Becui Hanpisinanshaii akagomii nasyk benapyci. Cepbist disika-maromarbranbix HaByk. 2018, T. 54, Ne 2. C. 179192 179

ISSN 1561-2430 (Print)/

ISSN 2524-2415 (Online)

YK 519.2 Received 16.03.2018
https://doi.org/10.29235/1561-2430-2018-54-2-179-192 [Moctynuna B penakimio 16.03.2018

A. Yu. Kharin'?, Ton That Tu'?

'Belarusian State University, Minsk, Belarus
’Research Institute for Applied Problems of Mathematics and Informatics, Minsk, Belarus
’Da Nang University of Education, Da Nang, Vietnam

PERFORMANCE ANALYSIS AND ROBUSTNESS EVALUATION OF A SEQUENTIAL
PROBABILITY RATIO TEST FOR NON-IDENTICALLY DISTRIBUTED OBSERVATIONS

Abstract. In this article the problem of a sequential test for the model of independent non-identically distributed
observations is considered. Based on recursive calculation a new numerical approach to approximate test characteristics for
a sequential probability ratio test (SPRT) and a truncated SPRT (TSPRT) is constructed. The problem of robustness evaluation
is also studied when the contamination is presented by the distortion of the distributions of all increments of the log-likelihood
ratio statistics. The two-side truncated functions are proposed to be used for constructing the robustified SPRT. An algorithm
to choose the thresholds of these truncated functions is indicated. The results are applied for a sequential test on parameters
of time series with trend. Some kinds of the contaminated models of time series with trend are used to study the robustness
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A. 10. Xapuu'?, Ton Txar Ty"?

!Benopycckuil 2ocyoapcmeennoiii ynugepcumem, Munck, Berapyco
’Hayuno-uccredosamenbCKuti UHCIMUMym npukidoHslx npobnem mamemamuru u ungpopmamuxu, Munck, berapyce
STledazocuueckuil ynusepcumem Jananea, Jlanane, Beemunam

AHAJIN3 U UCCJIEJOBAHUE POBACTHOCTHU
MOCJEAOBATEJBHOIO KPUTEPUS OTHOINEHUSI BEPOSSTHOCTEM
JIJIA MOJTEJN HE3ABUCHUMBIX HEOJWHAKOBO PACIIPEJIEJTEHHBIX HABJIIOJEHU

AHHoTanus. PaccMoTpeHa npobiema 1mociie10BaTeNbHOr0 TeCTa A MOAECNIN He3aBUCHMBIX HEOJAMHAKOBO pacipese-
JICHHBIX HaOrofeHni. Ha ocHOBE pekypcHBHOIO pacdera MoCTPOSH HOBBIN YHCICHHBIN MOAXO/ IS alllIPOKCHMAIMH TECTO-
BBIX XapaKTEPHUCTHK MOCIIeI0BAaTENFHOT0 Kputepus otHomeHust BepostHocteil (IIKOB) n yceuennoro [TKOB (VIIKOB).
Hccnenoana nmpobiema ananu3a poOaCTHOCTH, KOTa «3aCOPEHME» MPECTABICHO HCKaXKEHHEM pacIlIpe/ielieHHi BCeX Ipu-
paleHnit CTaTHCTUKH JIOTapU(QMUIECKOr0 OTHOIICHHSI TPaBaonoo0us. I1peiioskeHo NCIIoab30BaHNe IBYXCTOPOHHUX yCe-
YeHHBIX QYHKIUH ai1s moctpoenus podactroro [IKOB. Ykazan anroputm a1 BBIOOpa MOPOTOB ATHX YCEUEHHBIX (QYHKIINH.
PesynpraThl IpUMEHEHBI JUISI IOCIIEIOBATEIFHOM IIPOBEPKH THIIOTE3 O TapaMeTpaxX BPEMEHHBIX PSAIOB ¢ TpeHIoM. JIiist HeKo-
TOPBIX MOJIENIEH «3aCOPEHUS» BPEMEHHBIX PSIIOB C TPEHIOM HccienoBana podacTHocTh yeceuenHoro [TKOB. IIpoBeneHHbIe
B pab0Te YHCICHHBIE SKCIEPUMEHTHI TOATBEPKAI0T TEOPETHIECKUE BBIBO/BI.

