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K TEOPUU I'PABUTALIUU C ITPOU3BOJIBHBIM YPOBHEM OTCUYETA IIJIOTHOCTHU SHEPI'MHA

AnHoTanus. [IpeanoxeHa NATUBEKTOPHAS TEOPHs I'PABUTALIMU, B KOTOPOil yPOBEHb OTCYETA IUIOTHOCTH SHEPTUU MO-
KeT ObITh BBIOPAaH MPOM3BOJIBLHO. Teopus chopMynupoBaHa, KaK CUCTEMa CO CBS35IMM, B KOTOPOH MHOXHTeNHN JlarpaHixa
IpUHAJJIeKAT HEKOTOPOMY OIPaHMYCHHOMY KJIaCcCy BEKTOPHBIX IOJICH, B OTIMYUE OT OOLIeH TEOPHUH OTHOCUTEILHOCTH, IJIe
MHOXXHTeNnH Jlarpanka MOryT OBITH 3aJaHbl MPOU3BOIBHO. CIEICTBHEM TEOPUU SIBISETCS YTBEPXKJCHHE, YTO OCHOBHAs
9acTh BAKYYMHOMH IIJIOTHOCTH DHEPIHH HE BIMSIET HAa PACIIUPEHHUE BCEICHHON, B TO BPEMsI KaK OCTABLIASICS YacTh IIPUBOIUT
K 3aKOHY pacIInpeHus1, OJIN3KOMY K JIMHEHHOMY, KaK y BcelleHHONH MutHa.

KuioueBble c/10Ba: MATHBEKTOPHAS TEOPUsS TPaBUTALMH, TAMUIBTOHOBBI CHCTEMBI CO CBSI3SIMH, BaKyyMHAas dHEPIrHs,
KBaHTOBAsI KOCMOJIOTHSI, KOCMOJIOTnst MuitHa

Jas uutupoBanus. Yepkac, C. JI. K Teopun rpaBuTanuy ¢ mpon3BOILHBIM yPOBHEM OTCYETA MIOTHOCTH dHEPTHH /
C. JI. Yepkac, B. JI. Kamamaukos // Bec. Ham. akan. maByk benapyci. Cep. ¢i3.-mar. HaByk. — 2019. — T. 55, Ne 1. — C. 83-96.
https://doi.org/10.29235/1561-2430-2019-55-1-83-96

General relativity (GR) is the elegant theory of geometrization of physical laws based on unification
of space and time. It manifests striking stability relatively different modifications [1, 2]. On the other
hand, a long experience faces the challenges of the space-time quantization in terms of GR [3—7]. One
may assume that the difficulties with quantization could originate namely as a result of some redundant
rigidity of GR. It is interesting that modifications of GR such as string theory [8], loop quantum gravity
[9] and others alternatives (see, e. g. [10]) follow this way of maximal symmetrization of underlying
space-time laws.

Still, it seems reasonable to probe some alternatives which break the unity of space and time. Along
the way, possibilities are abundant. To obtain a physically meaningful result, one must not dissent too far
from GR. The examples of such theories disregarding a unity of space-time are [11-16], where the power
counting renormalizability [12] or the conformal invariance [13] are reached. Another example is the uni-
modular gravity, in which the cosmological constant could be redefined (see [15] and references therein).
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In the present paper, we propose the five-vectors theory (FVT) of gravity admitting an arbitrary choice
of the energy density reference level. That allows omitting a main part of the vacuum energy, whereas
residual vacuum fluctuations dominate during whole universe evolution and convert the latter into
the Milne-type universe [11, 16], where the scale factor grows linearly with cosmic time. Original Milne
universe is empty and has negative curvature, whereas FVT predicts the flat and not empty universe
with the accelerated expansion in the vicinity of small redshifts.

In the first section of the paper, GR in the conformal time gauge will be preliminarily considered.
The modification of GR in this particular gauge will be obtained in the second section. The Schwarzschild
solution within the frameworks of FVT will be considered in the third section. The fourth section will

demonstrate how the problem of the primary divergence M 2 in the vacuum energy density could be
solved. Besides, the universe deceleration parameter is discussed.

