( ) ( ) 2 ( ) ( ) ( )
4

1( ) ( ) ( ) ( ) ( ) ( ) ,
2

' ' '
k k k k k k k

k k k

k'
k k k k k k k k k

' ' ' '
k k k k k k k k

k u k u u k u u u u
a

u k u k u u k u

u u u u k u u

r η − η η + η + η − η η +
∆ α − α

∆
+ η − α η − α α η η + α η +

+ α η − α η − η η + η η


∑
k 

 
	

(27)
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where the last term corresponds to the vacuum average, which we extracted according to Eq. (25).  
It should be noted, that the summation over k in Eq. (27) is restricted by the value of the conformal 
Hubble constant. That is ad hoc definition because we discuss the creation of the particles under vacuum. 
The modes with the | |<k   do not oscillate, and can not correspond to the real particles. Let us consider 
not only quantum average but also average in time for the concrete form of the functions uk(η) given  
by (24). That causes further simplification because it removes the oscillating terms. As a result, we  
come to 

	

2
*

4 * 22 2| |>

1 1= 1 .
2 ( )

k k k
k k k

k
a k

 
r α α ∆ − −  α − α ∆−  

∑
k  

 	 (28) 

Let us minimize the energy density by choosing the corresponding Δk, which turns out to be equal 
* 1=| ( ) | .k k k k

−∆ α α − α  This gives 

	 ( )2
* * 2

4 2 2| |>

1= 2 ( ) 1 .
2

k k k k
k

a k
r α α − α − α −

−
∑

k  
 	 (29)

 

Quantities αk characterize phases of the functions uk(η) near singularity. It is convenient to represent 
them in the form ( )= exp ( / 2 ) ,k k kr iα π + θ  where rk and θk are reals. 

As a result, we come to the final formula for the density of particles created from the wave packet set 
in singularity  

	

( ) ( )
2 4

4 2 42 2 2 2| |>

1 1= sec 1 = sec 1 ,
2 4

k k
k k dk

a ak k

∞r θ − θ −
π− −

∑ ∫
k


  

 	 (30)
 

where integration has been changed by the summation 
3

3 .
(2 )
d

→
π

∑ ∫k
k

Let us consider the model which allows obtaining arbitrary mean energy density taking  

	 ( )sec = 1 ,n
k kθ + m 	 (31) 

where μ and n are some constants. As one may see from (31), the energy density is proportional to μn 
and, thus, can be set arbitrary. Besides, we shall consider that there exists momentums UV cut-off  
of the order of the Planck mass if some divergent integrals appear [10, 16]. It was shown that this cut-off  
is necessary to obtain a true value of the universe acceleration due to residual vacuum fluctuations [16].

3. The primordial spectrum of the energy density inhomogeneity. Let us calculate spectrum  
of the energy density 

	
( )22

2
1 ˆ ˆˆ ( ) = ( ) ( ) .

2
'

a
 r φ + ∇φ 
 

r r r 	 (32) 

As we consider the Gaussian wave packets C , the energy density in the different space points takes the form 

	 ˆ ˆ< | ( ) ( ) | >= (| |),' 'C Cr r ζ −r r r r 	 (33) 
where  

	
( )2 2 ˆ ˆ ˆ ˆ( ) = exp , =< | | > < 0 | | 0 > .k kr i C C+ +ζ s s r r − r r∑ k k k k

k
kr 	 (34) 

Let us emphasize that no normal ordering is used in (34) because the summation is extended to all k 
domain and = .+

−r rk k  In the equation (34) we again extract vacuum average ad hoc, because we are 
interested in the spectrum of the created particles under vacuum.
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The Fourier components of energy density are expressed as 

	

( ) 3
2

2

1 1ˆ ˆ ˆ ˆ ˆ ˆ= ( )exp ( ) ,
2

1ˆ ˆ ˆ ˆ ˆ= ( ) .
2

' '
V

' '

i d
V a

a

+ +
− −

+ + +
− −

ρ ρ − ϕ ϕ + − ϕ ϕ

ρ ϕ ϕ + − ϕ ϕ

∑∫

∑

k q q k q q k
q

k q k q q k
q

r rk r = q k q

q k q
	 (35) 

The steps of the previous section were: integration over *,P Pq q    using Δk, which corresponds to 
the minimal energy density and, removing the oscillating terms. Here the calculations are the same, but 
more complicated, and can be done using Mathematica software. As a result, with the functions uk(η) given 
by (34), we come to  

	

( )( )
2

2 2 2
| |

8 2 2 2 2| |> ,
| |>

ˆ ˆ ˆ ˆ=< | | > < 0 | | 0 >=

( ) 2 ( ) ( ) (sec sec 1)
 ,

16 ( )(( ) )

k

q

C C

q

a q

+ +

−

−

σ ρ ρ − ρ ρ

− + − + − θ θ −
=

− − −
∑

k k k k

q k

q
q k

q q k q q k q k

q k




 

