ISSN 1561-2430 (Print) ISSN 2524-2415 (Online) УДК 512.813.52 https://doi.org/10.29235/1561-2430-2020-56-2-175-188

Поступила в редакцию 16.11.2018 Received 16.11.2018

В. Л. Штукарь

Могилев, Беларусь

КЛАССИФИКАЦИЯ 5-МЕРНЫХ ПОДАЛГЕБР 6-МЕРНЫХ НИЛЬПОТЕНТНЫХ АЛГЕБР ЛИ

Аннотация. Рассматривается классическая проблема классификации подалгебр алгебр Ли малой размерности. Найдены все 5-мерные подалгебры 6-мерных нильпотентных алгебр Ли над полем характеристики нуль. Как известно, с точностью до изоморфизма, все 6-мерные нильпотентные алгебры Ли были получены ранее В. В. Морозовым, их число равно 32. Однако стандартный метод, основанный на формуле Кэмпбелла — Хаусдорфа, оказался неэффективным для нахождения подалгебр алгебр Ли размерности 5 и выше. Вместо этого для нахождения 5-мерных подалгебр перечисленных 6-мерных нильпотентных алгебр Ли использован новый метод — канонические базисы.

Ключевые слова: нильпотентные алгебры Ли, подалгебры, канонические базисы

Для цитирования. Штукарь, В. Л. Классификация 5-мерных подалгебр 6-мерных нильпотентных алгебр Ли / В. Л. Штукарь // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. — 2020. — Т. 56, № 2. — С. 175–188. https://doi. org/10.29235/1561-2430-2020-56-2-175-188

Uladzimir L. Shtukar

Mogilev, Belarus

CLASSIFICATION OF 5-DIMENTIONAL SUBALGEBRAS FOR 6-DIMENTIONAL NILPOTENT LIE ALGEBRAS

Abstract. In this paper, we consider the classical problem of the classification of subalgebras of small dimensional Lie algebras. We found all 5-dimentional subalgebras of 6-dimentional nilpotent Lie algebras under the field with the zero characteristic. As is known, up to isomorphism all 6-dimensional nilpotent Lie algebras (their number is 32) were received by V. V. Morosov. However, the standard method based on the Campbell – Hausdorf formula is not effective for the determination of subalgebras of Lie 5- or higher dimensional algebras. In our research, we use a new approach to the solution of the problem of the determination of 5-dimensional subalgeras of indicated 6-dimensional nilpotent Lie algerbas, namely, the application of canonical bases for subspaces of vector spaces.

Keywords: nilpotent Lie algebras; subalgebras; canonical bases

For citation. Shtukar U. L. Classification of 5-dimentional subalgebras for 6-dimentional nilpotent Lie algebras. *Vestsi Natsyianal'nai akademii navuk Belarusi. Seryia fizika-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2020, vol. 56, no. 2, pp. 175–188 (in Russian). https://doi.org/10.29235/1561-2430-2020-56-2-175-188*

Классическая проблема классификации подалгебр алгебр Ли малой размерности является по-прежнему актуальной. Подалгебры 3- и 4-мерных алгебр Ли были найдены с точностью до внутренних автоморфов Дж. Патерой и П. Уинтернитцем [1]. Подалгебры алгебр Ли размерности 5 и выше ранее не рассматривались ввиду отсутствия подходящего инструмента. В настоящее время появился аппарат — канонические базисы, который позволяет найти все подалгебры в 5- и 6-мерных алгебрах Ли. Как известно, нильпотентные алгебры Ли размерности 6 были классифицированы В. В. Морозовым в [2]. Для нахождения 5-мерных подалгебр в 6-мерных нильпотентных алгебрах Ли мы воспользуемся имеющейся классификацией канонических базисов для 5-мерных подпространств 6-мерного векторного пространства из [3]. Подалгебры меньших размерностей 4, 3, и 2 для 6-мерных нильпотентных алгебр Ли будут рассмотрены отдельно из-за громоздкости вычислений. Для удобства используются в основном обозначения и терминология из статьи [2]. Дополнительно для описания подпространств и подалгебр произвольной алгебры Ли будет применяться обозначение $h = Span\{a_1, a_2,, a_k\}$, которое означает линейную оболочку векторов $a_1, a_2, a_3,, a_k$, а через $e_1, e_2, e_3, e_4, e_5, e_6$ обозначается стандартный базис лю-