1. GR in the conformal time gauge. The action of a system including one scalar field ¢ and a point
particle with the rest-mass m  has the form [17]:

i) v
s———’”I<g+2A>F d'x+d 1@.08" 0,0 = m*¢*)-gd"x- mof,/ gwdj; dj; dn, (D)

where G = g (ngl"ﬁp Loy ) M is the Planck mass, which is chosen as M, = /ﬁ, and A is

the cosmological constant, which is included with illustrative purposes. Here, and everywhere below
zero variations of dynamical variables on a boundary are assumed.
Let us write an interval in the ADM form [18]

ds® =a’N’dn’ —y;(dx' + N'dn)(dx/ + N’dn),

where Y, is the induced three metric denoted by latin indexes, a = yl/é is the local scale factor, y = dety;.
Thus, n is the conformal time if N equals unity. Up to the total spatial derivative term, the action (1) be-
comes

M2 a*(0,9)° atm’¢*  a*
_ i 3) n i
S—J'N[ (K K7 —K*+R® —2A)+ N 2 ~—=N'0,;00,0 +
2 i
a i i 2 1 dx dX 3) 3
+ NOON'O . d—my |a®> ——v.| =—+ N || ==—+ N’ [§®(X(n) = x) |d°xdn, 2

where K;; = ) and K = y’jKij [3]. Covariant derivatives D, and rising indexes

1
~ (DN, + DN, =0y,

a
are taken using the metric y. Let us set M =1 for the simplicity of the intermediate calculations.

For “hamiltonization” of the theory, the momentums are needed:

2
=0 _ia-”(Kij —'K), m, =8—S=a—(8n¢—Ni8i¢),
0(0yy;) 12 5(0,0) N
dx’
5 moyl-]( dn +Nf] 3

B === n —
n dan dn
The momentums corresponding to N and N equal zero. Thus, the action of the system considered

as the extended Hamiltonian system [19] takes the form:

S=[(n"0,y, +my0,0)d xdn + [P(M)X' (n)dn - [HVdn, @)
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where
HY = [(NH+ N'P)dx. Q)

Variation of the action given by (4) should be taken over 7/ (x), Ty (%), v;;(x), ¢(x) and F(n), X i(n)
independently. The Hamiltonian A" determines evolution in an arbitrary gauge [19, 20]. Besides the equa-
tions of motion, the constraints H =0 and P, =0 arise by variation of the action (4), (5) over N and N'.
The constraints are expressed through n¥ and momentums as follows

58 1
H=———=6a"(Yu¥ ;1 + V¥ g —YVitu)w Ea4(R(3)—2A)+

5N
2 4. 2,2
T am ij
T O R o 6 (X0 -). ©)
P=-55  0yD ¥ 41,00 - BB (X(m)—x)
e R ] =x).

A time derivative of some quantity is given by [19]

0,A=1{H" 4}, (N

where the Poisson brackets are

B IL 54 8B 84 B S84 OB J s
31 (x) 5“/,, (%) 5%] (x) 8n¥ (x) 575¢ (x) 30(x)  50(x) Oy (x)
04 0B 04 9B ®)
TP ax’ ax' op

In particular

{1 (013 () =5 313/ + 818567 (x - x), o)

where x ={n,x}, x'={n,x’} and 8® (x—x') is the Dirac delta function. Let us write the constraint al-
gebra:

THE),HON ==(REF @)+ BT ()a,8% (x ),
{B(),P,(x)} ==(R(x)3, + Py ()0, )3 (x —x), (10)
(OO P = =3 (100 + 128 (%) =387 (= 00, H(),

where y; =y, / a’ is the metric with det Y; =1 and ¥V is its inverse metric. For the particular case
of the Bianchi model, the corresponding algebra is given in [21].

