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INTEGRALS AND INTEGRAL TRANSFORMATIONS RELATED TO THE VECTOR
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Abstract. This paper is dedicated to the integrals and integral transformations related to the probability density function
of the vector Gaussian distribution and arising in probability applications. Herein, we present three integrals that permit to
calculate the moments of the multivariate Gaussian distribution. Moreover, the total probability formula and Bayes formula
for the vector Gaussian distribution are given. The obtained results are proven. The deduction of the integrals is performed on
the basis of the Gauss elimination method. The total probability formula and Bayes formula are obtained on the basis of the
proven integrals. These integrals and integral transformations could be used, for example, in the statistical decision theory,
particularly, in the dual control theory, and as table integrals in various areas of research. On the basis of the obtained results,
Bayesian estimations of the coefficients of the multiple regression function are calculated.
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B. C. Myxa, H. ®. Kaxo

Benopycckuii eocyoapemeeniuiii ynugepcumem ungopmamuru u paouosnexmponuxu, Munck, berapyco

UHTET'PAJIbI U UHTET PAJIBHBIE IPEOBPA3OBAHU S, CBA3AHHBIE
C BEKTOPHBIM 'AYCCOBCKHUM PACHHPEJEJEHUEM

AHHoTanus. PaccMaTpuBaloTCs MHTErpalibl U MHTErPaJIbHbIC IPe0Opa3oBaHus, OTHOCSIIMECS K QyHKINHU TNIOTHOCTH
BEPOSTHOCTH BEKTOPHOI'O TayCCOBCKOIO pacrpee/ieHns] U BOSHUKAIOIINE B BEPOSITHOCTHBIX NPUIIOKeHUsX. [IpeacraBieHs
TPH MHTErpalia, MO3BOJISIONINE PACCYMTHIBATH MOMEHTHI BEKTOPHOI'O T'ayCCOBCKOTO paclpelelieHus, a Takke (OpPMYJIBI
NoTHOW BeposTHocTH U balieca. [IpuBonsTCs 10Ka3aTenbCcTBa MOJNyYSHHBIX PE3yJIBTaToOB. BEIBO HHTETpaioB BHINIOJIHEH HA
ocHOBe MeToza uckioueHus [aycca. @opMyiibl TOJIHON BeposiTHOCTH M Balieca moiy4eHsl Ha OCHOBE JOKa3aHHBIX WHTE-
rpainos. [IpeacTaBieHHbIE HHTETPAJIBl M HHTET PAIbHBIE TPe0Opa30BaHMs MOTYT OBITH HCHOIB30BAHBI B Pa3THIHBIX BEPOSIT-
HOCTHBIX IIPHJIOKEHUSX, HAIPUMED B TEOPUH CTATUCTHUYECKHUX PELICHUH, B YaCTHOCTH, B TEOPHH yaJIbHOTO YIIPaBJICHHUS,
a Tax)ke Kak TabIMYHBbIe HHTETPabl B pa3IHIHBIX 00JacTAX uccienoBanuii. Ha ocHOBe MONMYYeHHBIX pe3yIbTaTOB PACCUU-
TaHbI OaifecoBckme oneHKN K03 QUITHEHTOB MHOKECTBEHHOH (DYHKIIMN PETPECCHIL.

KuioueBble €/10Ba: BEKTOPHOE IayCCOBCKOE PacIpeieNIcHHe, MHOTOMEPHBIE HHTETPAbl, (popMyiIa MOIHON BEpPOSTHO-
ctH, popmyina baiieca, MHOKeCTBeHHAs QYHKIUS perpeccuu, 0ailecOBCKUE OIICHKH

Jus nuTupoBanus. Myxa, B. C. HTerpansl u nHTErpajpHble MIpeoOpa3oBaHus, CBI3aHHBIE C BEKTOPHBIM I'ayCCOB-
ckuM pacnpenenerneM / B. C. Myxa, H. @. Kaxo / Bec. Hai. akan. naByk benapyci. Cep. ¢i3.-maT. HaByk. — 2019. — T. 55,
Ne 4. — C. 457-466. https://doi.org/10.29235/1561-2430-2019-55-4-457-466