KuroueBble cJj10Ba: TOCIE0BATEIbHBIH TECT, MPOCTHIE THIIOTE3bI, ANMPOKCHMAINs, XapaKTEPUCTHKH TECTa, yCEeUeHHE,
HEOIMHAKOBO paclpe/ie/ieHHbIe HaOMI0IeHN s, aHATIU3 POOACTHOCTH

Just uutupoBanus. Xapus, A. 0. Ananus u uccnenoBanue podaCTHOCTH MOCIEJOBATEIBHOTO KPUTEPUS OTHOLICHUS
BEPOSITHOCTEH JJIsI MOJIENIN HE3aBUCHMBbIX HEOJMHAKOBO pacrpeaeneHHbIx Hadbmonennii / A. 10. Xapun, Ton Txat Ty / Bec.
Hau. akan. HaByk Benapyci. Cep. ¢i3.-mar. HaByk. — 2018. — T. 54, Ne 2. — C. 179-192. https://doi.org/10.29235/1561-2430-
2018-54-2-179-192

Introduction. Sequential analysis was first developed by Abraham Wald [1] and has been widely
applied in many fields because of its optimal properties. In practice, the error probabilities a, B of type |
and II can be different from the preassigned values o, . In addition, the calculation of conditional ave-
rage number of observations is very important in optimal evaluation of this approach. In the case
of independent identically distributed observations, there have been some approaches to approximate
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the indicated test characteristics. Based on Wald’s fundamental identity and likelihood ratio identity,
some approximations for the average numbers of observations have been obtained [1-3]. An important
improvement in computing these characteristics is that the operating characteristics (OC) and average
sample number (ASN) functions were proved to satisfy the Fredholm integral equation of the second
kind (FIESK) [3, 4]. Neglecting the conditions on the existence of their solutions, we can resort numerical
methods to get the approximations of these characteristics. Another approach to calculate is to use the
properties of absorbing Markov chains [5—7]. This approach allows not only to get the approximate values
of test characteristics but also to evaluate the robustness of statistical procedures [6, 8, 9]. For the TSPRT,
the upper bounds for the error probabilities of type I and II were achieved by using normal approximation
for the accumulated log-likelihood ratio statistic when the maximum number of observations is relatively
large [1], or in more general case [2]. In the case of non-identical distributed observations, Liu Y. and Li X. R.
[10] have shown numerical solutions in some special cases to the OC and ASN functions by construc-
ting the sequence of the FIESK with respect to the sequence of new stopping times. In this paper, another
method based on recursive calculations is constructed for approximating the test characteristics of the
SPRT and TSPRT as well. Evaluation of robustness for the truncated sequential test is also studied and
these results will be applied for sequentially testing the parameters of time series with trend.

1. Mathematical model and auxiliary results

Let {X,,n>1} be a sequence of independent random variables on the same probability space
(Q,F, P) with probability density functions {p,(x,0),x e R',n> 1} respectively, where 0 is an unknown
vector of parameters.

Consider two simple hypotheses:

Hy:0=0° H,:0=0", (1)

where 90,91 eR”™ are known vectors, 0% 20"
Denote the accumulated log-likelihood ratio statistic for n observations:

An:An(xlst-axn):z}"i; (2)

i=1

where A; = ln( p,-(x,-,@l)/ pi(x,-,eo)) is the log-likelihood ratio calculated on the observation x,, and

pi(x,0) is the probability density function of x, provided the true parameter value is 0.
After n observations one makes the decision:

d=1ic, 4oy (Ap)+2-1(c_cp(An), 3

where the thresholds C_ and C, are the parameters of the test. According to Wald [12], C_ and C, can
be calculated as follows:

Ci=In((1-Bo)/ o), C-=In(Bo /(1-atp)), @

where a,, B, are the given values for error probabilities of types I and II respectively.
Denote N =inf{n:A, ¢(C_,C,)}, a=Py(Anx=2C,), B=P(An <C_), where P;(:) means the
probability measure under Hy,k € {0,1}. We will use the following auxiliary results. .
Lemma 1 [11]. If X is a non-negative, integer valued random variable, then E(X) =) P(X >n).
n=l1
Theorem 1[12]. If fis continuous on [a, b] and g is monotonic on |a, b, then there exists
Riemann — Stieltjes integral Jf f(x)dg(x).
Corollary 1. Ifgis monotonic on [a, b] and fis C-Lipschitzian on [a, D], i. e., there exists a posi-
tive constant C such that | f(x)— f(y)[£C|x—y|,Yx,y €[a,b], then the following expansion holds:

f(a)+ f(b)
2

Lf S (x)dg(x) = (g(b) - g(a))+O(b - a).
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Theorem 2[13]. Let f(x),g(x) be two functions defined on [a, b]. Suppose that " and g" are
continuous on [a, b] and that g is monotonic there. Then, there exist £,1,M,0 € (a,b) such that

