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POXIAEHUE MATEPUU U AHU3O0TPOIIUSA MUKPOBOJIHOBOI'O PEJIMKTOBOI'O U3JTYYEHUS
B BE3BIH®JIALIMOHHBIX KOCMOJIOI'UAX

AnHoTanus. PaccMaTpuBaeTCs poKICHHE MATEPUU B aJIGTCPHATUBHBIX OC3BIH(ISIIMOHHBIX KOCMOJIOTHSX, B KOTOPBIX
MacCIITa0HBIN (GaKTOp pacTeT JTUHEHHO cO BpeMeHEM. BerauciaseTcs mepBoHaYa bHBIN CIIEKTP HEOJHOPOAHOCTEH MIOTHOCTH
POOMBILIMXCS CKAJISIPHBIX YacTull. Eciu moTpe6oBaTh YHUBEPCATBHOCTD CIIEKTPA, T. €. YTOOBI CPEAHIOI0 MIOTHOCTh SHEPTHH
U XapaKTepHYIO BEIUYMHY HEOJHOPOAHOCTH IUIOTHOCTHU SHEPIHH MOKHO ObLIO 3a/1aBaTh MPOU3BOJIBHO, TO (hopMa CIEKTpa
OKa3bIBACTCs MONHOCTHIO (pukcupoBaHHOH. CrekTp Gin30K Mo GopMe K MIOCKOMY CIEKTPY XapuccoHa — 3eJbI0BHYa, HO
C MOIaBJICHNUEM HU3KOYAaCTOHBIX MOJI.

KuroueBble ci10Ba: BO3MYIIEHHS IVIOTHOCTH, POXKJICHHE MAaTePHH, HA4YaJIbHBIH CIIEKTP

Jas nurupoBanus. Yepkac, C. JI. Poxxaenne matepuu ¥ aHH30TPONHS MHKPOBOJIHOBOTO PEIMKTOBOTO H3IIYYEHUS
B 0e3biH(uIsIIIHOHHBIX KocMmodtorusix / C. JI. Uepkac, B. JI. Kanamnukos / Bec. Han. akan. HaByk Benapyci. Cep. ¢i3.-mat.
HaByK. —2017. — Ne 4. — C. 88-97.

Milne-like cosmologies again attract an attention lately [1-8]. However, although the original Milne
universe [9] is open and empty, the flat universes filled with some exotic matter with the overall equation
of state w=—1/3 is usually considered. Moreover, there could be a deeper background for these cos-
mologies, relying on the residual vacuum fluctuations [10].

One of the attractive points for such a model is that it solves the horizon problem without inflation.
The most accurate cosmological datum is the anisotropy of the cosmic microwave background. However,
the confrontation of the Milne-like cosmologies with the experimental data is far to be complete. One
of the problems is the primordial spectrum of the density perturbation. In the absence of the inflation,
one needs another model for the primordial density perturbation spectrum. Some steps have been done
in this direction [7, 11], but they refer to the methodology of the old inflationary paradigm and do not
discuss the origin of matter in the universe. In the inflationary scenario, the matter appears as a result
of the inflaton field decay. If there is no inflation, then there is no inflaton field and no matter.

1. Wave packet description of the quantum field in the expanding universe. Quantum fields on
the classical background were carefully considered earlier [12]. The main instrument for the description
of the quantum field are operators of creation and annihilation used for quantization of the field oscil-
lators. For the expanding universe, it seems, another formalism could be convenient. In fact, in a vicinity
of singularity, there are no field oscillators because they do not begin to oscillate yet. From the other
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hand, it was shown that there exist some finite quantities in the singularity, namely momentums of the dy-
namical variables despite the infinity of the dynamical variables itself [13]. State of the quantum field
can be described in terms of the wave packet over eigenfunctions of these momentums.