[©] Штукарь В. Л., 2020

бой 6-мерной алгебры Ли. Как обычно, при задании алгебр Ли выписываются только ненулевые произведения базисных векторов, а нулевые произведения опускаются.

Перечислим все 6-мерные нильпотентные алгебры Ли из работы [2]. Это 10 разложимых алгебр:

```
6L_1 (абелева), L_3 + 3L_1 с произведением e_1e_2 = e_3;
2L_3 с произведениями e_1e_2 = e_3, e_4e_5 = e_6;
L_4 + 2L_1 с произведениями e_1e_2 = e_3, e_1e_3 = e_4;
L_5^1 + L_1 с произведениями e_1e_2 = e_3, e_1e_4 = e_5;
L_5^2 + L_1 с произведениями e_1e_2 = e_3, e_1e_3 = e_4, e_1e_4 = e_5;
L_5^3 + L_1 с произведениями e_1e_2 = e_3, e_1e_3 = e_4, e_2e_3 = e_5;
L_5^4 + L_1 произведениями e_1e_3 = e_5, e_2e_4 = e_5;
L_5^5 + L_1 с произведениями e_1e_3 = e_4, e_1e_4 = e_5, e_2e_3 = e_5;
L_5^6 + L_1 с произведениями e_1e_2 = e_3, e_1e_3 = e_4, e_1e_4 = e_5, e_2e_3 = e_5;
и 22 неразложимые алгебры:
L_6^1 с произведениями e_1e_2=e_3, e_1e_3=e_4;
L_6^2 с произведениями e_1e_2=e_3,\,e_1e_3=e_4,\,e_1e_4=e_5,\,e_1e_5=e_6;
L_6^3 с произведениями e_1e_2=e_6,\,e_1e_3=e_4,\,e_2e_3=e_5;
L_6^4 с произведениями e_1e_2=e_5,\,e_1e_3=e_6,\,e_2e_4=e_6;
L_6^5 с произведениями e_1e_3=e_5,\,e_1e_4=e_6,\,e_2e_4=e_5,\,e_2e_3=\gamma e_6\,(\gamma\neq0);
L_6^6 с произведениями e_1e_2=e_6, e_1e_3=e_4, e_1e_4=e_5, e_2e_3=e_5;
L_6^7 с произведениями e_1e_2=e_4, e_1e_4=e_5, e_2e_3=e_6,
L_6^8 с произведениями e_1e_2=e_3+e_5,\,e_1e_3=e_4,\,e_2e_5=e_6;
L_6^9 с произведениями e_1e_2=e_3,\,e_1e_3=e_4,\,e_1e_5=e_6,\,e_2e_3=e_6;
L_6^{10} с произведениями e_1e_2=e_3,\,e_1e_3=e_5,\,e_1e_4=e_6,\,e_2e_4=e_5,\,e_2e_3=\gamma e_6 (у \neq 0);
L_6^{11} с произведениями e_1e_2=e_3,\,e_1e_3=e_4,\,e_1e_4=e_5,\,e_2e_3=e_6;
L_6^{12} с произведениями e_1e_3=e_4,\,e_1e_4=e_6,\,e_2e_5=e_6;
L_6^{13} с произведениями e_1e_2=e_5,\,e_1e_3=e_4,\,e_1e_4=e_6,\,e_2e_3=e_6;
L_{6}^{14}\, с произведениями e_{1}e_{3}=e_{4},\,e_{1}e_{4}=e_{6},\,e_{2}e_{3}=e_{5},\,e_{2}e_{5}=\gamma e_{6}\,(\gamma\neq0);
L_6^{15} с произведениями e_1e_2=e_3+e_5,\,e_1e_3=e_4,\,e_1e_4=e_6,\,e_2e_5=e_6;
L_6^{16} с произведениями e_1e_2=e_4,\,e_1e_4=e_5,\,e_1e_5=e_6,\,e_2e_3=e_5,\,e_2e_4=e_6;
L_6^{17} с произведениями e_1e_2=e_3,\,e_1e_3=e_4,\,e_1e_4=e_6,\,e_2e_5=e_6;
L_6^{18} с произведениями e_1e_2=e_3,\,e_1e_3=e_4,\,e_1e_4=e_6,\,e_2e_3=e_5,\,e_1e_5=\gamma e_6\,(\gamma\neq0);
L_6^{19}\, с произведениями e_1e_2=e_3,\,e_1e_3=e_4,\,e_1e_4=e_5,\,e_1e_5=e_6,\,e_2e_3=e_6;
```