Introduction. Integrals and integral transformations related to probability distributions have many
applications, one of them being the statistical decision theory. The latter attracts much attention due to
its capacity to formulate problems in a strict mathematical form. One of the technical problems solved
by the statistical decision theory is the problem of dual control [1], requiring the calculation of inte-
grals related to multivariate probability distributions. In this paper, we present three integrals connected
with the vector Gaussian distribution and the total probability formula and Bayes formula for the vector
Gaussian distribution.
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1. Integrals connected with the vector Gaussian distribution. A random vector with k£ compo-

nents =7 = (E1,E2,...,E) is distributed according to the normal or Gaussian law if its probability den-
sity has the form

f(a)=;exp(—l(a—vE)ngl(a—vE)), ecEX, ()
Jem)F|ds | 2

where @T =(&1,82,....6x) 1s the vector-row of the arguments of the probability densi-
ty f(§), vi= (Vz1, VE2,..,V=x) 18 the vector-row of the parameters of the probability density
f(&), d==(dz; ), i,j=1k, is the symmetric positive-definite matrix of the parameters of the prob-
ability density f(§), d =' is the matrix inverse to the matrix d=, |d= | is the determinant of the matrix
d=, E* is the k-dimensional Euclidean space, and the 7 symbol stands for transpose. The parameters
vz and dg of distribution (1) are mathematical expectation and dispersion (variance-covariance) matri-
ces of the random vector =, respectively [2].
The following equalities for function (1) are true:

| exp(—%&TAﬁvLBTéjdé:\/(275)]‘ |47 |expeBTA—1BJ, )
Ek

] CTaexp[—%&TA&BTéjda: @en’ 47! |expGBTA—lB]cTA-1B, 3
Ek

[ gTUgexp(—%ngz; + BTz;)dg =)< 147! |(Tr(A‘1U) + BTA*UA*B)expGBTA‘lBJ, @)
Ek

where A=(a;;), i,j=1k, is the symmetric positive-definite matrix, el =(E1,E2,...E1),
BT =(b,bs,....b), CT =(c1,ca,....,ck) are the vector-rows, 4™ is the matrix inverse to the matrix A4,
| A7! | is the determinant of the matrix A, U= (uij), i,j= I,_k, is the symmetric positive-definite ma-
trix, and Tr(A_lU ) is the trace of the matrix A7'U.

Integrals (2)—(4) were received in [3], but proof was given only for equality (2). Now we give more
detailed proof of equality (2) and prove equalities (3) and (4).

Proof of equality (2). We will use the Gauss elimination method [4], which permits to bring
the matrix 4 to the diagonal form and reduce the calculation of the multiple integral to the calculation
of the repeated integral. The conditions for using the Gauss elimination method in this case are held be-
cause the matrix 4 is positive-definite.

We denote the integrand function F(&) in (2):

F(é)=eXP[—%E;TA§+BT§j- 5)

By applying the Gauss elimination method [4] to the matrix 4 = (a; ) in (5), we receive the upper trian-
gular matrix

0 0
aip) al(,z) e al(,k)
0 40

M
a ce a .
G= > o= (afV), =1k

(k=1)
0 0 iy
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The determinant of the upper triangular matrix G is equal to the product of its diagonal elements and
also to the determinant of the matrix 4 [4]:

0 1 1 -1
Glzafyas)-—af ) = 4l Ila“ ).

The mine minors of the matrices 4 and G are equal, A4,,=G,, m=12,..k [4], where

L2,...m 2, m
of order m of the matrix G. Moreover [4],

1727"'7m . . . . 1)27"‘7m . . .
A, = is the main minor of order m of the matrix 4 and G,, = 1s the main minor

A A A
(0) I _ A2 (2) _ 73 (k=1) _ _“k
ay =41, ay5 = , a7 = yeery =—. 6
11 1, 432 4 BT, k.k A ©)
As shown in [4], the matrix 4 can be represented in the form

A=G[ DG, ™)

where G and G, are matrices received by the Gauss elimination method from the matrices 4 and A’, re-
spectively, and Dy is the diagonal matrix represented in the form

dlag{i A ﬁ ,Ak_l }

A A AT A

Since the matrix 4 is symmetrical, i. e. A7 = 4, then G, = G, and equation (7) can be written in the
form:

A=G'DG.