Let us begin from the conventional formalism for the scalar field ¢(n,r) in the expanding universe
described by the Lagrangian

1 ,
L=E_[a2(¢2—(v¢)2)d3r, )

where a(n) is the scale factor.
It is suggested that the metric tensor of the universe corresponds to the interval

ds? = a’(n)(dn’ - dr?),
where 1 is the conformal time. Expanding of scalar field over Fourier series
d(r) = Yoxe'™" @
K

allows rewriting the Lagrangian (1) as

2
a ' '
L= EY YOOk —k PR k. 3)
K

: oL ' o
Corresponding momentums are mx =——=a’@_k. In the terms of momentums, the Hamiltonian

, 0
H:L—Z(pk—aL, is Pk
k (N
l o mgm_
H==-Y-k 5 X+ a’koro_y. @)
2% a

Each k-mode satisfies the equation of motion
" 2a’ ,

Pk +—— Pk +k2p =0. ®)
Quantization in terms of the creation and annihilation operators consists in postulating [12]

Gi = aiur () + dxu (), ©)
where functions u, satisfy to the equation of motion (5) and the relation

a (M (uur” ~ugui) =i. @
Let us prove that for a wide class of dependencies a(n), such that the kinetic (first) term is dominating

over the potential (second) term in Eq. (5) in the vicinity of the singularity, the momentums are finite
quantities. Momentum corresponding to the k-mode can be written

i = a*6u = a’ ()@ () + dug (). ®)

Near singularity, the function u; () satisfies the equation (5) without the last term asymptotically. This
equation can be converted into the form

et ukm) = ©
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From the equations (8) and (9) one may conclude that the momentums 7y are asymptotically some
constant operators in the vicinity of singularity. The assumption, that the kinetic term is dominant in

the vicinity of singularity, is valid, for instance, for dependencies a(n) ~n". In particular, these depen-
dencies include a(n)~n (radiation background) and a(n) ~ nz (matter background). Above assumption

is not yalid for Milne-like cosmology in which a(n) ~ exp(’Hn), but in the next section we argue that
the Milne-like behavior begins not from the singularity but some later.
Let us define a time-independent operator

P = o d_y +odg, (10)
where complex constants are o = a’ (Mu k (M) -0 and define one more operator
X = b exp(i®; )ax + by exp(—i0;)a . (11)
The requirement that the commutation relations are satisfied
[P, Xq]= Sk q- (12)
allows finding the constants b,. Taking into account that [ax,ax]=1 we come to
i

by =——— S— 13
ake—zek — kezﬁk ( )

With the help of the equations (10), (11) and (13) we can express creation and annihilation operators
through Xy and B :

Pk+ eZzOkP+

&k=—*—iaZXk, (’l\tk:*.—k-i-l'(lk)}(\'k. (14)
o —e oy o ek — oy
Substituting (14) into (6) we come to
K (um-um) L
fr(m)= i+ i X ek () — ok (). (15)
oy —oetk

. - 5o . . ~ B 0
Realization of the operators P and X is convenient to take in the form P, = P, X =i P The equa-
k
tion (13) allows describing the quantum evolution of the fields using the wave packet C(Fy) which is set
in the singularity. For instance, mean value of ¢ (n) over a wave packet takes the form

e kyy () — ek ug (n)
e*iek

[(C(Py)) RiC(Py)DPDP; -

<y k() |y >= o+
Oy —e "0 (16)

(i 00 -ue vt ) J(CCR) - CRYDRDE;.

pdpéd), 2= pe®

where integration implies DF; = dPodeldP:1 deza’Pk*2 ... . The integral over dzdz" =

Ui
is understood in the holomorphic representation [14]. Let us consider the transformation of the wave
packet C(P)— C(Pk)exp(—izngP(ik Pq) in Eq. (16), where g, are some real constants. Under sum-

mation on q one should take into account that P_q = P;. As can see, the transformation is equivalent
to the change of the phase 0 _as
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tan 0 (2+igk (a% —azz))—gk(ak —oy)?

2—gk((ock +0c2)2tan6k +i(a% —a?))

0, — arctan

(17)

That is the phases 6, could be considered twofold: mathematically they are the phases of the basis
functions u (n), but physically they are the property of the quantum state under the chosen basis u,,
because they are equivalent to the constants g,. Further, we shall consider the Gaussian wave packets

C(Kk)= exp(—z quPq* Py ), with the real constants Ay and, besides, characterize a quantum state by

the phases 0 . In another word, we may consider 0, as some phase of the function u,(), and this phase
is a property of the quantum state as well as a width A_of the Gaussian distributions. Let us emphasize,
that the matter is encoded in the singularity here. It is not created from the vacuum. Even for massive
particle amount of matter created from the vacuum is not sufficient to explain the content of the universe
in Milne-like cosmology [15], if to take observed conformal Hubble constant .