33
[! rdg - L IO g4 g(@) = [g°@ '@ - g @) 2

2. Main results
2.1. Numerical approach to calculate the test characteristics. Put S l(k )(x) = P, (A1 <x), and for

n>1, S ()= P (A, <x, and A; €(C,C,), i=1n—1), ke{0,1}.
Clearly, the function S 1) (x) satisfies the following recurrent relation:
S =[C R (- p)dsE (), n>1, ke {01, ®)

where F,(® (x) is the cumulative distribution functions of A, under hypothesis #,, and § l(k )(x) =F 1(k)(x).
Assume that Fn(k )(x), S ,Sk )(x), n>1, k €{0,1}, are continuous functions in R. Then, from the defi-
nitions of a, f and Lemma 1 the test characteristics can be expressed as follows:

a=G o) -G (C,), =GP (C)-GV(~0), EO(N)=1+GP(C,)-GP(C.),

+00
where G(k)(x) =y S,Sk)(x), k €{0,13}, E(k)(-) means expectation under H,. Since G(l)(—oo) =0, and

n=1
+00 -
GO>+0)=1+ 3 PO(A,- e(C_,C,),i= l,n) =1+G9(C,)-G9(C_), we have
n=1
a=1-GcC), p=6P (), ©6)
E®ON)=1+6P(C,)-c0(C.), kei0,1}. (7)

Assume that E(k)(N) <+, k €{0,1}. In this case, from Lemma 1 we get

p =% p (A,- e(C_,Cy),i =G) — 0 as n — o,k € {0,1}.
Jj=n
Given a very small positive value ¢, there exists no € N such that p,(,k) <e&g, Vn2ng, ke{0,1}.
Note that S,(,ﬁ)l (X)) Pr(Ay,i= I,_n), Vx e R, n>1, which allows us to approximate G" (x) by the new

function G*) (x):

GO )~ GH (1) =3 S0 (x), Y, ke 0,1}, ®)
i=1
where |G (x) =GP (x) < g9, Vx.

Next, we use a numerical method for approximating the values of functions S ,(,k ) (x), n>2, ke{0,1}.
Without loss of generality, assume that /| is true. Let H > 1 be a fixed positive integer, and {z;,i = I,_H}
be a partition of [C_,C,], where ¢, =C_+(i—-1h, i= I,_H, h= ﬁ Using Theorem 2, un-
der some assumptions of the functions FO (x) and S,(,O)(x), the Riemann-Stieltjes integral
fccj F{9(x-»)dS% () can be expanded as & — 0:

;2_:[1?;0) (x=t,)+ FO (x =t )][s,g‘iq (tj) -S9O j)] +O(h?). )
=

Si ()=
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This can be rewritten:

1 1
30 == FO (x=0)+ O (x=02) |Si% @)+ 2] B0 (v tir0)+ B0 (v 1) | S0 e ) +

+%HZ_I[F,,(O) (x=t;0)+F\O (x4 )Jsffl)l(z_,)wwz).
j=2

Denote fi(j) = S;O)(ti),j =1ng, i=1,H. For 2<n<ny, we obtain the following systems of linear

equations:

10 ==L FO (1 =0) + FSO (1= | K070+ S FO (1 =)+ FO (6 =) | 75770 +
11 -y
o D[ EO (=) FO (6= ty0) 0, i =1 H. (10)

Jj=2

T
Denote f(”) = (fl(”),...,f,(f')) ,n>1,and D™ = {dji} ixm, n>2, where

%[F,,(O) (ti=t50)=FO(ti=tjn) |, i=1H,j=2,H-1,

TR RN R

%[Fn(o)(ti—tH_1)+Fn(0)(t,~—tH)], i=1H,j=H.

T _
We get [ =pW D ><p<n,, where fO =(f1(1),..., f(})) ,and £V =F1(0)(ti), i=LH. If

the tailed sum )| Fi(o) (x) was neglected, the following theorem has been proved.
i=no+1

Theorem 3. Assume that E(k)(N) <400, k €{0,1}. Ian(k)(x), n>1, k €{0,1}, have continuous
derivatives of second order in [C_—C.,C, —C_], then the following asymptotic expansions hold at
h—>0,g0—0:

(0) (U]
D) . ny .
a=1-Y D +0(h*)+0(eo), p= Y g’ +O0(h*)+O(go),
i=1 i=1
n{® n{D
EOW) =1+ X (£ = AD)+0h*) +0(0), EV(N) =1+ 3 (g5 - ¢{”)+ 0(h*) +O(zo),
i=1 i=1

) . N\ T —
where n(()k) = min{n : pf,k) < 80}, k €{0,1}, g(’) = (gl(’),...,gl(fl)) ,i= l,n(()l), are calculated similarly

to f replacing Fi(O) (x) with Fl-(l)(x) — the distribution function of \, under hypothesis H,.

P r o o f. Note that by the way of selecting n(()k) , we have | G(k)(x) - 5(k)(x) I<gp,VxeR,ke{0,1}.
The result is directly derived from (6), (7), (10) and Theorem 2.

