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AN APPROACH TO THE THEORY OF GRAVITY  
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Abstract. Five-vectors theory of gravity is proposed, which admits an arbitrary choice of the energy density reference 
level. This theory is formulated as the constraint theory, where the Lagrange multipliers turn out to be restricted to some class 
of vector fields unlike the General Relativity (GR), where they are arbitrary. A possible cosmological implication of the pro-
posed model is that the residual vacuum fluctuations dominate during the whole evolution of the universe. That resembles  
the universe having a nearly linear dependence of a scale factor on cosmic time.
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К ТЕОРИИ ГРАВИТАЦИИ С ПРОИЗВОЛЬНЫМ УРОВНЕМ ОТСЧЕТА ПЛОТНОСТИ ЭНЕРГИИ 

Аннотация. Предложена пятивекторная теория гравитации, в которой уровень отсчета плотности энергии мо-
жет быть выбран произвольно. Теория сформулирована, как система со связями, в которой множители Лагранжа 
принадлежат некоторому ограниченному классу векторных полей, в отличие от общей теории относительности, где 
множители Лагранжа могут быть заданы произвольно. Следствием теории является утверждение, что основная 
часть вакуумной плотности энергии не влияет на расширение вселенной, в то время как оставшаяся часть приводит 
к закону расширения, близкому к линейному, как у вселенной Милна.
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Для цитирования. Черкас, С. Л. К теории гравитации с произвольным уровнем отсчета плотности энергии /  
С. Л. Черкас, В. Л. Калашников // Вес. Нац. акад. навук Беларусi. Сер. фiз.-мат. навук. – 2019. – Т. 55, № 1. – С. 83–96. 
https://doi.org/10.29235/1561-2430-2019-55-1-83-96

General relativity (GR) is the elegant theory of geometrization of physical laws based on unification 
of space and time. It manifests striking stability relatively different modifications [1, 2]. On the other 
hand, a long experience faces the challenges of the space-time quantization in terms of GR [3–7]. One 
may assume that the difficulties with quantization could originate namely as a result of some redundant 
rigidity of GR. It is interesting that modifications of GR such as string theory [8], loop quantum gravity 
[9] and others alternatives (see, e. g. [10]) follow this way of maximal symmetrization of underlying 
space-time laws.

Still, it seems reasonable to probe some alternatives which break the unity of space and time. Along 
the way, possibilities are abundant. To obtain a physically meaningful result, one must not dissent too far 
from GR. The examples of such theories disregarding a unity of space-time are [11–16], where the power 
counting renormalizability [12] or the conformal invariance [13] are reached. Another example is the uni-
modular gravity, in which the cosmological constant could be redefined (see [15] and references therein). 
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In the present paper, we propose the five-vectors theory (FVT) of gravity admitting an arbitrary choice 
of the energy density reference level. That allows omitting a main part of the vacuum energy, whereas 
residual vacuum fluctuations dominate during whole universe evolution and convert the latter into  
the Milne-type universe [11, 16], where the scale factor grows linearly with cosmic time. Original Milne 
universe is empty and has negative curvature, whereas FVT predicts the flat and not empty universe 
with the accelerated expansion in the vicinity of small redshifts.

In the first section of the paper, GR in the conformal time gauge will be preliminarily considered. 
The modification of GR in this particular gauge will be obtained in the second section. The Schwarzschild 
solution within the frameworks of FVT will be considered in the third section. The fourth section will 
demonstrate how the problem of the primary divergence 4

pM  in the vacuum energy density could be 
solved. Besides, the universe deceleration parameter is discussed.

1. GR in the conformal time gauge. The action of a system including one scalar field ϕ and a point 
particle with the rest-mass m0 has the form [17]:

 
2

4 2 2 4
0

1= ( 2 ) ( ) ,
12 2

pM dX dXS g d x g m g d x m g d
d d

µ ν
µν

µ ν µν- + Λ - + ∂ φ ∂ φ - φ - - - η
η η∫ ∫ ∫  (1)

where ( )= ,gαb ρ ν ν ρ
αν bρ αb νρΓ Γ -Γ Γ  Mp is the Planck mass, which is chosen as 3= ,

4pM
Gπ

 and Λ is  
the cos mological constant, which is included with illustrative purposes. Here, and everywhere below 
zero variations of dynamical variables on a boundary are assumed.