One can see that the right-hand sides of Eqgs. (10) turn to zero on the shell of the constraints H(x) =0
and P(x) = 0. That is this system is of the first kind in terms of the theory of constraint systems [19, 20].
Using the constraint algebra (10) and Egs. (5), (7), we can calculate the evolution of constraints. Let us
write it in the particular gauge N=1, N' = 0:

o, H 'f7>j), (1)

=o,(7
o.p=1
3

. oM. (12)

1

Derivatives in Egs. (10), (11), (12) are conventional partial, i. e. noncovariant derivatives. Egs. (11),

(12) agree with the result of [22] (Egs. (5.13), (5.14) with k; =1/3, k, =k3 =0 and H»y; = ~12a7*H,
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Ry = 6a7373). One has to note that the evolution of constraints governed by (11), (12) admits adding
some constant to H. This fact allows constructing a self-consistent constraints’ theory admitting an ar-
bitrary choice of the energy density reference level.

2. Five-vectors theory of gravity. As was shown in the previous section, the GR equations of mo-
tion admit a wider surface of the constraints than that of GR itself. That requires the conformal time
gauge. In other gauges, the system moving on this wider surface will leave it if H # 0, and thus, one
should return to GR which demands H=0. In the conformal time gauge, the system could move on
the wider surface H= const permanently. One could expect that in some new theory admitting this wider
surface of the constraints, the restrictions on the Lagrange multipliers will appear as opposed to GR,
where the Lagrange multipliers are arbitrary. Below the version of such a theory will be exposed.

The theory describes an evolution with the time 1 of a three-geometry defined by the metric tensor ¥y

The metric tensor can be represented as a set of three triads y; = ¢;,e;,, where index a enumerates vec-
tors of the triads e, and summation over a is implied. In contrast to GR, we do not imply a united footing
for the time and spatial coordinates.

Let us postulate an action of the theory in terms of the generalized Hamiltonian system as

S=[(n"8,y; +my0,0—H—Y'8,;H~ N'R)d’xdn, (13)

n¥ij
where H and P, are given by (6).
Thus, one has five vectors: three triad vectors e , which are dynamical variables, and two vectors N
and Y. The latter vectors have not the corresponding momentums and, thereby, they are the Lagrange
multipliers which have to be determined. Six constraints can be obtained by varying over N'(x) and Y"(x).
First, let us write the constraint algebra using (10). For simplicity it is written on the shell of the FVT
constraints 0;H(x) =0 and P.(x)=0:

{0;H(x),0 , H(x")} =0,
{R(x),P;(x)} =0, on shell (14)

(0,0 RO} == HE,08% (X - x),

where H # 0 is assumed, otherwise we return to GR. The full system of the constraints @ consists of six

constraints @, = {0,/H,0,H...,, B }. They correspond to the Lagrange multipliers A , = ', Y2 N2 NP
Evolution of the system is governed by the Hamiltonian

H(l) —H +J(Nl7)l + YiaiH)d3X, (15)

where H is given by H = _[Hd 3x. Restrictions on the Lagrange multipliers arise because the system
should remain on the shell of constraints during evolution [19, 20]:

0, D, (x) = {H,®,(x)} + [{®, (), D, (x)}A, (x)dx =0, (16)

where summation over b is implied. On the constraint surface @ , (x) = 0, the matrix M , (x',x) = {®} (x'), ®,, (x)}
composed of the Poisson brackets of constraints becomes

0 VeV

M(x,x') = %H(x)(—v ®V 0

JSG) (x—x"), (17)

where it is written in the form of four 3x3 blocks. Calculation of {H,® ,(x)} = 0 gives zeros for all con-
straints ®,, namely
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{H,0;H(x)} =0,

1 on shell (18)
{H,F(x)} = gaiH(x) =0.

Egs. (16), (17), (18) result in the restrictions on the Lagrange multipliers

0 -V®V ) Y(x)
=0, (19)
VeV 0 N(x)
that leads to two equations
V(divY)=0, (20)
V(divN) =0, (21

where div consists of conventional partial noncovariant derivatives. Solutions of Egs. (20), (21) are

Y(x) =rotf(x) + A+ ax + B(Cx), (22)
N(x)=rotg(x)+ D+ bx +E(Fx), (23)

where f, g are some vector fields, A, B, C, D, E, F are some vector functions of time, and a, b are some
scalar functions of time.
Now we can calculate the time evolution of H governed by the Hamiltonian A (15). Calculation of

the time derivative of H on the surface of the constraints 6,1 =0, P, = 0 gives
o H= %HdiVN . on shell (24)

Thus, H evolves exponentially with time if N is time-independent. One has to note that H =C in
the most interesting physical case, when the two last terms in Eq. (23) are omitted and divN = 0. Here
the constant C does not depend on spatial coordinates by virtue of 6,1 = 0.