 	 (36) 

where summation on q is again restricted by considering only real particles. It is known that the inho
mogeneity of the microwave background is relatively small. That restricts the value of the relative 
inhomogeneity given by the dimensionless quantity 3 2 2/ .kk σ ρ  Let us again to take the dependence (31). 
According to (30), ρ  is proportional to the constant μn. At n = 4 the integral in Eq. (30) diverges 
logarithmically. In the general case, one has:

	

4
max4

4

4
max4

4

4
4

1 , < 4,

1 ln , = 4,

1 , > 4,

n n

n

k n
a

k n
a

n
a

− µ       
   


µ    ρ     

   
 µ     




 


 




 	 (37)

 

where kmax is the UV cut-off of the order of the Planck mass. Analogous estimation for Eq. (36), when 

summation ∑q  is replaced by the integration 
3

3 ,
(2 )
d
π

∫
q  leads to

	

5 28
max

1 28
3 2

28

1 28

,   2 < < 5,  

|

,    > 5.  

n n n

k k n n

kc c n
a

k

c c n
a

−  µ µ       +              σ 
  µ µ    +           






  


 

 	 (38)

 

Present day temperature of the universe microwave background is 4
0 = 2.73 = 2.35 10  eVT K −⋅  , the UV  

cut-off is the order of the Planck mass 18
max

3= = 6 10  GeV
4pk M

G
⋅

π
  , and the Hubble constant  

is 332.1 10  eV.−⋅   Energy density corresponding to the microwave background temperature is 

	
4
04

1 .T
a

ρ  	 (39) 

Using Eqs. (37), (39), we can rewrite Eq. (38) in terms of T0
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4 2 8
max 0 max

1 2

1 24
max max 0 max

1 23 2

2 5 4
max 0

1 2

4
0

1 2

,   2 < < 4,  

ln ln ,   = 4,  
|

,  4 < < 5,

,  > 5,

n

k
k n

k T kc c n

k k T kc c n
k

k Tc c n

Tc c n

− −

− −−

− −

−

    +    
   


        +        s         


r     +   

   

  + 
 





  

   

 













 	 (40) 

where c1 and c2 are some constants of the order of unity. The first observation is that the c1-term is 

always suppressed by the multiplier ( ) 4
0 /T −   and is negligible, despite the presence of the large multi

plier max /k  . The second observation is that the low relative inhomogeneity could be obtained if n is 

close to 4. In particular, one has ( )( )
3 2 2 4

2 ln / 2 10k
max

k k − −s
⋅

r
    for n = 4.

Let us calculate the form of spectrum. For low inhomogeneity, it is completely fixed by (31), because 
n should be very close to 4 and one has the integral  

	

( )( )2 2 22 3
2 | |> ,

8 32 2 2 2| |>

( ) 2 ( ) ( )
= , 

16 (2 )( ) ( )(( ) )

n

k
n n

q d
a q q−

− + − + −m
s

π− − − −
∫ q

q k

q q k q q k q k q

q k q k





 
 	 (41)

 

which can be calculated using the method of Monte-Carlo. For 4n ≈  it is convergent at an upper limit 

and contains the only parameter  . Spectrum 
3 2

2( ) = kkk s
r

   is shown in Fig. 1.

The spectrum is relatively flat but with the suppression at low comoving momentums k. It is 
interesting, that it is possible to obtain even more flat spectrum shown in Fig. 2 for n = 4.11, but the value 
of the relative inhomogeneity is large. For small inhomogeneity, the parameter n should be a bit less than 
four.

Conclusion. Studies of the Milne-like models seem attractive because they do not demand inflation. 
Moreover, all scales of interest always remain within the horizon during the evolution of universe. Let us 
remind that in the standard model of the radiation dominant universe with the inflation stage,  
a mode crosses horizon at the stage of inflation and then returns at the radiation or matter domination 
stage. 

Fig. 1. The primordial spectrum of the relative density inhomogeneity 
3 2

2( ) = kkk s
r

   for parameter n = 3.95 in the formula (31) 
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It is shown that there exists the possibility to put any amount of matter into the cosmological 
singularity. If one demands that the relative value of inhomogeneity is small, the primordial spectrum 
has the fixed form, with the suppression of the large-scale modes. Because this spectrum corresponds  
to the scalar particles, the most evident candidate is the Higgs particles, which has been discovered 
recently. These particles decay into the photons and transfer the inhomogeneity to them. That is,  
the spectrum of scalar particles gives the initial conditions for the evolution of the photon modes. The ini
tial conditions should be set at 1 / .kη   The next step is to investigate the evolution of the photon 
spectrum and the massive matter spectrum in the Milne-like cosmology, but it is beyond the scope of  
the present lecture. Besides, there could be an analogous spectrum of the gravitational waves, which are 
equivalent to the massless scalar fields [16], but it does not undergo any change except for the cooling 
due to universe expansion.

The picture, presented in the lecture is very simplified because, for simplicity, we do not consider 
masses of the particles and spectrum oscillation omitting the oscillating terms in the formula (36).  
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