Remark 1. In practice, it is not easy to determine n(()k) theoretically with respect to a given

) can be chosen

value ¢, However, if we know g™ =p, (A, e(C-,C,))—>0 as n— +oo, then n
from the weaker condition: n(()k ) =min{n: ¢{*) <eo}. This condition seems to be reasonable: in this

case, all probabilities of the form P; (A e (C_,C.),i= l,_n), n n(()k), are much less than g and the test
will terminate finitely with probability 1 as well.
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Remark 2. In general, there is still a problem of calculating the probability ¢, = P (A,, e(C_, C+))
because of the difficulty in getting theoretically the probability distribution for the sum of independent
random variables A,, n>1. Note that P, (A,- e(C_,Cy),i= I,_n) = flsn) —fl(") +O(h?). Therefore,
if the way of finding index n(()k) in Remark 1 is not feasible, these indices can be possibly chosen from
the following conditions:

n{" = inf{n >1: - A< so}, nY = inf{n >1:gi oM< so}.

Remark 3. In the case of independent identically distributed observations, due to Stein’s lemma [3]
a sufficient condition for E®(N) <+, k €{0,1}, is Pi(h =0)<1, k € {0,1}.

Next, we modify the method above to approximate error probabilities of type I and II for the TSPRT.
Let M be the maximal number of observations that we may measure. The Wald’s TSPRT is formulated
as follows. If the sampling process has progressed to the n-th stage (n < M):

{reject HyifA,>C,, a

accept Hyg if A, <C_,

and takes one more observation if A €(C_,C,). If the SPRT does not lead to the terminal decision
for n < M, then

(12)

reject Hy if Ay >0,
accept Ho if Ay <O.

For the partition {z;, =1,_H} defined above, we set the value t;, with respect to the smallest absolute
value to be zero. Denote type I, II error probabilities and the number of observations used in TSPRT
at the stage M by o, B, and N, respectively.

Theorem 4. Ifthe functions Fn(k)(x), n>1, k €{0,1}, have continuous derivatives of second
orderin [C_ —C,,Cy —C_], then the following expressions are valid.:

M-1 X M-1 ,
ay=1- Y =D +00?), By =Y gl +glM +0(h?),
i=l1 i=1

M-1 B . M-1 . R
E(O)(NM)=1+ z ( Ig)—fl(l))-i-O(hz), E(l)(NM)=1+ Z (gg)—gl(’))+0(h2).
i=1 i=1

Proof We have:
M-1

Y Po(Aie(C.CL)i=Ln=1,A,>C,)=
n=1
M=-2 _ M-1 -
=1-Py(A1<C)+ X P(A;e(C,CL), i=Ln)= % Py(A;e(C,Co), i=Ln—1, A, <Cy)=
n=l1 n=2
M-2 M-1 M-2
=1-fli+ X (fh-f")= X fh+ 00"y =1=f0 =5 (0 0?), (13)
n=1 n=2 n=1

PO(A,- e(C_,Cy), i=L,M—1, Ay > 0) =
=P0(A,~ e(C_,C,), i:M)—PO(Ai e(C_,Cy), i=L,M -1, Ay < o):
= [0 = A - £OD L o). (14)
From (11)—(12) and (13)—(14), we obtain o, =1— Mil S = 1) + O(h*). Furthermore, we also have
i=1

PNy =)= Py(A < C)+ Py(A 2 C) =1+ [V = 1D+ Oh?),
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Py(Ny :M):PO(A,- e(C_,Cy),i =1,M—1)=f}[M’l) — MY L om?),
and for 2<i< M -1,

PNy =i)=Py(A; €(C,C.),j=Li~1, A;<C )+ Py(A,;€(C,Co)j=Li-1, A;2C, )=
=D+ Py (A e(C,C)j=Ti=1)=Py(A;€(C,Co)j=Li-1, A;<C.)+O(h%) =

=[O =P+ = £V 0.

From that we get:

M
EO(Ny)=YiPy(Ny)=

par

M—

1 . . . .
:1+f1(1) _fjg{l) +M( IEIM_I) _fl(M_l))+ 2 l-(fl(l) —fé{l) +f1f11_1) _fl(l—l))+0(h2):
i=2

M-
=1+ X (£ - £7)+ o).
i=1
The rest part is proved similarly.

Remark 4. From Theorem 1 and Corollary 1, we have:

(?) In the case that functions F* )(x), k €{0,1}, are C-Lipschitzian on [C_ —C,,C, —C_], the for-
mulas in Theorem 3 and Theorem 4 are still valid with the order of accuracy O(1).

(¢7) By the definition of the Riemann — Stieltjes integral and Theorem 1, these formulas in Theorem 3
and Theorem 4 are still applicable in the case of continuous functions F,,(k)(x), k € {0,1}, without any
conclusion about the order of accuracy. For the TSPRT, due to the limited number of terms in the sum
we can increase the number H to get better approximation.