Having expression (6), we get that the matrix 4 can be represented in the following form:

A=G"DG, ®)
where D is a diagonal matrix
NPT 0 1 k-1
D=ding{af?) " (o) " () ©)
From (8) it follows that
=g47'GT. (10)
We denote as d; ii= (a 1)) Lk, the diagonal elements of the diagonal matrix D (9). Meanwhile,
D HGHA%HJ”? (1

Let us introduce in (5) the linear replacement of the variables
E=G 7z (12)

with which the integrand function (5) is converted to the following function of the z argument:
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F(z)= exp(—%zTPz+Dzj,

where

P=(GNHT4aG™,

D=BT'G'=W,), i=Lk. (13)
Since, provided (8),
P=GH'46" =G G'DGG™" =D,

we have the following function of the z argument:
F(z2)= exp(—%zTﬁz+Dz). (14)

The following equality is obtained after replacing the variables in integral [5]:

[ F(&)de= | F(2)|J |dz, (15)
EX EX
where |J | is the absolute value of the Jacobian of transformation (12):

_ k .
|JE G E D@

. ,l
i=1

Let us rewrite the function F(z) in (14) as a function of the elements of the matrices D and D, taking into
account the notations above:

_ Koo k k ,
F(z)=exp(—%zTDz+Dzj=exp(—%2(ai(,’i_l))_lzi2+Zd,-z,}=Hexp(—%(a,-(f,-_l))_lzi2+di2ij. (16)
i=l i=1

i=1

Substituting (16) into (15) we obtain the following equality:

fFT©d§#J|f[Tﬂw(“%wg45423+dﬂqd%- (17)
Ek

i=l —oo

The integral in the right part of expression (17) is a table integral [6]:

0 2
Lexp(—%qﬂ + Bx)dx = \/%exp(i—aj. (18)

Taking into account integral (18) we receive instead of (17):
k (-1 1E oy 2
I F&)de=J|]] 27“11',1' exp —EZ% di |,
£k i=1 i=1

or in the matrix form
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[ F(e)de=y(2m)* |D |exp(—%DD_1DTj. (19)
Ek

Let us turn back from the matrices D and D to the matrices 4 and B. Since |D || A | (formu-
la(11)), D' =GA7'GT (formula (10)), and D =B7G™" (formula (13)), then

pD'DT = BTG 'g4™'GT (G B=BT47'B,

and instead of (19) we receive (2). Equality (2) is proven.
Proof of equality (3). We calculate the integral

1

TIA‘II | CTieXp(—%iTA§+BT§jd§. (20)
/i Ek

I =

Let us complete the square of the expression —&7 45 /2 + BT ¢ in integral (20). We receive the expression
—%@TA& Ble= —%(g— AR A(E-47'B) +%BTA’1B, 1)

and instead of integral (20) we receive the following integral:

_ 1 T [ P B | 1.7
I = (2n)k|A1|EJkC F,exp( (=47 B)T e~ 4 B)jexp(2B y B)Jd&’;. 22)

Since the function

23)

f(&)=;exp(—l<é—A*B>TA(&—A‘IB)}
Jenk 4™ 2

in (22) is the probability density of the vector Gaussian distribution with the mean value 4™'B and the
dispersion matrix 4, then:

L= cfgexp(—éﬁTA&BTa]da:exp(%BTA‘lB))CTA“B-

Jemt a4 |EIk

As a result, we have equality (3).
Proof of equality (4). We will perform it in a way similar to the proof of equality (3). We
calculate the integral

1

—— aTUgexp(—lgTAg+ BTéjdé. (24)
Jem* 47| g 2

I, =

Completing the square of the expression —&7 A&/2+ BT€ in integral (24) gives expression (21). Thus,
instead of integral (21) we have:

I = : JaTUaexp(—%«:—AlB)TA(é—A13)jexp63u13)jdg. 25)

ek (47
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Since the function in (25) of form (23) is the probability density of the vector Gaussian distribution with
the mean value 4~'B and the dispersion matrix A4, the value of the integral I, is determined by the ex-
pression

I,=EET UE)exp(%BT A_lB)), (26)

where E(27UZ) is the mathematical expectation of the quadratic form Z7UZ of the random vector =
with the Gaussian distribution (23). It is known the equality [2]:

=Tz =Tr(UEED). (27)
Then

EETUE) = E(Tr(UEET )) = Tr(UE(EET )).