2. Model of the universe expansion. It is evident that the Milne-like behavior is hardly extendable
to the vicinity of singularity. Let us consider a heuristic model to describe the way in which the universe
could come to the Milne-like expansion. Consider Hamiltonian in which the universe metric is suggested
to be uniform, but the non-uniform scalar field presents [10, 16]:

1 n o1 K
= M2a? + =Y T L 220,08 (18)
2 2% a?
Initially, the last term corresponding to the potential energy of the field oscillators does not play a role.

Consequently, a(n) ~ \/ﬁ under the small conformal time, because a > ~ % and 7wk ~const. When

a
the field oscillators begin to oscillate, the expansion changes from a(n) ~ \/ﬁ to a(n) ~ exp(Hn), i.e.

a(t) ~ ‘Ht in cosmic time [10]. The late-time rate of the universe expansion also differs from the Milne-
like, because universe accelerates due to residual vacuum fluctuations [10]. Here, for simplicity, we will
not take this acceleration into account.

Due to UV cut off of the comoving momentums, high energy oscillators at the Planck frequencies
give the main contribution to the universe expansion [10, 16]. Thus, the change of the expansion rate
occurs near the Planck time and can be described by the model

a(n)_{v\/ﬁwn, 0<n<ny,

19)
Bexp(Hn), n>ny,

where 1, is of the order of the Planck time. For the smooth splicing of the function and their derivatives,
the linear term Pn has been introduced in the Eq. (19). Values of the coefficients are equal to

HN1 1 LU
y= 2Be (1 HT]])’ B:_Be (1 2Hn1) (20)
\/nT il

Milne-like models seem attractive because it could solve the horizon problem without inflation, but
this puts the constraint on the coefficient B in Egs. (19), (20). One of the formulations of the horizon
problem is that the last scattering surface consists of some causally disconnected regions. Let n, will be
today number of conformal time corresponding to the present-day scale factor a . The horizon is the pre-
sent observable part of the universe which could be reached by the light:

R(t0) = a(ro)ﬁ%,). @)
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In comoving coordinates R(tg)/a(ty), the horizon is simply Igodn=no, i.e. conformal time from
the beginning of the universe, thus, R(z9) = aono. The size of the region corresponding to the present

. . L a L
horizon at the time of the last scattering is R(to)ﬂ. This size should be an order of or less than
the horizon at last scattering time R(f1g): %o

a
R(m)f <R(trs)=arsnis, (22)
0

otherwise it will consist of a number of causally disconnected regions. Substituting of nq = %lnagO and

1 ars .
=—In—= to Eq. (22) gives
NLs 7" B q g

2%~ 1n 458 23)

where the sign < is changed by ~ because the first one is principally impossible. The red shift of the last
scattering surface is z;g =1100, i.e. ag/ars = 10_2, thus B must be sufficiently small. For instance,

taking ap =1 and B=10"" one has In10°° ~ In10?. The problem of the horizon is solved in the linear
cosmologies by the minimal way: although the region at last scattering surface corresponding to the present
horizon is less than the horizon at last scattering, they equal approximately if the constant B is sufficiently
small.

Solutions of the equations (5) (although this equation is for @k, u, obeys it, as well) in the different
regions can be written as

Jrl o o2i( 2y
2—y[1+;(y+ﬁ\/ﬁ—21n(y+[3\/ﬁ)+ln(n)D, 0<n<ni,

ur(m)=

ef’anin\)kz—’Hz
——, N> M-
V2BYk? - H?

Since n, is very small compared to the 1/k of interest, an approximate non-oscillating solution is
taken in the expression (24) at 0 <mn<mn;. Besides, there is an overall phase in the functions u, which
influences the matter production through the quantities a,. For calculations, in fact, only last time pieces
of the function of u,(n) are needed and, besides, complex quantities o, discussed in section 1.