Let us write an interval in the ADM form [18] 

 2 2 2 2= ( )( ),i i j j
ijds a N d dx N d dx N dη - g + η + η  

where γij is the induced three metric denoted by latin indexes, 1/6=a g  is the local scale factor, = det .ijg g  
Thus, η is the conformal time if N equals unity. Up to the total spatial derivative term, the action (1) be-
comes 
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where 1= ( )
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aN η+ - ∂ g  and = ij
ijK Kg  [3]. Covariant derivatives Dj and rising indexes 

are taken using the metric γij. Let us set Mp = 1 for the simplicity of the intermediate calculations.
For “hamiltonization” of the theory, the momentums are needed: 
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The momentums corresponding to N and Ni equal zero. Thus, the action of the system considered  
as the extended Hamiltonian system [19] takes the form:

 3 (1)= ( ) ( ) ( ) ,ij i
ij iS d xd P X d H dη φ ηπ ∂ g + π ∂ φ η+ η η η- η∫ ∫ ∫  (4)
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where 
 (1) 3= ( ) .i

iH N N d x+∫    (5)

Variation of the action given by (4) should be taken over ( ),ij xπ  ( ),xφπ  ( ),ij xg  ( )xφ  and ( ),iP η  ( )iX η  
independently. The Hamiltonian H(1) determines evolution in an arbitrary gauge [19, 20]. Besides the equa-
tions of motion, the constraints = 0  and = 0i  arise by variation of the action (4), (5) over N and Ni. 
The constraints are expressed through πij and momentums as follows 
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  (6)

A time derivative of some quantity is given by [19]

 (1)= { , },A H Aη∂  (7)

where the Poisson brackets are 
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In particular 

 (3)1{ ( ), ( )} = ( ) ( ),
2

jij i l k
kl k i jlx x′ ′π g δ δ + δ δ δ -x x  (9)

where { , },x = η x  { , }x′ ′= η x  and (3) ( )′δ -x x  is the Dirac delta function. Let us write the constraint al-
gebra:
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where 2= /ij ij ag g  is the metric with det = 1ijg  and ijg  is its inverse metric. For the particular case  
of the Bianchi model, the corresponding algebra is given in [21].

One can see that the right-hand sides of Eqs. (10) turn to zero on the shell of the constraints ( ) = 0x  
and ( ) = 0.x  That is this system is of the first kind in terms of the theory of constraint systems [19, 20]. 
Using the constraint algebra (10) and Eqs. (5), (7), we can calculate the evolution of constraints. Let us 
write it in the particular gauge N = 1, Ni = 0: 

 ( )= ,ij
i jη∂ ∂ g   (11) 

 1= .
3i iη∂ ∂  (12)

Derivatives in Eqs. (10), (11), (12) are conventional partial, i. e. noncovariant derivatives. Eqs. (11), 

(12) agree with the result of [22] (Eqs. (5.13), (5.14) with 1 1/ 3,κ =  2 3 0κ = κ =  and 4
[22] = 12 ,a--   
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3
[22] = 6 ).a−   One has to note that the evolution of constraints governed by (11), (12) admits adding 

some constant to .� This fact allows constructing a self-consistent constraints’ theory admitting an ar-
bitrary choice of the energy density reference level.

2. Five-vectors theory of gravity. As was shown in the previous section, the GR equations of mo-
tion admit a wider surface of the constraints than that of GR itself. That requires the conformal time 
gauge. In other gauges, the system moving on this wider surface will leave it if 0,≠  and thus, one 
should return to GR which demands 0.=�  In the conformal time gauge, the system could move on  
the wider surface const=�  permanently. One could expect that in some new theory admitting this wider 
surface of the constraints, the restrictions on the Lagrange multipliers will appear as opposed to GR, 
where the Lagrange multipliers are arbitrary. Below the version of such a theory will be exposed.