Further, since for the Gaussian distribution (23) E(EE7)= 4"+ BT 47'47'B, then
E(ETUE) = Tr(U(A‘1 +BT A‘lA‘lB)) = Tr(UA™" )+ Tr(UBT 47" 47'B).

If one takes into account the equality of type (27), which can be rewritten as
To(UB"47'A7'B)=B" 47'U4™'B,
then one receives
EETUZ)=TrvUA™+B"47'U4™'B,

and for the integral /,:

L=——— ?;TUiexp(—%iTA§+BT§jd§=(Tr(UA_l)JrBTA_lUA_lB)exp(%BTA_IBJ.

1
JemF 1A g

As a result, we have received equality (4).

Let us note that equality (4) is more general then the according equality of work [3], since the matrix
U in work [3] is supposed to be diagonal.

2. The total probability formula for vector Gaussian distributions.

Theorem 1 (The total probability formula for vector Gaussian distributions). Let
=l = (E1,E2,...2%) be arow random vector with k components, xT= (X1,X2,....X,) be arowran-
dom vector with n components, f(§) be the probability density of the vector Z, f(x/&) be the condition
probability density of the vector X, and E* be the k-dimensional Euclidean space. If in the total proba-
bility formula

fx)= Ik S(x/8)f(8)dg (28)
E

the probability density f(x/&) is represented in the form

1 1 1
f(x/8)=————e p(——aTSéwTa——W],
’ JCm)" |dy | 2 2

and the probability density f(§) is represented in the form
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exp(—%afdglf;+v£d§1a—%v£d§1vaj,

@)=~
Jem* |dz |

then integral (28) (the total probability formula) is defined by the following expression

FO)= [ S8 (EME=——— exp(lBTA-lB —1c), 29)
£t Jem)" [dzddy | \2 2
where
_ -1
A=dz +8S, (30)
-1
BZdE v +V, (31)
T ;-1
CZVEdE ve +W. (32)
Proof. Performing the multiplication under the integral in (28), we receive
1 1 1
S8 f ()= p exp[——aTAa +B'¢ ——c} (33)
Jem ™ ldyd=| \ 2 2

where 4, B, and C are defined by formulas (30), (31), and (32). Integration of expression (33) using
equality (2) gives expression (29). This completes the proof of theorem 1.

3. The Bayes formula for vector Gaussian distributions.

Theorem 2 (the Bayes formula for vector Gaussian distributions). Let == (B1,E2,....2¢) bea
random vector-row with k components, xT= (X1,X2,....X,) be a random vector-row with n compo-
nents, f(§) be the probability density of the vector E, f(x/&) be the condition probability density of the
vector X, and E* be the k-dimensional Euclidean space. If in the Bayes formula

FE)f(x/E)

/x)= 34
&1 J /@ (x/epe Y
E

the probability density f(x/&) is represented in the form

—lgngng—%W],

1
JiC1 e — (
’ \/(2n)”|dx|exp 2

and the probability density f(§) is represented in the form

P J——
V@2m)* |dz |

then the posteriori probability density f(&/x) of the random vector & defined by the Bayes formula (34)
has the following form

exp(—%&TdE_lc";+vgdgli—%védg_lvE),

(35)

I I P P
f&1x)= (2n)k|A—1|exp( S A7 B) A A7B) |

where A =aV§1 +S, B =d§lv3 +V.
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Proof. We note that this theorem is formulated under the same conditions and designations as
theorem 1. In this case, the numerator of the Bayes formula (34) is defined by expressions (33), and the
denominator is defined by formula (29). Dividing (33) on (29) we receive the formula

1
R ey

which can be written as in (35). The equality of expressions (36) and (35) is easily verified by multiply-
ing in expression (35). This completes the proof of theorem 2.
Obviously, the expression A7'Bin the Bayes formula (34) is the posteriori mathematical expectation

—%éTA§+BT§—%BTA1B), (36)

of the random vector Z, i.e. A'B=E(E/ x), and the matrix 4" is the posteriori dispersion matrix of
the random vector Z, i.e. A7 = E((E —A'B)E-47'B)T /x).