 L_6^{22} с произведениями $e_1e_2=e_3$, $e_1e_3=e_5$, $e_1e_5=e_6$, $e_2e_3=e_4$, $e_2e_4=e_5$, $e_3e_4=e_6$. Как видим, здесь имеются семейства алгебр Ли L_6^5 , L_6^{10} , L_6^{14} , L_6^{18} , зависящие от параметра γ , однако далее слово «семейство» будет опускаться.

Как было отмечено выше, для нахождения всех 5-мерных подалгебр 6-мерных нильпотентных алгебр Ли воспользуемся каноническими базисами. Выпишем все канонические базисы для 5-мерных подпространств 6-мерного векторного пространства, основываясь на работе [3]:

(1)
$$a_1 = e_1 + a_{16}e_6$$
, $a_2 = e_2 + a_{26}e_6$, $a_3 = e_3 + a_{36}e_6$, $a_4 = e_4 + a_{46}e_6$, $a_5 = e_5 + a_{56}e_6$;

 L_6^{20} с произведениями $e_1e_2=e_3,\,e_1e_3=e_4,\,e_1e_4=e_5,\,e_1e_5=e_6,\,e_2e_3=e_5,\,e_2e_4=e_6;$

 L_6^{21} с произведениями $e_1e_2=e_3,\,e_1e_5=e_6,\,e_2e_3=e_4,\,e_2e_4=e_5,\,e_3e_4=e_6;$

- (2) $a_1 = e_1 + a_{15}e_5$, $a_2 = e_2 + a_{25}e_5$, $a_3 = e_3 + a_{35}e_5$, $a_4 = e_4 + a_{45}e_5$, $a_5 = e_6$;
- (3) $a_1 = e_1 + a_{14}e_4$, $a_2 = e_2 + a_{24}e_4$, $a_3 = e_3 + a_{34}e_4$, $a_4 = e_5$, $a_5 = e_6$;
- (4) $a_1 = e_1 + a_{13}e_3$, $a_2 = e_2 + a_{23}e_3$, $a_3 = e_4$, $a_4 = e_5$, $a_5 = e_6$;
- (5) $a_1 = e_1 + a_{12}e_2$, $a_2 = e_3$, $a_3 = e_4$, $a_4 = e_5$, $a_5 = e_6$;
- (6) $a_1 = e_2$, $a_2 = e_3$, $a_3 = e_4$, $a_4 = e_5$, $a_5 = e_6$.

На самом деле, здесь записаны семейства базисов (1)—(5) и один изолированный базис (6), однако для удобства мы будем говорить просто базисы (1)—(6). Заметим, что данные базисы позволяют записать любое 5-мерное подпространство 6-мерного векторного пространства, благодаря наличию свободных компонент a_{ij} , которые могут быть выбраны подходящим образом, как это доказано в [3]. Для нахождения подалгебр заданных алгебр Ли будет использовано очевидное правило: произведение любых двух базисных векторов базиса подпространства должно принадлежать данному подпространству. Применение этого правила приводит к появлению условий для компонент a_{ij} или порождает противоречие. Отметим, что все подпространства в абелевой алгебре $6L_1$ являются ее подалгебрами, поэтому этот случай не требует отдельного рассмотрения. В описаниях подалгебр ниже будут возникать свободные переменные, поэтому это семейства подалгебр, но слово «семейство», как отмечено выше, будет опускаться.