The theory describes an evolution with the time η of a three-geometry defined by the metric tensor γij. 
The metric tensor can be represented as a set of three triads =ij ia jae eγ , where index a enumerates vec-
tors of the triads ea and summation over a is implied. In contrast to GR, we do not imply a united footing 
for the time and spatial coordinates.

Let us postulate an action of the theory in terms of the generalized Hamiltonian system as 

 3= ( ) ,ij i i
ij i iS N d dη φ ηπ ∂ γ + π ∂ φ − − ϒ ∂ − η∫ x    (13)

where   and i  are given by (6).
Thus, one has five vectors: three triad vectors ea, which are dynamical variables, and two vectors N 

and ϒ. The latter vectors have not the corresponding momentums and, thereby, they are the Lagrange 
multipliers which have to be determined. Six constraints can be obtained by varying over Ni(x) and ϒi(x).

First, let us write the constraint algebra using (10). For simplicity it is written on the shell of the FVT 
constraints ( ) = 0i x∂   and ( ) = 0 :i x  
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where 0≠  is assumed, otherwise we return to GR. The full system of the constraints Φa consists of six 
constraints 1 2 2 3= { , ... , }.aΦ ∂ ∂     They correspond to the Lagrange multipliers 1 2 2 3= { , ... , }.a N Nλ ϒ ϒ  
Evolution of the system is governed by the Hamiltonian 

 (1) 3= ( ) ,i i
i iH H N d+ + ϒ ∂∫ x   (15)

where H is given by 3= .H d x∫  Restrictions on the Lagrange multipliers arise because the system 
should remain on the shell of constraints during evolution [19, 20]: 

 3( ) = { , ( )} { ( ), ( )} ( ) = 0,a a b a bx H x x x x dη ′ ′ ′∂ Φ Φ + Φ Φ λ∫ x  (16)

where summation over b is implied. On the constraint surface ( ) = 0,a xΦ  the matrix , ( , ) = { ( ), ( )}b a b aM x x x x′ ′Φ Φ  
composed of the Poisson brackets of constraints becomes 

 (3)02( , ) = ( ) ( ),
03

x x x
∇⊗∇ ′ ′δ − −∇⊗∇ 

M x x   (17)

where it is written in the form of four 3×3 blocks. Calculation of { , ( )} = 0aH xΦ  gives zeros for all con-
straints Φb, namely 
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Eqs. (16), (17), (18) result in the restrictions on the Lagrange multipliers 

 
0 ( )

= 0,
0 ( )

x
x

-∇⊗∇ ϒ  
  ∇⊗∇  N

 (19)

that leads to two equations
 (div ) = 0,∇ ϒ  (20) 

 (div ) = 0,∇ N   (21)

where div consists of conventional partial noncovariant derivatives. Solutions of Eqs. (20), (21) are

 ( ) = rot ( ) ( ),x x aϒ + + +f A x B Cx  (22) 
 ( ) = rot ( ) ( ),x x b+ + +N g D x E Fx  (23)

where f, g are some vector fields, A, B, C, D, E, F are some vector functions of time, and a, b are some 
scalar functions of time.

Now we can calculate the time evolution of  governed by the Hamiltonian H(1) (15). Calculation of 
the time derivative of  on the surface of the constraints = 0,i∂   = 0i  gives 

 4= div .  on shell
3η∂ N   (24)

Thus,  evolves exponentially with time if N is time-independent. One has to note that = C  in  
the most interesting physical case, when the two last terms in Eq. (23) are omitted and divN = 0. Here 
the constant C does not depend on spatial coordinates by virtue of = 0.i∂   

Let us discuss the question distinguishing GR from linear field theories, namely: could the equations 
of motion for the point particles be deduced from the field equations [23–27]? The equations of the FVT theo-
ry are weaker than those of GR, and do not allow using the Bianchi identities directly to obtain the restric-
tions to the matter energy-momentum tensor. However, the underlying insight is that the field equations 
are valid in the all space except singular points which move in agreement with the field equations [23–26]. 
Because these singularities correspond to the point particles, the equations of motion for the latter are con-
tained in the field equations. In FVT, Eq. (24) demonstrates that grav particles = ( ).F+ η   Because the func-
tion F(η) is the function of time only, it does not contain spatial singularities. Thus, the singularities  
in grav  must coincide with those in particles ,  so that the singularities contained in the field equations  
of FVT have to give the equations of motion for the point particles like those in GR.