Let us discuss the question distinguishing GR from linear field theories, namely: could the equations
of motion for the point particles be deduced from the field equations [23—27]? The equations of the FVT theo-
ry are weaker than those of GR, and do not allow using the Bianchi identities directly to obtain the restric-
tions to the matter energy-momentum tensor. However, the underlying insight is that the field equations
are valid in the all space except singular points which move in agreement with the field equations [23-26].
Because these singularities correspond to the point particles, the equations of motion for the latter are con-
tained in the field equations. In FVT, Eq. (24) demonstrates that Hy,, + Haricles = £(11). Because the func-
tion F(n) is the function of time only, it does not contain spatial singularities. Thus, the singularities

in ‘H,... must coincide with those in Hp

orav so that the singularities contained in the field equations

articles »
of FVT have to give the equations of motion for the point particles like those in GR.

FVT is formulated in the generalized Hamiltonian form (13). To formulate it in the Lagrange form
(before Lagrange multipliers fixing), one should vary the action (13) over @?. That can be done by rewriting

the term S, = _[Yié‘l-Hd 3xa’n in the action (13) as S, = —_[H&l-Y"d 3 xdn to avoid appearing the spatial deri-
vatives of the momentums. That results in the equations expressing velocities through momentums. These

velocities have to be substituted into (13). As a result, we come to the action given by (1) or (2), but with
the lapse function N replaced by 1+0,Y".

The physical sense of FVT is very simple: the standard Einstein-Hilbert action is varied not over all
the possible metrics, but over some restricted class of them. The vacuum energy problem demands that
the GR invariance relatively the general coordinate transformations has to be violated. It was found that
most of the field theories undergo a violation of symmetry which presents in theory initially [28]. Here
we violate the general relativistic invariance restricting the class of the metrics over which the action
is varied. Permitted class of the metrics is of the form of

2 , , . .
ds? = g, ddx’ = a® (1 - 6mY"’) dn® —y; (dx' + N'dn)(dx’ + N'dn), 25)
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Fig. 1. Schematic comparison of GR and FVT:
a — restrictions on the Lagrange multipliers; b — constraint surfaces in GR and FVT

The result of the restriction is schematically represented in Fig. 1. The Lagrange multipliers in GR
are arbitrary, but in FVT they are restricted by (20), (21). At the same time, the constraint surface in FVT
is wider than that in GR. It should be noted that the unimodular gravity [15] also uses a mechanism of
metric restriction, namely, the 4-metrics with unit determinant are considered. That violates the gauge
symmetry, as well.

The expression for the gravity Lagrangian density can be rewritten in terms of triads as

1 (1 2 ol 2 ,
Loy (x) = m( a’vp, +§a(an“)(5iN )—gaz(alN )? —Ea(N 0,a)(0;N’)+
+3(5na)(Ni8,~a)—%(N’ a)’ ——(8 a) j+—a (1+3,YHR®, (26)

where R® is the three-dimensional curvature, which can be expressed in terms of triads:
3) _
RY = —€; 20 iYabb T eba Yava tVabr (Y sab =Y pa) = Yam¥ oa + Vafa¥ fob> @7

= ejelo Cai ~ e/ 40 j€,; [17]. The summation is implied both

where v, = (7» +Xpea — ) and A
over the index’7 of the coordinate system and over the numbers of the triad vectors a,b... . The quantity v,

is expressed as

abc cab abc

1/ . .
Vpe = E(ef,vci +eLv, ), (28)
where

1 , : :
Vi = 0ney; +§eai8ij —e,0,N' =N'0e,; . (29)