2. Mean energy density. Let us calculate a mean energy density of the created particles defined as

@4

p=<C[P][p|C[P]>-<0[p[0>, (25)

where an average vacuum density is extracted and

~

1 2 (V)2 | .
p=—1, LARALVES PERSE =S ok k + K Prdk, (26)
vV 2a° k

2a? 2a?

where V' is the normalization volume. Substituting the expression (15) into (26), taking into account that
®_x = d and performing integration over DPqDP(: we find

_ 1 1
pP=—7 Z *
a’ Ko AA g (o —ap)?

(0 () =20 Pug (i () + kP () 2 () = 20 (e () +
% A * * * *
()7 ) == 02K g (1) = 20000k g (M () + 0 EA i () +

® 1 *r 2 1 1% ' 2 %
(ki (m) = o () ]—E(Mk (M () + K ui (M (1)) 27)
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where the last term corresponds to the vacuum average, which we extracted according to Eq. (25).
It should be noted, that the summation over k in Eq. (27) is restricted by the value of the conformal
Hubble constant. That is ad hoc definition because we discuss the creation of the particles under vacuum.
The modes with the | k [<H do not oscillate, and can not correspond to the real particles. Let us consider
not only quantum average but also average in time for the concrete form of the functions u,(n) given
by (24). That causes further simplification because it removes the oscillating terms. As a result, we

come to
2
Ly & (akaZAk—;—lJ. (28)

p= :
2a* W Jk2 - 12 (o —ap)? Ay

Let us minimize the energy density by choosing the corresponding A , which turns out to be equal
Ay = ak(az —0g) |_1 . This gives

- Ly K (20iaiy~(@i —o)* -1} (29)

2a* WiH K2 — 2

Quantities a, characterize phases of the functions u, (n) near singularity. It is convenient to represent
them in the form oz =74 exp(i(n/2+06y)), where r, and 0, are reals.

As aresult, we come to the final formula for the density of particles created from the wave packet set
in singularity

1 5 k?
2a* K72 — 12

(secO; —1

_ I B o
p= )_4n2a4JH\/k2_H2 (secOy —1)dk. (30)

3
where integration has been changed by the summation », — j%

Let us consider the model which allows obtaining arbitrary mean energy density taking
secO; =1+(pk)", 31

where p and n are some constants. As one may see from (31), the energy density is proportional to p”
and, thus, can be set arbitrary. Besides, we shall consider that there exists momentums UV cut-off
of the order of the Planck mass if some divergent integrals appear [10, 16]. It was shown that this cut-off
is necessary to obtain a true value of the universe acceleration due to residual vacuum fluctuations [16].

3. The primordial spectrum of the energy density inhomogeneity. Let us calculate spectrum
of the energy density

. I (~ 2 A2
pIr)=—{ &' (1) +(Vém) | (32)
2a
As we consider the Gaussian wave packets C, the energy density in the different space points takes the form

<C|pmpr )| C>=¢(r-r |, (33)
where

G(r)=Yolexp(ikr),  of =<C|pipi |C>~<0|pipi 0> (34)
k

Let us emphasize that no normal ordering is used in (34) because the summation is extended to all k

domain and p_y =px. In the equation (34) we again extract vacuum average ad hoc, because we are
interested in the spectrum of the created particles under vacuum.
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The Fourier components of energy density are expressed as

. 1, . : | TN "t
Pr = [,P(r)exp(~irk)d r= 57204 Ga +([@=K)adibg-t
a
| ! (35)
Pk =—5 2 0q-kPq +(q-K)qPq k.
2a q

The steps of the previous section were: integration over DFy DP; , using A, which corresponds to

the minimal energy density and, removing the oscillating terms. Here the calculations are the same, but

more complicated, and can be done using Mathematica software. As a result, with the functions u, (1) given
by (34), we come to

6t =<C|pKpPi | C>-<0|pkpi |0>=

(q(q—k)(2H2 +q(q—k))+q2(q—k)2)(sec9q secOiq_k —1)
_— , (36)

a7, 16a%y(g% ~H2)(q - k)2 - H2)
la—k[>H

where summation on q is again restricted by considering only real particles. It is known that the inho-
mogeneity of the microwave background is relatively small. That restricts the value of the relative
inhomogeneity given by the dimensionless quantity kot /52. Let us again to take the dependence (31).