FVT is formulated in the generalized Hamiltonian form (13). To formulate it in the Lagrange form 
(before Lagrange multipliers fixing), one should vary the action (13) over πij. That can be done by rewriting 
the term 3

1 = i
iS d dϒ ∂ η∫ x  in the action (13) as 3

2 = i
iS d d- ∂ ϒ η∫ x  to avoid appearing the spatial deri-

vatives of the momentums. That results in the equations expressing velocities through momentums. These 
velocities have to be substituted into (13). As a result, we come to the action given by (1) or (2), but with 
the lapse function N replaced by 1 .i

i+ ∂ ϒ  
The physical sense of FVT is very simple: the standard Einstein-Hilbert action is varied not over all 

the possible metrics, but over some restricted class of them. The vacuum energy problem demands that 
the GR invariance relatively the general coordinate transformations has to be violated. It was found that 
most of the field theories undergo a violation of symmetry which presents in theory initially [28]. Here 
we violate the general relativistic invariance restricting the class of the metrics over which the action  
is varied. Permitted class of the metrics is of the form of

 ( )22 2 2= = 1 ( )( ).m i i j j
m ijds g dx dx a d dx N d dx N dµ ν

µν - ∂ ϒ η - g + η + η  (25)
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The result of the restriction is schematically represented in Fig. 1. The Lagrange multipliers in GR 
are arbitrary, but in FVT they are restricted by (20), (21). At the same time, the constraint surface in FVT 
is wider than that in GR. It should be noted that the unimodular gravity [15] also uses a mechanism of 
metric restriction, namely, the 4-metrics with unit determinant are considered. That violates the gauge 
symmetry, as well. 

The expression for the gravity Lagrangian density can be rewritten in terms of triads as 

 

2 2 2 2
grav

2 2 4 (3)
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 (26)

where R(3) is the three-dimensional curvature, which can be expressed in terms of triads: 

 (3) = ( ) ,  i i
a i abb b i aba abf fab fba afb fba afa fbbR e e- ∂ g + ∂ g + g g - g - g g + g g  (27)
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abc b c j ai c j aibe e e e e el ∂ - ∂  [17]. The summation is implied both 
over the index i of the coordinate system and over the numbers of the triad vectors a,b… . The quantity bcv  
is expressed as 
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 1=  .
3

j j j
ai ai ai j aj i i ajv e e N e N N eη∂ + ∂ - ∂ - ∂  (29)

Let us count degrees of freedom in FVT. There are five 3-vectors, i. e., fifteen quantities. However, 
the orientation of the triads, giving the same metrics, could be chosen arbitrary and determined by the three 
Euler angles. Thus, twelve degrees of freedom remains. Lagrange multipliers are restricted by (22), (23), 
and their remaining parts are set arbitrary. As a result, six quantities remain. Variation by N gives the mo-
mentum constraint, so the number of the degrees of freedom diminishes to three. Variation by ϒ according 
to (21), (24) gives the constraint = ( ),F η  where the function of conformal time 4( ) exp div .