Let us count degrees of freedom in FVT. There are five 3-vectors, i. e., fifteen quantities. However,
the orientation of the triads, giving the same metrics, could be chosen arbitrary and determined by the three
Euler angles. Thus, twelve degrees of freedom remains. Lagrange multipliers are restricted by (22), (23),
and their remaining parts are set arbitrary. As a result, six quantities remain. Variation by N gives the mo-
mentum constraint, so the number of the degrees of freedom diminishes to three. Variation by Y according

to (21), (24) gives the constraint H = F'(1n), where the function of conformal time F'(n) ~ exp ijdiv Ndn |.
Thus, there are two degrees of freedom as in GR. 3

It may be convenient to decompose the spatial metric into the scale factor and the metric with unit
determinant y;; = a%j = azébl-ébj (see, e. g. [29]). In this case, the Lagrangian density takes the form

1 i i 22 j
Lo ()= | @@= ad N ~N'0a + %, |+
grov () 2(1+8iY’)( 073 P
L (149, a*R®) —4ad,a0 ;(8/¢)) ~ 4a8'310,0 ja + 2618)0,a0 ja 30
12 L ¢ c) €0 J €0 ( )



Becui Hanpisinanpnait akagomii HaByk benapyci. Cepsbis dizika-maramareigabix HaByk. 2019. T. 55, Ne 1. C. 83-96 89

where the expressions for v, and R® are the same as those for Vpeo and R, but are built from the triads

€, = €,; / a with the unit determinant. The indexes i,/... should be risen by the matrix 7 i e. é(’; =e j?ij ,

where 77 is the inverse Vi

3. The empty universe and Schwarzschild solution. Let us consider an example of a spherically
symmetric gravitational field, which includes both uniform flat universe and Schwarzschild metric.
Spherically symmetric metric belonging the class of the FVT metrics is

ds? = a*(dn® —fydxdx’) = > (dn2 —e P (dx)? - (e — e ) (xdx)? / ) 31)

where » =| x| and a =expa, A are the functions of 1, . The isotropic coordinates used in (31) are analog of
the usual Descartes coordinates. The function A parametrizes the metric ;; with the unit determinant and
reflects deflection of the conformal geometry from Euclidian one. The equations of FVT take the form

0
e Lgr i 2
2 2 6r

e[ 35 gon+to a2+ 2% Ly 047572239 1o 3 =const,  (32)
6r> 3 6 3r 376 3r 3"
0,0(a' +20 )+0,1 ~8,a +(3/r=39,1)2" =0, (33)
o +o? 402 =] 48 00 h+8,02 + 2% 15 a+lon2 100k 2, ,x+i(1 —e™) |.(34)
r ’ 3 3r 3" 3r2

7

A 20 =2 (—8,a6rk—8,a2 10, a+0A?—1a ,x-la,a—la,mi(e“ —1)], (35)
3 ’ 27 2r?

where the prime means the differentiation over 1. Eq. (32) is a Hamiltonian constraint, which is satisfied
up to some constant in FVT. Eq. (33) is a consequence of the momentum constraints P, = 0. Two other
equations (34), (35) are the equations of motion. Firstly, let’s consider a uniform empty flat universe with
the Euclidian spatial geometry A = 0. Eq. (32), (34) are reduced to

H= —%(x'2e2‘X = const, a +a?=0. (36)

An evident solution of the equations (36) is o = lnl, where 1, is the conformal present time value

at which a =e® =1. Thus, the constant in this exampleodetermines the cosmological expansion. It has
the unique value for all the space. Its influence on some spatially local events appears as the influence of
cosmological expansion on these events. When this influence is negligible, the constant in Eq. (32) could be
set to zero. Let us consider a static solution for this case, which is, certainly, a pure Schwarzschild solution.
Still, it is interesting, how this pure Schwarzschild solution looks in the class of metrics (25), (31) permitted
by FVT? In the static case, the time derivatives in Egs. (32)—(35) should be set to zero. Then, one could
express 0, A and 0, .o from Egs. (34), (35) and substitute them into Eq. (32). For the const =0, Eq. (32)

reduces to

) 2

e g daf dh ) (L dh )V e (37)
dr dr dr dr

To guess the solution of (34), (35), (37) the substitution

x=a+1n((1—e2°‘)r/rg), (38)
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could be performed, where the Schwarzschild radius r, is used to make the expression under logarithm
dimensionless. Finally, Eq. (37) becomes