Лемма 1. Канонические базисы (5) и (6) порождают следующие 5-мерные подалгебры:

$$h_5 = Span\{e_1 + a_{12}e_2, e_3, e_4, e_5, e_6\}, h_6 = Span\{e_2, e_3, e_4, e_5, e_6\},$$

во всех 6-мерных нильпотентных алгебрах Ли, разложимых $6L_1$, L_3+3L_1 , $2L_3$, L_4+2L_1 , $L_5^i+L_1$ (i=1,2,3,4,5,6), так и во всех неразложимых нильпотентных алгебрах Ли $L_6^1-L_6^{22}$.

Доказательство. Заметим, что произведения e_ie_j базисных векторов e_i и e_j выражаются в терминах векторов e_3 , e_4 , e_5 , e_6 для всех 32 нильпотентных алгебр Ли. Отсюда следует, что произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 из базисов (5) и (6) лежат в подпространствах, порождаемых этими векторами. Это гарантирует, что соответствующие подпространства являются подалгебрами во всех заданных алгебрах Ли. При этом никакие ограничения на компоненты векторов a_1 , a_2 , a_3 , a_4 , a_4 не возникают. Лемма 1 доказана.

Таким образом, далее достаточно рассматривать данные нильпотентные алгебры Ли по отношению к базисам (1)–(4).

Лемма 2. Канонический базис (4) порождает 5-мерную подалгебру

$$h_4 = Span\{e_1 + a_{13}e_3, e_2 + a_{23}e_3, e_4, e_5, e_6\}$$

в 6-мерных разложимых нильпотентных алгебрах \mathcal{J} и $6L_1$, $L_5^4 + L_1$, $L_5^5 + L_1$. Этот базис не порождает никакие 5-мерные подалгебры в остальных разложимых 6-мерных нильпотентных алгебрах \mathcal{J} и.

Доказательство. Утверждение очевидно для абелевой алгебры $6L_1$. Для алгебр $L_5^4 + L_1$ и $L_5^5 + L_1$ произведения базисных векторов выражаются в терминах векторов e_4 , e_5 , e_6 , и поэтому принадлежат соответствующим подпространствам, которые образуют подалгебры этих алгебр. В качестве примера для остальных случаев рассмотрим алгебру $L_5^6 + L_1$. Для произведения a_1a_2 имеем

$$a_1a_2 = (e_1 + a_{13}e_3)(e_2 + a_{23}e_3) = e_3 - a_{13}e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1=0,\,x_2=0,\,x_3=0,\,x_4=a_{13},\,x_5=0,\,$ поэтому $e_3=0,\,$ что невозможно. Это означает, что не существует подалгебр в алгебре $L_5^6+L_1$, порождаемых базисом (4). Аналогичная ситуация возникает для алгебр $L_3+3L_1,\,2L_3,\,L_4+2L_1,\,L_5^1+L_1,\,L_5^2+L_1,\,L_5^3+L_1$. Лемма 2 доказана.

Лемма 3. Канонический базис (3) порождает 5-мерную подалгебру

$$h_3 = Span\{e_1 + a_{14}e_4, e_2 + a_{24}e_4, e_3 + a_{34}e_4, e_5, e_6\}$$

в алгебрах $6L_1$, $L_5^4 + L_1$ и подалгебру

$$h_3^1 = Span\{e_1 + a_{14}e_4, e_2 + a_{24}e_4, e_3, e_5, e_6\}$$

в алгебрах $L_3 + 3L_1$, $2L_3$, $L_5^1 + L_1$. Этот базис не порождает никакие подалгебры в остальных разложимых 6-мерных нильпотентных алгебрах Ли.