3
F d η η 

 
∫ N  

Thus, there are two degrees of freedom as in GR. 
It may be convenient to decompose the spatial metric into the scale factor and the metric with unit 

determinant 2 2= =ij ij bi bja a e eg g    (see, e. g. [29]). In this case, the Lagrangian density takes the form 
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a                                                                  b
Fig. 1. Schematic comparison of GR and FVT:  

a – restrictions on the Lagrange multipliers; b – constraint surfaces in GR and FVT



      Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-матэматычных навук. 2019. T. 55, № 1. С. 83–96 89

where the expressions for bcv , and (3)R  are the same as those for bcv , and R(3), but are built from the triads 

= /aj aje e a  with the unit determinant. The indexes i,j… should be risen by the matrix ,ijg  i. e. = ,i ij
a je e g   

where ijg  is the inverse .ijg  
3. The empty universe and Schwarzschild solution. Let us consider an example of a spherically 

symmetric gravitational field, which includes both uniform flat universe and Schwarzschild metric. 
Spherically symmetric metric belonging the class of the FVT metrics is

 ( )2 2 2 2 2 2 2 4 2 2 2= ( ) ( ) ( )( ) / ,i j
ijds a d dx dx e d e d e e d rα - l l - lη - g = η - - -x x x  (31)

where | |r = x  and exp ,a = α  λ are the functions of η, r. The isotropic coordinates used in (31) are analog of 
the usual Descartes coordinates. The function λ parametrizes the metric ijg   with the unit determinant and 
reflects deflection of the conformal geometry from Euclidian one. The equations of FVT take the form
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 (35)

where the prime means the differentiation over η. Eq. (32) is a Hamiltonian constraint, which is satisfied 
up to some constant in FVT. Eq. (33) is a consequence of the momentum constraints = 0.i  Two other 
equations (34), (35) are the equations of motion. Firstly, let’s consider a uniform empty flat universe with 
the Euclidian spatial geometry λ = 0. Eq. (32), (34) are reduced to 

 
2 2 21= = const, 0.

2
' '' 'e α- α α + α =  (36)

An evident solution of the equations (36) is 
0

ln ,η
α =

η
 where η0 is the conformal present time value 

at which 1.a eα= =  Thus, the constant in this example determines the cosmological expansion. It has  
the unique value for all the space. Its influence on some spatially local events appears as the influence of 
cosmological expansion on these events. When this influence is negligible, the constant in Eq. (32) could be 
set to zero. Let us consider a static solution for this case, which is, certainly, a pure Schwarzschild solution. 
Still, it is interesting, how this pure Schwarzschild solution looks in the class of metrics (25), (31) permitted 
by FVT? In the static case, the time derivatives in Eqs. (32)–(35) should be set to zero. Then, one could 
express ,r r∂ l and ,r r∂ α from Eqs. (34), (35) and substitute them into Eq. (32). For the const 0,=  Eq. (32) 
reduces to

 

2 2
2 63 4 1 1 = 0.d d d dr r r r e

dr dr dr dr
lα α l l     - + - - - +     

     
 (37)

To guess the solution of (34), (35), (37) the substitution

 
( )( )2= ln 1 / ,ge r rαl α + -   (38)
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could be performed, where the Schwarzschild radius rg is used to make the expression under logarithm 
dimensionless. Finally, Eq. (37) becomes 

 
( )

284 4 2 61 4 = 0,g
dr e e r
dr

α α α − −  
 

 (39)

and allows the solution 

 

3 3
1 0

3( ) = ln ,
6 g

r rr f
r

−
  −  α

    
 (40)

where f –1 is an inverse function of 
( )

2 4 6 2

2 32 2

30 12 22 3( ) = 2ln
1 6 1

a a a af a
a a a

  − − +
+  −  −

 and r0 is constant of 

integration. As is shown in Fig. 2, a, the function α is not singular at r = 0, but the function λ describing 
conformal three geometry is singular. 

To compare this solution with the canonical Schwarzschild one

 
2 2 1 2 2 2 2 2= (1 / ) (1 / ) (sin ),g gds r R dt r R dR R d d−− − − − θ φ + θ  (41)

let’s rewrite the interval (31) in the spherical coordinates 

 
( )( )2 2 2 2 4 2 2 2 2 2= sin .ds e d dr e e r d dα λ − λη − + θ + φ θ  (42)