8 da
4 (eza _ 1) ( 0 j rg6 =0, (39)
and allows the solution
33
a(r)=m| S0 (40)
6rg

where /! is an inverse function of f(a)= ZIn[ and r,is constant of

a? ] 300 —124° =224 +3
+

2 3
—a 6a

2 ( 2 )
a -1
integration. As is shown in Fig. 2, a, the function a is not singular at » = 0, but the function A describing
conformal three geometry is singular.
To compare this solution with the canonical Schwarzschild one

ds®> =(1-r, | Rydt* =(1-r, | R)"'dR* — R*(sin’0d ¢’ + dO?), (A1)

let’s rewrite the interval (31) in the spherical coordinates
ds® = ** (dn —drle* y o2 (d62 +d§*sin6? )) 42)

The coordinate transformation relates (41), (42) as t =m and R(r)= re*™* (see Fig. 2, b). Regarding
the canonical Schwarzschild solution, this picture corresponds to the exterior of the Schwarzschild radius,
since » = 0 corresponds to R > r,as it is shown in Fig. 2, b. Let us give some illustrative interpretation
(Fig. 3) of this fact and consider the inverse transformation 7(R) from the canonical Schwarzschild to
the FVT metric. Let we have “holed” Schwarzschild space initially. The mapping 7(R) could be consi-
dered as shrinking a “hole” R > r,toa point » = 0, as it is shown in Fig. 3. Thus, FVT repairs a “holed”
Schwarzschild space-time by shrinking a hole edge into a node » = 0 and placing a point-like particle in
this node, which corresponds to the delta function term in the Lagrangian (2). The structure of static
solution in FVT tell us that delta-functional sources in action have a sense only if situated in the causally
reachable part of space.

14t
“ E
3 12f
< 10
>
) 2 gt
Q & L
= 6
; o
% L
2
0'...:... M [P P
0 2 - 6 8 10 12 14
rirg rir
a b
Fig. 2. Parameters of the metric (31), which are referred as “gravity potentials” here. The solid line is a(r), the dashed line is A(r)
and dot-dashed line is the Newton potential ¢ = ——= (a) The plot of the coordinate transformation R(r) from the interval (31), (42)

to the canonical Schwarzschild one (41) for drfferent values of the integration constant 7 in (40). Solid and dashed lines
correspond to r, = 0 and ry = 3rg, respectively. Gray horizontal line corresponds toR=r, (b)



Becui Hanpisinanpnait akagomii HaByk benapyci. Cepsbis dizika-maramareigabix HaByk. 2019. T. 55, Ne 1. C. 83-96 91

Chnld
r/ S °
. ‘
. .
¥ 1
. 1
o A
~, »
- emme.
» \‘ _>
’
1 [
C Sindd ]
R N ! H °
I . Y, v °
1 by &
} 'I Vaus”
s, /;

*-.-"
Fig. 3. Shrinking of the “holes” of the Schwarzschild radius into the nodes to place the delta-function mass sources into them

It is possible to consider a test particle motion in the vicinity of » = 0, where o = const and
A=a+ ln((l —e* )r /1y ) ~ const + In7. Radial geodesic line obeys the equations 1} =0, ¥ + 272/ r=0,
where the dot means differentiation over the proper time s. The explicit solution is (1) = .2 (r, =3v(n—7, ))1/3
which implies that the particle is placed initially at », and n =n_, and has a velocity v directed towards
the center and falls into the center » = 0 at some finite conformal time.

The general case unifying these two examples can describe a model of the evolution of the spherical
superclusters of ~100 Mps size in the expanding universe having n, ~4500 Mps. However, it will be only
an academical example because, as will be shown in the next section, the quantum vacuum should be
first considered explicitly.