According to (30), p is proportional to the constant pu". At n = 4 the integral in Eq. (30) diverges
logarithmically. In the general case, one has:

n k 4-n
() e
a
4
_ 1 K max
p~ a—4H4 %} ln(ﬁj, n=4, (37)
n
—n* ij , n>4,
a H

where k_is the UV cut-off of the order of the Planck mass. Analogous estimation for Eq. (36), when
3
summation zq is replaced by the integration _[;lT;g, leads to

8 5-n n 2n
Sl 4T ol e
a® H H H
Hg u n u 2n
a—SLCI(Ej +02[§J . n>>5.

Present day temperature of the universe microwave background is 7y =2.73 K =2.35- 107 eV, the UV

cut-off is the order of the Planck mass ky,x ~M , = ,/i =6-10'® GeV, and the Hubble constant

P
4nG
is H~2.1-107 eV. Energy density corresponding to the microwave background temperature is

k207 k-n~ (3%)

1
p~—T¢". (39)
a

Using Egs. (37), (39), we can rewrite Eq. (38) in terms of T,
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-4 2n-8
H \H H

-1 4 -2
. Clkmax(ln(kmaxD (5) +Cz(1n(kmaxD Ca—a
I3o2 H H H H a0

— |-~

p 5-n -4
cl(—kmax) (ﬂj +cy, 4<n<5,
H H

4
T
cl(—oj +cy, n>5,
H

where ¢, and c, are some constants of the order of unity. The first observation is that the ¢ -term is

always suppressed by the multiplier (T 0/ H)74 and is negligible, despite the presence of the large multi-

plier k. / H. The second observation is that the low relative inhomogeneity could be obtained if # is
3 2

close to 4. In particular, one has k_(;-k ~ (ln(kmax / 7-[))72 ~2-10*forn=4.
P

Let us calculate the form of spectrum. For low inhomogeneity, it is completely fixed by (31), because
n should be very close to 4 and one has the integral

2 2 2
o (B ) )

- , @)
160" ok g"(a-k)"(g? - H )(@-k)* -H?) @)’

which can be calculated using the method of Monte-Carlo. For n~ 4 it is convergent at an upper limit
k30%
2

and contains the only parameter H. Spectrum P(k) = is shown in Fig. 1.

The spectrum is relatively flat but with the suppression at low comoving momentums k. It is
interesting, that it is possible to obtain even more flat spectrum shown in Fig. 2 for n = 4.11, but the value
of the relative inhomogeneity is large. For small inhomogeneity, the parameter n should be a bit less than
four.

Conclusion. Studies of the Milne-like models seem attractive because they do not demand inflation.
Moreover, all scales of interest always remain within the horizon during the evolution of universe. Let us
remind that in the standard model of the radiation dominant universe with the inflation stage,
a mode crosses horizon at the stage of inflation and then returns at the radiation or matter domination
stage.

7.0x10-8
5.0x10~8

3.0x10~8

P(k)

20x10°8
1.5x10-8

LB A e soe vos sns ong sus ve s ae i o gl
0 100 200 300 400 500

k/H

k’c}
Fig. 1. The primordial spectrum of the relative density inhomogeneity P(k) = 72]{ for parameter n = 3.95 in the formula (31)
p
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Fig. 2. The primordial spectrum of the relative density inhomogeneities P (k) = for parameter n = 4.11 in the formula (31)

52

It is shown that there exists the possibility to put any amount of matter into the cosmological
singularity. If one demands that the relative value of inhomogeneity is small, the primordial spectrum
has the fixed form, with the suppression of the large-scale modes. Because this spectrum corresponds
to the scalar particles, the most evident candidate is the Higgs particles, which has been discovered
recently. These particles decay into the photons and transfer the inhomogeneity to them. That is,
the spectrum of scalar particles gives the initial conditions for the evolution of the photon modes. The ini-

tial conditions should be set at m~1/%. The next step is to investigate the evolution of the photon
spectrum and the massive matter spectrum in the Milne-like cosmology, but it is beyond the scope of
the present lecture. Besides, there could be an analogous spectrum of the gravitational waves, which are
equivalent to the massless scalar fields [16], but it does not undergo any change except for the cooling
due to universe expansion.

The picture, presented in the lecture is very simplified because, for simplicity, we do not consider
masses of the particles and spectrum oscillation omitting the oscillating terms in the formula (36).
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