2.2. Robustness evaluation. In practice, there is often the case that the observed data do not follow
the hypothetical model exactly, e. g. the hypothetical model is distorted [14]. This leads to the distortion
in the distributions of increments A of log-likelihood statistic A . In this section, we study the case where
these influences can be described in the form of contaminated model of Huber type [15] for each incre-
ment A as follows:

Fo(x)=(1=8)F,(x)+8F,(x), n>1,

where F,(x) is a contaminating CDF, and & €[0,1/2) is the level of contamination.

Introduce the notation: p$F, 7™, D™ &,a,, are the elements calculated similarly to p{®, £,
D(”),oc,oc m replacing F,,(O) (x) with Fn(o) (x), n>1, N and Ny, are the new stopping times for the
SPRT and TSPRT respectively; D™ are the elements also calculated analogously to D™ replacing
FO®%) with FOx)-FY(x), n>1. Put 0V = f" D that is computed similarly to /% replacing
F9(x) with £ (x)-F©(x), and for n > 2:

0" = PWPENp@ O L 4 ppEDHR) O L p [ED @) FO),

Theorem 5. Assume that E(k)(N) <+ and E(k)(]\_l) <+, k €{0,1}. If the functions F,,(k)(x)
and Fn(k)(x), n>1, k €{0,1}, have continuous derivatives of second order in [C_ —C,,C, —C_], then
the following expressions hold:

N0 o
_ &0 2 2 R > (D) 2 2
a-o==3Y O/ +0(h")+0(3°)+0(g9), B—B=06D R +O(h")+0O(5°) + O(¢y),
i=I

i=l
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N0

EOWM)-EO(N)=83 (0 -0)+0(h%) + 0(5%) + O(ey),
i=1

O
— nH . .
EDN)-ED(N)=8) (RY —RD)+O(h*) + O(8) + O(gy),
i=1
where n(()k) =inf{n >1: p,(,k) <gq and ]_7,(1]‘) <gg}, k€{0,1}, R™, n>1, are calculated similarly to Q™
replacing FO (x), EO (x) with Fn(l)(x), ﬁ'n(l)(x).
Proof Notethat £V = fD 487D D = pm L gHm gn = pm pn=b) gn _ G go=b) 55
From that, we have:
J7(2) — 5(2)j7(1) — (D(Z) +8[j(2))(f(1) +8j}(1)) — f(2) +5Q(2) +0H(62),
]7(3) — 5(3)J7(2) — (D(3) + 8D<3))(f(2) + SQ(Z))+ OH(52) — f(3) + SQ(3) +0y (52),
where O, (&%) is an H-dimensional column vector with all elements that are O(8?).
By induction, we get: £ = £ +80™ +04(8?), n>1. The rest parts of proof are derived from

the proof of Theorem 3.
Similarly, we also have the following result for the TSPRT.

Theorem 6. Ifthe functions F,,(k)(x) and ﬁ}k)(x), n= I,_M, k €{0,1}, have continuous deriva-
tives of second order in [C_ —C,,C, —C_], then the following expressions hold:

— M-l .
oy — =—8[ > o +Ql.((f”)j+0(h2)+0(82), By —Bu :6( > RV +Rl.((f”)J+O(h2)+O(62),

i=1

E<°>(NM>—E<°)(NM)=6MZ_I(Q§?— N +0(h*) +0(8%),
i=1

— M-1 . .
EDWNy)-ED(Ny)=8Y (R —RD)+0(h*) +O(5?).
i=l1

2.3. Robustifying the TSPRT. To reduce the influence of outliers in A , we can truncate the values
of A by the following function (Figure a):

fgg:r () = 8T (wo0,g 1(X) + X1 (g_g.) (X) + &+ 1 [g, 100) (X), (15)

where g_, g, are two given values, g_ <0< g,.

f(z) f@)
g+t €
9+ 9+
g- | g9-
g-—¢
g- gy
a b

Plots of truncated functions
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Put k= £ (ha)s Ky =hi 4ot D, N=inf{n:A, ¢(C_,C.)}, a=Py(Ay=C.), B=P(Ay<C.).

Lemma 2.lfg_<C_-C, and g, 2C,—C_, then:

(i) Pc(N =i)=P(N =i), i >1, k €{0,1},

(i) a=0a, B=P.

Proof

(i) Clearly, A, =, ifandonlyif A, e[g_,g+ ], and Pe(A; > x) = Pe(h, > x), Vxe[g_,g.], k €{0,1}.
Additionally, if x,x+ ye(C_,C,) then |y |< Cy —C_. Therefore,

P(N=D)=P, (M 2C)+Pc(M <C)=P (A 2C)+ Pe(M <C_) =P (N =1).
Fori> 1, we get
Pe(N=i)=Pc(A;€(C_,C.),j=1i-1, A;2(C_,C))=
=Pi(A;e(C,Cj=Li=1, Ay +X; #(C-,Cy)) =
=P (A;e(C.C),j=1i=1)=P(A; e(C.,C.)j=Li=1, A;e(C_,C.))=

=Pk(Aj e(C_,Cy),j=Li—1, A, e(C_,C+)).