4. Domination of vacuum fluctuations in the evolution of the universe. The possibility of an ar-
bitrary choice of the energy reference level allows omitting the huge vacuum energy [30-34]. But
the most interesting question is what remains after this omitting [33, 34]? It turns out to be that
the Milne-type cosmology arises as a result of residual vacuum fluctuations. To demonstrate that fact,
let us consider a particular metric:

b

vy = a’(n)diag{1,1,1}. 43)

Below, the scale factor a(n) will be considered as homogenous whereas the scalar field is inhomoge-
neous. It should be noted, that the gravitons contribute to the vacuum energy as two minimally coupled
massless scalar fields [33]. Thus, without loss of generality, the only quantum scalar field is considered here.

Both constraints and equations of motion suggest H = const. The Hamiltonian is H = H(0), where
’F[(k) = I’H(x) exp(ikx)d 3x. That is the Hamiltonian H = const. Substitution of the Fourier representa-
tion of a scalar field ¢(x) =D,y exp(ikx) into the equation for H results in

H= V(—%M; a'? +éM§Aa4 +%2a2(|){((|)'_k +a’ ko +a*mPo o, j (44)
k

where the integration @&®x is performed over the normalization volume ¥, and we restored the Planck
mass. Redefinitions a®> — a” /¥ and m* — m*V allow omitting the volume ¥ in intermediate calcula-
tions. The equation of motion for a scalar field is

O+ (K +a*mPHh, + 2“;&;( =0. @5)
Quantization of the scalar field [35]

i = At () + i () (46)

leads to the operators of creation and annihilation with the commutation rules [a,,a, ]=1. Averaging

over a vacuum state g, | 0>=0 gives:

1 1 1 * * %
<0|H|0>= —EMIZ,a'2 +gM]21Aa4 +52a2x}{x}{ +a’ kP +atmty n 47)
k
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The complex functions y, () satisfy the relations [35]:

"k 4 Pmiyg + 2%y =0,
Yk +( )k Lk 48)
a” (0K —XxXi) =i

Eqgs. (48) admit a formal WKB solution [35]:
exp (—ij(;]Wk (t)d r)

R ()

where the function W,(n) satisfies the equation

Xk 49)

3w

k

"
Wy —

—2(1«2 +ma’ —“—JW,C +2W2 =0, (50)
a

Adiabatic approximation consists in setting

W () =2 + ma(n)? —a" () a().
Changing summation over k by integration

47
@2n)’

and keeping the main terms at k__, we come to

> Ay > [Nmax g, 2 dk, 1)
k

1 PR
<0|H|0>=—5M[2)a2+gMﬁAa4+pa4+

k4 kz 2 4 12
+% (247;3 ( rzax 4 Zmax (m4 az +a”) = const. (52)
T a

Here, we have added “by hands” the term pa* corresponding to the dust matter satisfying pa3 = poag ,
where a = 1 is the present-day value of the scale factor, p, is the present-day dust matter density. One may
see, that the constant in FVT absorbs the leading part of the vacuum energy ~ kﬁlax during the whole
evolution of universe. On the other hand, its a-dependence is similar to that of radiation density and does
not relate to the contribution of A having different a-dependence. In contrast, the unimodular gravity
allows arbitrary cosmological constant [15], but that does not solve the vacuum energy problem at a fixed
UV cut off of the comoving momentums k__ . For instance, if we introduce the cosmological constant
compensating the vacuum energy at present, then the vacuum energy becomes large again at the time of
the last scattering surface, i. e., at redshift z = 1100. That results from time-dependence of vacuum energy

on the scale factor, whereas A has not such a dependence. Actually, from (52) it follows p,.a* ~ k2

max >

i.e.py ~ ki /a* Below, A will equal zero, since, we will consider an alternative to it.