Дока зательство. Утверждение очевидно для абелевой алгебры $6L_1$. Для алгебры произведения базисных векторов выражаются в терминах векторов e_5 , e_6 или являются нулевыми, поэтому они принадлежат соответствующему подпространству h_3 , которое образует подалгебру в ней. В качестве примера для случаев $L_3 + 3L_1$, $2L_3$, $L_5^1 + L_1$ рассмотрим только алгебру $L_5^1 + L_1$. Имеем

$$a_1a_2 = (e_1 + a_{14}e_4)(e_2 + a_{24}e_4) = e_3 + a_{24}e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = a_{24}$, $x_5 = 0$, поэтому $a_{34} = 0$. Остальные произведения базисных векторов принадлежат данному подпространству, без ограничений на компоненты базисных векторов. Это означает, что получена подалгебра h_3^1 .

Среди остальных алгебр рассмотрим в качестве примера алгебру $L_5^2 + L_1$. Критически важным здесь является произведение a_1a_3 . Имеем

$$a_1a_3 = (e_1 + a_{14}e_4)(e_3 + a_{34}e_4) = e_4 + a_{34}e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = a_{34}$, $x_5 = 0$, поэтому $e_4 = 0$, что невозможно. Это означает, что не существует подалгебр в алгебре $L_5^2 + L_1$, порождаемых базисом (3). Аналогичная ситуация возникает для алгебр $L_4 + 2L_1$, $L_5^3 + L_1$, $L_5^5 + L_1$, $L_5^6 + L_1$. Лемма 3 доказана.

Леммы 1-3 позволяют ограничиться далее базисами (1) и (2) для анализа разложимых нильпотентных 6-мерных алгебр Ли.

Алгебра $L_3 + 3L_1$ с произведением $e_1e_2 = e_3$.

Базис (1). Имеем

$$a_1a_2 = (e_1 + a_{16}e_6)(e_2 + a_{26}e_6) = e_3 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Это равенство отражает требование принадлежности произведения векторов a_1a_2 данному подпространству. Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = 0$. Значит, $a_{36} = 0$. Все остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 являются нулевыми, т. е. принадлежат данному подпространству. Следовательно, это подпространство является подалгеброй в $L_3 + 3L_1$. Итак, получена подалгебра

$$h_1^1 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3, e_4 + a_{46}e_6, e_5 + a_{56}e_6\}.$$

Базис (2). Имеем

$$a_1a_2 = (e_1 + a_{15}e_5)(e_2 + a_{25}e_5) = e_3 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = 0$, поэтому $a_{35} = 0$. Все остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 являются нулевыми, т. е. принадлежат этому подпространству. Итак, получена следующая подалгебра:

$$h_2^1 = Span\{e_1 + a_{15}e_5, e_2 + a_{25}e_5, e_3, e_4 + a_{45}e_5, e_6\}.$$

Алгебра $2L_3$ с произведениями $e_1e_2=e_3, e_4e_5=e_6$.

Базис (1). Критически важным здесь является произведение a_4a_5 . Имеем

$$a_4a_5 = (e_4 + a_{46}e_6)(e_5 + a_{56}e_6) = e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_6 = 0$, что невозможно. Значит, подалгебры, порождаемые базисом (1), не существуют.