So, Nand N have the same probability distributions.
(#0) Similarly, Py(A1=2C,)=Py(A2C)=Py(M 2C)=Py(A; =2C,) and

PO(A e(C_,Cy),j=1i—1, A, >c+) Po(Aje(C_,C+),j:1,i—1, X,-zc+—A,-_1)=
Ct Ct oy
=l dxl_[cj dxzjcf dxi—ZIC_ SAtohio (X1 X)) Py (M 2 Cy —xy)dx =
Cs Cs Cs Cy
=[ordx [ dxa [t dxia T fani (K1 X)) Po(hi 2 Cy = )dxi =
—PO(A e(C_,Cy),j=Li-1, A =Cy — 11) PO(A e(C_,Cy),j=Li—1, A, >C+)

Therefore, Py(A 5 >C,)=Py(Ay >C,). Similarly, we obtain P,(Ay <C_)=P(Ay <C.).

Corollary 2. The results of Lemma 2 are still valid for the TSPRT.

Remark 5. There are some remarks for choosing the thresholds g and g :

(@) Ifg >0, then B, =0;if g, <0, then o, = 0. Therefore, the possible choice is that we should select
g_e(C_-C.,0) and g, €(0,C.—-C_).

(i) If g _increases, B, will decrease, but o, will increase. If g, decreases, there is an opposite picture. So,
the possible and reasonable criterion for choosmg g and g, is to minimize the sum o, + 3, for the TSPRT.

Using the truncated function (15), the distribution function of A, is:

0, x<g_,
Fy, (x) =P\, <x)= F,(x), g-<x<g,,
15 x>g+a

which is generally a discontinuous function. Therefore, the numerical results in Theorem 3 and Theorem 4
cannot be applied for calculating the test characteristics. To make use of the proposed numerical ap-
proach, we can use a modified version of the function (15) in the following form (Figure b):
L8 +g_-—-¢ x<g._,
X
fgg:r(x): X, g—<x<g+a (16)

+g++eE, x2g4.



Becui Hanpisinanshaii akagomii nayk benapyci. Cepbist disika-maromarbranbix HaByk. 2018, T. 54, Ne 2. C. 179192 187

In this case, when Fy , (x) is continuous, the distribution function of 3 ,» 18 also continuous and has
the following form:

07 ng_—g,
FM(——§E——} g-—-e<x<g_,
x—g_+¢
Fy, (x) =1 Fy, (), g_<x<g,,
Fu(__gﬁ__} g+ <x<g.g,
gy +e—X
1, x>g, +e.

When | g, —g_| is small, we have to take more observations for the sequential test (e. g. the number
of observations tends to the maximum number M). This means that we have more information for the
test and this leads to the downward trend of both error probabilities. However, when | g, —g_| is suffi-
ciently small, the number of observations are mostly M and we have to make the final decision according
to (15). In this case, both error probabilities can increase again.

The following algorithm can be used to choose thresholds g and g.:

— choose a positive value K € N and a small value € > 0; L L

—split [C_—-C,,0] and [0,C, —C_] into cells by points {g_(i),i=1,K} and {g,(i),i=1,K} res-

C,—-C_

pectively, where g_(i)=—ih, g, (i)=ih, h=——;
K+1

— for each pair ( g_(i),g+( j)) calculate o,/ (7,j) and PBus(7,j) using Theorem 4 and truncated
function (16);

— choose (g,(i),ng(j)) such that o s (7, j) +PBar (7, j) is minimal.

In practice, due to the limitation of time and capacity of computation we can consider only the sym-
metric case g_ =—g, and select (g_(i),g+(i)) such that oy (i,7) + B (i,i) is minimal.

2.4. Application for sequential testing on parameters of time series with trend. Let x;,x;,... be
the observed time series with a trend in the following form [8]:

x =0Ty +&, 121, (17)

where W(t)=(\|11(t),\|/2(t),...,\|1m(t))T,tZl, is the wvector of basic functions of trend,

0=(6,,0,,. ..,Gm)T e R"™ is an unknown vector of coefficients, and {&;,7>1} is the sequence of inde-
pendent identically distributed random variables, &, ~ N (0,0‘2),6 is a given positive constant.
Consider two simple hypotheses concerning the trend coefficients:

Hy:0=0°H,:0=0",

where 67,0 eR"™ are two given vectors, 0% 0. 1 1 )
For all #> 1 we have: x, ~ N(07 t;02 , t>1, x,0)= ex {—— x—0Ty(s } and
(~N(0Ty(r);0%) Pi(0) = —=exp| ~——{x=0"y(1))

he =D(x)= —ﬁ{zme" -0 y(0)+(©O) v (10" -0 (v (10"},

n

Put V, = Z\u(t)\yT(t). Due to the properties of the normal distribution, A, and A also have the normal
=1

distributions with the following parameters:

E(\)= —é{z(eo 0O " 0+ Wy (e —(e")Tw(r)wT(t)eO},
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E(A,) = —ﬁ{z(e0 0" 7,0+(0")7,6' ~(0%77,6°),

pouy= @ =0 v @O’ -0h )\ (07 =017, (0" -0
t)— 5 n)=— P .