The coordinate transformation relates (41), (42) as t = η and ( ) =R r reα−λ  (see Fig. 2, b). Regarding 
the canonical Schwarzschild solution, this picture corresponds to the exterior of the Schwarzschild radius, 
since r = 0 corresponds to R > rg as it is shown in Fig. 2, b. Let us give some illustrative interpretation 
(Fig. 3) of this fact and consider the inverse transformation r(R) from the canonical Schwarzschild to  
the FVT metric. Let we have “holed” Schwarzschild space initially. The mapping r(R) could be consi
dered as shrinking a “hole” R ≥ rg to a point r = 0, as it is shown in Fig. 3. Thus, FVT repairs a “holed” 
Schwarzschild spacetime by shrinking a hole edge into a node r = 0 and placing a pointlike particle in 
this node, which corresponds to the delta function term in the Lagrangian (2). The structure of static 
solution in FVT tell us that deltafunctional sources in action have a sense only if situated in the causally 
reachable part of space.

                                               a                                                                                              b
Fig. 2. Parameters of the metric (31), which are referred as “gravity potentials” here. The solid line is α(r), the dashed line is λ(r) 
and dotdashed line is the Newton potential 2

gr
r

ϕ = −   (a). The plot of the coordinate transformation R(r) from the interval (31), (42) 
to the canonical Schwarzschild one (41) for different values of the integration constant r0 in (40). Solid and dashed lines  

correspond to r0 = 0 and 0 3 ,gr r=   respectively. Gray horizontal line corresponds to R = rg (b)
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It is possible to consider a test particle motion in the vicinity of r = 0, where constα ≈  and 
( )( )2= ln 1 / const ln .ge r r rαl α + - ≈ +  Radial geodesic line obeys the equations = 0,η  

22 / = 0,r r r+   
where the dot means differentiation over the proper time s. The explicit solution is ( )1/32/3( ) = 3 ( ) ,in in inr r r vη - η-η  
which implies that the particle is placed initially at rin and η = ηin, and has a velocity v directed towards 
the center and falls into the center r = 0 at some finite conformal time.

The general case unifying these two examples can describe a model of the evolution of the spherical 
superclusters of ~100 Mps size in the expanding universe having η0 ~4500 Mps. However, it will be only 
an academical example because, as will be shown in the next section, the quantum vacuum should be 
first considered explicitly.

4. Domination of vacuum fluctuations in the evolution of the universe. The possibility of an ar-
bit rary choice of the energy reference level allows omitting the huge vacuum energy [30–34]. But  
the most interesting question is what remains after this omitting [33, 34]? It turns out to be that  
the Milne-type cosmology arises as a result of residual vacuum fluctuations. To demonstrate that fact,  
let us consider a particular metric: 

 2= ( )diag{1,1,1}.ij ag η  (43)

Below, the scale factor a(η) will be considered as homogenous whereas the scalar field is inhomoge-
neous. It should be noted, that the gravitons contribute to the vacuum energy as two minimally coupled 
massless scalar fields [33]. Thus, without loss of generality, the only quantum scalar field is considered here.

Both constraints and equations of motion suggest = const.   The Hamiltonian is = (0),H   where 
( ) 3( ) = ( )exp .x i x d x∫k k   That is the Hamiltonian = const.H  Substitution of the Fourier representa-

tion of a scalar field ( )( ) = expx i xφ φ∑ kk k  into the equation for H results in 

 2 2 2 4 2 2 2 4 21 1 1= ,  
2 6 2p pH V M a M a a a k a m- - -

 ′ ′ ′- + Λ + φ φ + φ φ + φ φ 
 

∑ k k k k k k
k

 (44)

where the integration d3x is performed over the normalization volume V, and we restored the Planck 
mass. Redefinitions 2 2 /a a V→  and 2 2m m V→  allow omitting the volume V in intermediate calcula-
tions. The equation of motion for a scalar field is 

 2 2 2ˆ ˆ ˆ( ) 2 = 0.ak a m
a
′

′′ ′φ + + φ + φk k k  (45)

Quantization of the scalar field [35] 