Базис (2). Имеем

$$a_1a_2 = (e_1 + a_{15}e_5)(e_2 + a_{25}e_5) e_3 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = 0$, поэтому $a_{35} = 0$. Все остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 принадлежат этому подпространству: $a_1a_3 = 0$, $a_1a_4 = -a_{15}e_6$, $a_2a_4 = -a_{25}e_6$, $a_3 a_4 = -a_{35}$ и т. д. Итак, получена следующая подалгебра:

$$h_2^1 = Span\{e_1 + a_{15}e_5, e_2 + a_{25}e_5, e_3, e_4 + a_{45}e_5, e_6\}.$$

Алгебра $L_4 + 2L_1$ с произведениями $e_1e_2 = e_3$, $e_1e_3 = e_4$. Базис (1). Имеем

$$a_1a_2 = (e_1 + a_{16}e_6)(e_2 + a_{26}e_6) = e_3 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = 0$. Значит, $a_{36} = 0$. Далее,

$$a_1a_3 = (e_1 + a_{16})(e_3 + a_{36}e_6) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = 0$, поэтому $a_{46} = 0$. Остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 принадлежат подпространству, и они не накладывают никаких ограничений на компоненты этих векторов. Итак, получена подалгебра

$$h_1^2 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3, e_4, e_5 + a_{56}e_6\}.$$

Базис (2). Имеем

$$a_1a_2 = (e_1 + a_{15}e_5)(e_2 + a_{25}e_5) = e_3 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = 0$, поэтому $a_{35} = 0$. Далее,

$$a_1a_3 = (e_1 + a_{15}e_5)(e_3 + a_{35}e_5) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = 0$, поэтому $a_{45} = 0$. Остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 принадлежат этому подпространству, и они не накладывают никаких ограничений на компоненты этих векторов. Итак, получена подалгебра

$$h_2^2 = Span\{e_1 + a_{15}e_5, e_2 + a_{25}e_5, e_3, e_4, e_6\}.$$

Алгебра $L_5^1 + L_1$ с произведениями $e_1e_2 = e_3$, $e_1e_4 = e_5$.

Базис (1). Имеем

$$a_1a_2 = (e_1 + a_{16}e_6)(e_2 + a_{26}e_6) = e_3 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = 0$. Значит, $a_{36} = 0$. Далее,

$$a_1 a_4 = (e_1 + a_{16} e_6)(e_4 + a_{46} e_6) = e_5 = x_1 a_1 + x_2 a_2 + x_3 a_3 + x_4 a_4 + x_5 a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 1$, поэтому $a_{56} = 0$. Остальные произведения базисных векторов являются нулевыми, они не накладывают никаких ограничений на компоненты векторов базиса. Итак, получена подалгебра

$$h_1^3 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3, e_4 + a_{46}e_6, e_5\}.$$

Базис (2). Критически важным здесь является произведение a_1a_4 . Имеем

$$a_1 a_4 = (e_1 + a_{15}e_1)(e_4 + a_{45}e_5) = e_5 = x_1 a_1 + x_2 a_2 + x_3 a_3 + x_4 a_4 + x_5 a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в алгебре $L_5^1 + L_1$, порождаемых базисом (2).

Алгебра $L_5^2 + L_1$ с произведениями $e_1e_2 = e_3$, $e_1e_3 = e_4$, $e_1e_4 = e_5$.

Базис (1). Имеем

$$a_1a_2 = (e_1 + a_{16}e_6)(e_2 + a_{26}e_6) = e_3 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = 0$. Значит, $a_{36} = 0$. Далее,

$$a_1a_3 = (e_1 + a_{16}e_6)(e_3 + a_{36}e_6) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = 0$, поэтому $a_{46} = 0$. Далее,

$$a_1a_4 = (e_1 + a_{16}e_6)(e_4 + a_{46}e_6) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 1$, поэтому $a_{56} = 0$. Остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 являются нулевыми, они не накладывают никаких ограничений на компоненты этих векторов. Итак, получена подалгебра

$$h_1^4 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3, e_4, e_5\}.$$

Базис (2). Критически важным здесь является произведение a_1a_4 . Имеем

$$a_1a_4 = (e_1 + a_{15}e_5)(e_4 + a_{45}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в алгебре $L_5^2 + L_1$, порождаемых базисом (2).

Алгебра $L_5^3 + L_1$ с произведениями $e_1e_2 = e_3$, $e_1e_3 = e_4$, $e_2e_3 = e_5$.