Let us introduce the parameter S, = SK?;; 5 [33, 34], where x__ is a UV cut-off of the present-day
T

physical momentums « ... = k.., / ay. Defining the constant Q connected with the matter density
2—(a’2 )OQMM;7 =pa’ = p,yaj and using Eq. (52) lead to
o

(So —1+Qm(l—a/a0))(a'2)0 +Staim? (af —a*)
= . (53)
Soagafz -1

!
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First of all, one has to note that we handle a theory with the Big Rip occurring at a = a,,/S, due to
the denominator of (53). That is a higher value of the momentums cut-off results in a longer life of
the universe. There is no a theoretical upper bound on the UV cut-off, but the lower one corresponds to

S,=1is . =2n %M »» Where N is the number of scalar fields in theory [33], and the number
N :
sc

two corresponds to a number of degrees of freedom for gravitational waves. At a bottom cut-off bound
S, < 1, we would already be witnesses of the Big Rip.

It should be noted that the mass term is in fact m* = Yymd .. —ma . [33], i. e., the fermions con-
tribute with opposite sign regarding the bosons one. The authors of [30] proved the theorem stating that
adding any new bosons does not compensate all mass terms, and urged searching some new fermion
families for this aim. In the light of the present work, the initial pre-condition of the theorem mentioned
above [30] becomes more gentle, because there is no need in compensation of the main part associated
with kriax in the vacuum energy density. Here we assume for simplicity that all massive terms compen-
sate each other in some wonderful way, and apply m?= 0 in the formula (53). Asymptotic of the solution
of Eq. (53) in the vicinity of small-scale factors at 1 — —oo is

a Sy +Q,, -1
a(n) ~ BeXp((—J O—n], (54)
alo So

where B is some constant. We have in the cosmic time df = a(n)dn in the vicinity of = 0

Sy +Q,, -1

a(t) = (a), S
0

t, (5)

where a = %. The deceleration parameter in terms of redshifts z=a, / a —1 is [34]

1|= , (56)

_ da a'a ) 4o (Qm(Zqo +Q,, —2)z" +2(Q), -3Q, +2)z+(Q,, - 2)2)
q(2) ( ) (Qm +z(z+2)(2q9, +Q,, —2)—2)(Qm +2(29,9,, + €, —2)—2)

-2+Q, . .

Z(S—in) is the present-day z = 0 value of the deceleration parameter. It changes from the pre-
0~ . .

sent-day negative value at small redshifts to zero at large z. If the dust matter content is considerable,

where g, =

T LI S S S S S S S S S B R S

Fig. 4. Dependence of the deceleration parameter on redshift (bold) at Q = 0.7, 0.27, 0.05 put on the lo, 20, 36
error channels (dashed) of the reconstruction of the deceleration parameter [36] from the 115 SN Ia data
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q can become positive in some interval. It is interesting that ¢(z) in the VFD model is weakly sensitive to
a dust matter content as we see from Fig. 4.

One may assume that the late time universe acceleration results from the residual vacuum fluctua-
tions of a scalar field. At least one scalar field is already discovered, that is the Higgs boson. Besides,
it was shown [33] that gravitational waves should also produce the analogous effect. A linear Milne-like
expansion precedes this accelerated stage of universe evolution. It is interesting that the Milne-like uni-
verses again retain the great attention. It was shown that the primordial nucleosynthesis is concordant
with the observational data within the framework of such models [37]. The other cosmological tests are
also under discussion [38—44].

Conclusion. On the one hand, the results of the paper could be considered from the abstract point of
view as the possibility of a gravity theory admitting an arbitrary choice of the energy density reference
level. We have introduced the surface of the constraints 0, = 0 and P, = 0 instead of the surface H =0
and P, =0, and have found the Hamiltonian, which governs a system evolution along the former surface.
The FVT is completely self-consistent in terms of the theory of constrained systems [19, 20]. The price
is that time and space are not considered as a single R* manifold.

On the other hand, the remarkable property of the theory is that the main part of vacuum energy
does not influence the universe evolution. However, there remains an open question regarding the contri-
bution of masses of particles into the vacuum energy. In any case, FVT is a strong argument for the VFD
model [34], which predicts accelerated universe expansion at z < 1, and the Milne-like universe at z > 1.

From the general point of view, the possibility to chose an arbitrary energy level in FVT seems analogous
to that in nonrelativistic physics. After the compensation of the main part of vacuum energy, the theory
becomes looking as GR in the conformal time gauge except for residual vacuum energy influencing
the cosmological evolution.
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