 *ˆ ˆ ˆ= ( ) ( )k ka a+
-φ χ η + χ ηk k k  (46)

leads to the operators of creation and annihilation with the commutation rules ˆ ˆ[ , ] = 1.a a+k k  Averaging 
over a vacuum state ˆ | 0 >= 0ak  gives: 

 2 2 2 4 2 * 2 2 * 4 2 *1 1 1< 0 | | 0 >= .     
2 6 2p p k k k k k kH M a M a a a k a m′ ′ ′- + Λ + χ χ + χ χ + χ χ∑

k
  (47)

Fig. 3. Shrinking of the “holes” of the Schwarzschild radius into the nodes to place the delta-function mass sources into them
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The complex functions χk(η) satisfy the relations [35]: 

 
2 2 2

2 * *

( ) 2 = 0,

( )( ) = .

k k k

k k k k

ak a m
a

a i

′
′′ ′χ + + χ + χ

′ ′η χ χ − χ χ
 (48)

Eqs. (48) admit a formal WKB solution [35]:

 
( )0exp ( )

= ,
2 ( ) ( )

k
k

k

i W d

a W

η− τ τ
χ

η η

∫
 (49)

where the function Wk(η) satisfies the equation 

 
2

2 2 2 33 2 2 = 0.
2

k
k k k

k

W aW k m a W W
W a
′ ′′ ′′− − + − + 

 
 (50)

Adiabatic approximation consists in setting 

 2 2 2( ) ( ) ( ) / ( ).kW k m a a a′′η ≈ + η − η η  

Changing summation over k by integration 

 2max
03

4 ,
(2 )

k
k kA A k dkπ
→

π
∑ ∫
k

  (51)

and keeping the main terms at kmax, we come to

 

2 2 2 4 4

4 2 2 4 2
max max

3 2

1 1< 0 | | 0 >=  
2 6

( )1 4 = const.
2 4(2 ) 4

p pH M a M a a

k k m a a
a

′− + Λ + ρ +

 ′+π
+ +  π  

 
 (52)

Here, we have added “by hands” the term ρa4 corresponding to the dust matter satisfying 3 3
0 0= ,a aρ ρ  

where a0 = 1 is the present-day value of the scale factor, ρ0 is the present-day dust matter density. One may 
see, that the constant in FVT absorbs the leading part of the vacuum energy 4

maxk  during the whole 
evolution of universe. On the other hand, its a-dependence is similar to that of radiation density and does 
not relate to the contribution of Λ having different a-dependence. In contrast, the unimodular gravity 
allows arbitrary cosmological constant [15], but that does not solve the vacuum energy problem at a fixed 
UV cut off of the comoving momentums kmax. For instance, if we introduce the cosmological constant 
compensating the vacuum energy at present, then the vacuum energy becomes large again at the time of 
the last scattering surface, i. e., at redshift z = 1100. That results from time-dependence of vacuum energy 
on the scale factor, whereas Λ has not such a dependence. Actually, from (52) it follows 4 4

max ,vaca kρ    
i. e. 4 4

max / .vac k aρ   Below, Λ will equal zero, since, we will consider an alternative to it.

Let us introduce the parameter 
2
max

0 2 2=
8 p

S
M

κ

π
  [33, 34], where κmax is a UV cut-off of the present-day 

physical momentums max max 0= / .k aκ  Defining the constant Ωm connected with the matter density 
2 2 3 3

0 0 0
0

1 ( ) = =
2 m pa M a a

a
′ Ω ρ ρ  and using Eq. (52) lead to 

 
( )2 2 2 2 2 2

0 0 0 0 02 0
2 2

0 0

( 1 (1 / )) ( )
= .  

1

mS a a a S a m a a
a

S a a−
′− + Ω − + −

′
−

 (53)
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First of all, one has to note that we handle a theory with the Big Rip occurring at 0 0=a a S  due to 
the denominator of (53). That is a higher value of the momentums cut-off results in a longer life of  
the universe. There is no a theoretical upper bound on the UV cut-off, but the lower one corresponds to 

S0 = 1 is max
2= 2 ,

2 p
sc

M
N

κ π
+

  where Nsc is the number of scalar fields in theory [33], and the number 

two corresponds to a number of degrees of freedom for gravitational waves. At a bottom cut-off bound 
S0 < 1, we would already be witnesses of the Big Rip.