62

0 INT 0 1
Introduce the notation: T =(8° —8")(6° —0"7, 62 =DO(,)=DV(\,) = (6°-6) \V(")\zv (n)(6”-6)
(e}

and for k €{0,1}

ue! =E® G, = 5 ~—5—(0°-8") " y(my  (m)(6°-0") = —
n k
L
t=1

Without loss of generality assume that hypothesis 4 is true and we are interested in studying type I error
probability o and the average number of observatlons EQ(N).

2.4.1. Calculation of the test characteristics. A sufficient condition for the termination of the test
can be found in [16].

Theorem 7[16]. If tr(T'V,) — +o0 as n —> 4w, then the test (3)—(4) terminates finitely with pro-
bability 1.

Furthermore, in this case we know the exact probability distribution of A,, A, ~N (mf,k ),s,, )
When hypothesis H is true, the index n(()k), k € {0,1}, can be chosen from the condition:

ng) =inf{n>1: P (A, e(C-,C))<eo}, ke{0,1},

where € is a given small positive value.

Next, we can use Theorem 3 and Theorem 4 for calculating the test characteristics for the SPRT
and TSPRT as well, where F* )(x) n>1, are the normal distribution functions N (u(k ) %) , and
the index n(() ) can be calculated following Remarks 1, 2. In practice, the condition £ (k)(N) < +00
of Theorem 3 can be neglected because under the condition tr(I'V,,) > +o0 as n — +oo0, we have [16]:

lim P (A, €(C-,Cy)) =0,k €{0,1}.

n—>+o0

2.4.2. Robustness evaluation for the TSPRT. In this section, we will use the results of Theorem 4
and Theorem 6 for evaluating the robustness of the TSPRT with the maximum number of observations
M for model (17) under the distortion on its different components.

Case 1. Distortion in the error component & . Instead of hypothetical model (17) we consider the fol-
lowing contaminated model:

% =0Ty()+&,1>1, (18)

where &, =(1-1,)&, + rt%t, t>1, {%t,t >1} is a sequence of independent random variables, {t,,t>1}
is a sequence of independent identically distributed random variables, P(t, =0)=1-0,P(t, =1) =9,
1,8 ,,E;t are independent and & €[0,1/2) is the level of contamination.

Let oy be the error probability of type I when replacing A, by A¢, where A, = A, (X,), £>1, and

Ny is the new stopping time for the TSPRT at stage M.
Theorem 8. Forthe model (18) and the TSPRT (3), (11)—(12), the following expressions are valid:

Ay =y +0h*)+0@B), EQONy)=ED(Ny)+0h*)+0).
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2 0 _al\T
P ro o f. Under hypothesis H, we have: e = _%_wzb t > 1. From that we get:
o

F\O(x)=Py(hy <x)=Py(hy <X, T, =0)+ Py(h, <X, 7, =1) =

2 0 I\T 2 0 INT
(15)p(7w5J5p(TMJ

(e (¢

=(1-8)F,{V(x) +8F,V(x), (19)

on_(6°-68)"y(n);
2

(e

where F, ,,(0) (x) is the distribution function of random variable {, =— ». The rest

part of proof is directly derived from (19) and Theorem 6.
Case 2. Distortion in the basic function of trend y(¢). We consider the following model:

X =0T G0+, 121, (20)
where \I/(t)z(\]/l(t),...,qu(t))T is a basic function of trend such that with a given positive 9,
1§ () =y () ll= max << sup [ §; () =y (2) [< .

121

Theorem 9. For the model (20) and the TSPRT (3), (11)—(12), the following expressions are valid:
Ay =ay +0h*)+0i), EQNy)=EQ(Ny)+0h?)+0®).