4. Example. As an example, we consider the problem of the calculation of the Bayesian estimators of
the coefficients of the multiple regression function.

Let U and Y be the input and output vectors of the controlled object, respectively, and the object is
described by the conditional probability density f(7/0,i). As arule, it is the Gaussian (normal) prob-
ability density:

[(3/8,i0)~ N(9(8,m),dy), (37)

where ¢(0,i) =7 is the regression function of Yon U, # and ¥ are the input and output vectors of the
regression function, respectively, 0 is the vector of the coefficients of the regression function, and dy is
the constant dispersion matrix of the internal noise of the object. Description (37) could be represented
in the form

Y =0(0,u0)+E,

where E is the random vector with the Gaussian distribution N(0,d ).

The multiple regression function is considered most frequently when y is scalar (we will denote it y)
and u is vector.

The class of the functions is represented in the form

y=0(0,0)= 2 h;(@)8; =h"8,
j=1
where 4 (), j=1,2,...,m, are basis functions, #’ =h' ()= (h (@), ha(it),....hy (7)) is the vector
formed by the basis functions, and o7 = (01,02,...,8,,) is the vector of the coefficients of the regression

function, is usually used to describe the multiple regression function. For example, if we want to write in
the vector form a function of two variables u;,u, having the form

y =0+ Puy +yuy +ru12,

then we have to choose & ! = (l,ul,uz,ulz), o7 = (o,B,7,7).

Let y,; = ET®+S,~, o = (01,0,,...,0,,), be the i-th observed value of the output variable ¥ of
the object on the observed value hi of the input vector of the basis functions, i =1,2,...,n, and the vec-
tor ® has the normal priory probability density N(ag,de). The task is to find the estimation 9 of the

vector 0 on the basis of the observers (}Tl,yo,l), (Ez,yoﬁz),...,(ﬁn,yo,n) provided ® = 6.
In our case we have the following probability density functions:

1(®) =ﬁexp(—%@—a@)%l(é—a@)),
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5 1 1 TTANT -1, 7T j
/0)=—=exp| ——(y-h"0)" d -h"0)].
f(y/6) e p( 2(y ) dE (¥ )
The vector of observations y =(,.1,Y02,---»Vo.n) Will have the following probability density function:

S 5 1 5 1 TTENT 5-1 TR
S /0)=]1f(yo,i/0)~—F—=e P(— —(Yo,i—hi 0) dg (yo;i—hi e)j-
y 11} y \/m X 22 y E )V

i=1

We find now the posterior probability density functions f(0/7,) of the vector coefficient § by the
Bayes formula:

OV
] £®)/ (5 /0)d0

E

f(0/5,)=

We will use for this theorem 2. Since

—lﬁTdéléJr a(gd(:)l@—%agd@)la@j,

= 1
f(0)=—F— (
\(@2m)"de o

LS e yos+ 3 vlid BT —126%@%@},

- 1
f (Yo !0) =—exp[—
J2n)"d 25 i1 2.5

then, in accordance with theorem 2, we have
f(0/5,)= —exp{—1<6— A3 A6~ A‘13>j,
@m)" |47 2

where

A=dg' +Y hidg'h, B=dg'ag+Y hidg'y,,.

i=1 i=1

Provided the loss function is quadratic, W(a ®)= (6 - @)T(é —0®), we get the Bayesian estimation

6 of the vector 6: 6= A"'B.

Conclusion. The results represented in this article provide a basis for theoretical solutions of the vec-
tor problems formulated within the framework of the statistical decision theory. The integrals can also
be used as table integrals. The possible generalizations of the obtained results for solving more compli-
cated problems within the framework of the statistical decision theory are of great interest.
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