It should be noted that the mass term is in fact 2 2 2
bosons fermions=m m m-∑  [33], i. e., the fermions con-

tribute with opposite sign regarding the bosons one. The authors of [30] proved the theorem stating that 
adding any new bosons does not compensate all mass terms, and urged searching some new fermion 
families for this aim. In the light of the present work, the initial pre-condition of the theorem mentioned 
above [30] becomes more gentle, because there is no need in compensation of the main part associated 
with 4

maxk  in the vacuum energy density. Here we assume for simplicity that all massive terms compen-
sate each other in some wonderful way, and apply m2 = 0 in the formula (53). Asymptotic of the solution 
of Eq. (53) in the vicinity of small-scale factors at η → –∞ is 

 0

00

1( ) exp ,mSaa B
a S

 ′ + Ω - η ≈ η     
 (54)

where B is some constant. We have in the cosmic time = ( )dt a dη η in the vicinity of t = 0 

 0
0

0

1( ) ( ) ,mSa t a t
S

+Ω -
≈   (55)

where = .daa
dt

  The deceleration parameter in terms of redshifts 0= / 1z a a -  is [34]

 
( )

( )( )

2 2 2
0 0

2 2
0 0

(2 2) 2( 3 2) ( 2)
( ) = = 1 = ,

( 2)(2 2) 2 (2 2) 2
m m m m m

m m m m m

q q z zaa a aq z
z z q z qa a

Ω +Ω - + Ω - Ω + + Ω -′′ - - -  Ω + + +Ω - - Ω + Ω +Ω - -′ 





  (56)

where 0
0

2=
2( 1)

mq
S

- +Ω
-

 is the present-day z = 0 value of the deceleration parameter. It changes from the pre-

sent-day negative value at small redshifts to zero at large z. If the dust matter content is considerable,  

Fig. 4. Dependence of the deceleration parameter on redshift (bold) at Ωm = 0.7, 0.27, 0.05 put on the 1σ, 2σ, 3σ  
error channels (dashed) of the reconstruction of the deceleration parameter [36] from the 115 SN Ia data
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q can become positive in some interval. It is interesting that q(z) in the VFD model is weakly sensitive to 
a dust matter content as we see from Fig. 4.

One may assume that the late time universe acceleration results from the residual vacuum fluctua
tions of a scalar field. At least one scalar field is already discovered, that is the Higgs boson. Besides,  
it was shown [33] that gravitational waves should also produce the analogous effect. A linear Milnelike 
expansion precedes this accelerated stage of universe evolution. It is interesting that the Milnelike uni
verses again retain the great attention. It was shown that the primordial nucleosynthesis is concordant 
with the observational data within the framework of such models [37]. The other cosmological tests are 
also under discussion [38–44].

Conclusion. On the one hand, the results of the paper could be considered from the abstract point of 
view as the possibility of a gravity theory admitting an arbitrary choice of the energy density reference 
level. We have introduced the surface of the constraints = 0i∂   and = 0i  instead of the surface = 0  
and = 0,i  and have found the Hamiltonian, which governs a system evolution along the former surface. 
The FVT is completely selfconsistent in terms of the theory of constrained systems [19, 20]. The price 
is that time and space are not considered as a single R4 manifold.

On the other hand, the remarkable property of the theory is that the main part of vacuum energy 
does not influence the universe evolution. However, there remains an open question regarding the contri
bution of masses of particles into the vacuum energy. In any case, FVT is a strong argument for the VFD 
model [34], which predicts accelerated universe expansion at z ≤ 1, and the Milnelike universe at z ≥ 1. 
From the general point of view, the possibility to chose an arbitrary energy level in FVT seems analogous 
to that in nonrelativistic physics. After the compensation of the main part of vacuum energy, the theory 
becomes looking as GR in the conformal time gauge except for residual vacuum energy influencing  
the cosmological evolution.
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