Proof Put n(t)=(0° -0 g()—(0° 0" y(r), £> 1, then |n(®)|<8Y. P! — 6} |. Under hypoth-
i=1

esis H, we have A, ~ N(uﬁ,o),cf,), hp ~ N(ﬂg,o),éf,). Let @(x) and ®(x) be the standard normal PDF

_ _ (0 _ ;O
and CDF. Therefore, for all xe[C_-C,,C,-C_], F,,(O)(x)—F,,(O)(x)z(D(x fl" J—d{x Hn J
n Gl’l

Using mean value theorem, there exits £ € R such that

1_ X
2 0,6,

J(P(C)-

. . G, 2 o, 2

_ _ (0 _,, 0 ~
F;‘”(x)—F,iO)(x):(x 6“" _z G“” jw(c>=(~i+ﬁ—i—“—"]@@=(6n—csn)[

_ 116 -6H"§(m[-[(8° -8H y(m| _ ()|
(e} B (e}

On the other hand, |G, — o, |

. From that, we get:

F9(x)-F{”(x)=0(), ¥x e[C--C,,C, = C_], n 21,

which implies ¥ = D +04(8), D™ = D™ + 071 (8), n>2. Therefore, £ = £ +0y(8), n>1.
The rest part of proof is derived from Theorem 3.
Case 3. Joint distortion in both components y(¢) and & . Consider the following mixed model:

% =0T +(1—1)& +1,&, 121, (1)

where {t,,f>1} is asequence of independent identically distributed random variables, P(t, =0)=1-9,
P(t,=1)=0;, and tt,é,,ét are independent, || \y(#) —y(?)[I<82, 6, and 3, are given positive cons-
tants, 81 € (0,1).
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Theorem 10. For the model (21) and the TSPRT (3), (11)—(12), the following expressions are valid:
Ay =0 +0(h%)+031)+02), EOQ(Ny)=ED(Ny)+0(h*)+0@81) + O08,).

P ro o f. Denote:

©°-017 (1) (60—g"y7
- U O Ve 41,

2
20 c
For n> 1, we have

FO(x) = Po(on < 6,05 = 0)+ Po(hy < %75 = 1) = (1= 81) Py (h(§,€,m) < x) + 81 Py (h(,E,m) < x) =

= Py (h(§,&,n) < x)+8 [Po (n(9.E.m) < x) = Py (h(3.E.m) < x)].

From the proof of Theorem 9, we knew Py (h(,&,n) < x) = F{?(x)+0(8,),Vx e [C_ - C,,C, —C_].
Therefore, F,\* (x) = F,{” (x) + O(81) + O(85). The rest part of the proof is similar to the proof of Theorem 9.

3. Numerical examples
The probability model (17) was considered and the hypotheses (2) were tested with the following

values of parameters: o =10, 0° =(1,2,2,2)T, 0! =(1,1,2,1)T, v(?) =(1,z‘/10,1,‘2 /10,1/¢). The thre-
sholds C_and C, were calculated according to Wald [1]. Denote the sample estimate of a character-
istic y with Monte-Carlo method by y. The number of repetitions used in Monte-Carlo simulation
was 100 000. The index n(()o) was chosen according to Remark 1 with gy = 107>, The approximate va-
lues @,7, constructed as main terms in Theorem 3 and Monte-Carlo estimates .7, are presented in
Tab. 1 for different values of partition number H, where ¢y = E (0)(N ).

Table 1. Approximate values of the test characteristics for SPRT

% Bo n(()O) & o H o 1o
50 0.08345 46.13523
0.1 0.1 134 0.07896 46.37639 100 0.07940 4635240
50 0.08376 51.15358
0.1 0.05 136 0.07482 51.49942 100 0.078362 5143003

With very small value €g = 1075, the change in value of index n, is negligible corresponding to dif-
ferent values of o, and B,. When the value H increases, the approximate values @ and 7y are much clo-
ser to their Monte-Carlo estimates & and 7, respectively. To get better approximate values, we can in-
crease n(()o) or H, or both of them, but we should consider the possible amount of time used for calcula-
ting as well as computation capacity of the machine.

Next, we choose H to be 200. The approximate values of test characteristics calculated according
Theorem 4 and Monte-Carlo estimates for the TSPRT are shown in Tab. 2 with different possible num-
bers of observations M.

Table 2. Approximate values of the test characteristics for TSPRT

a, By M 6y Sy fo(M) To(M)

ol ol 40 0.22447 0.22427 38.08305 38.05922
: : 50 0.15096 0.15226 43.14025 43.11857

ol 0.05 40 0.22345 0.22472 39.22610 39.22269
: : 50 0.15435 0.15490 45.97958 45.95119
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For the TSPRT, there is no requirement of determining the index n,, and the maximum number
of observations M is usually not too large. Due to these advantages we can possibly increase the number
of partitions / to get better accuracy of approximation. In Tab. 2, with the same levels of o, B, when
the value M increases, the error probability o, decreases but the average number of observations

E© (Ny) increases. This can easily be understood because the more observations we have, the higher
accuracy of the test is. In addition, the average number of observation has an upward trend with respect

to M to reach its real expected values in Tab. 1. With H = 200, the approximate values o, and 7o(M)
are relatively close to their Monte-Carlo estimates. Furthermore, compared with Tab. 1, the limitation
of maximum number of observations leads to so remarkable change in error probabilities of the test.
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