Базис (1). Имеем

$$a_1a_2 = (e_1 + a_{16}e_6)(e_2 + a_{26}e_6) = e_3 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = 0$. Значит, $a_{36} = 0$. Далее,

$$a_1a_3 = (e_1 + a_{16}e_6)(e_3 + a_{36}e_6) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = 0$, поэтому $a_{46} = 0$. Далее важно проверить произведение a_2a_3 . Имеем

$$(e_2 + a_{26}e_6)(e_3 + a_{36}e_6) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 1$, поэтому $a_{56} = 0$. Остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 являются нулевыми, они не накладывают никаких ограничений на компоненты этих векторов. Итак, получена подалгебра

$$h_1^4 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3, e_4, e_5\}.$$

Базис (2). Критически важным здесь является произведение a_2a_3 . Имеем

$$a_2a_3 = (e_2 + a_{25}e_5)(e_3 + a_{35}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в алгебре $L_5^3 + L_1$, порождаемых базисом (2).

Алгебра $L_5^4 + L_1$ с произведениями $e_1e_3 = e_5$, $e_2e_4 = e_5$.

Базис (1). Имеем

$$a_1a_3 = (e_1 + a_{16}e_6)(e_3 + a_{36}e_6) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 1$, поэтому $a_{56} = 0$. Далее, важно проверить произведение a_2a_4 . Имеем

$$a_2a_4 = (e_2 + a_{26}e_6)(e_4 + a_{46}e_6) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 1$, поэтому вновь $a_{56} = 0$. Остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 являются нулевыми, они не накладывают никаких ограничений на компоненты этих векторов. Итак, получена подалгебра

$$h_1^5 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3 + a_{36}e_6, e_4 + a_{46}e_6, e_5\}.$$

Базис (2). Имеем

$$a_1a_3 = (e_1 + a_{15}e_5)(e_3 + a_{35}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в алгебре $L_5^4 + L_1$, порождаемых базисом (2).

Алгебра $L_5^5 + L_1$ с произведениями $e_1e_3 = e_4$, $e_1e_4 = e_5$, $e_2e_3 = e_5$.

Базис (1). Имеем

$$a_1a_3 = (e_1 + a_{16}e_6)(e_3 + a_{36}e_6) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, поэтому $a_{46} = 0$. Далее проверяем произведение a_1a_4 . Имеем

$$a_1a_4 = (e_1 + a_{16}e_6)(e_4 + a_{46}e_6) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 1$, поэтому $a_{56} = 0$. Проверим также произведение a_2a_3 . Имеем

$$a_2a_3 = (e_2 + a_{26}e_6)(e_3 + a_{36}e_6) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 1$, поэтому $a_{56} = 0$. Остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 являются нулевыми, они не накладывают никаких ограничений на компоненты этих векторов. Итак, получена подалгебра

$$h_1^6 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3 + a_{36}e_6, e_4, e_5\}.$$

Базис (2). Имеем

$$a_1a_4 = (e_1 + a_{15}e_5)(e_4 + a_{45}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в алгебре $L_5^5 + L_1$, порождаемых базисом (2).

Алгебра $L_5^6 + L_1$ с произведениями $e_1e_2 = e_3$, $e_1e_3 = e_4$, $e_1e_4 = e_5$, $e_2e_3 = e_5$. Базис (1). Имеем

$$a_1a_2 = (e_1 + a_{16}e_6)(e_2 + a_{26}e_6) = e_3 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = 0$. Значит, $a_{36} = 0$. Далее, имеем

$$a_1a_3 = (e_1 + a_{16}e_6)(e_3 + a_{36}e_6) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = 0$, поэтому $a_{46} = 0$. Далее проверяем произведение a_1a_4 . Имеем

$$a_1a_4 = (e_1 + a_{16}e_6)(e_4 + a_{46}e_6) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4e_4 + x_5a_5.$$

Отсюда имеем: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 1$, поэтому $a_{56} = 0$. Проверим также произведение a_2a_3 . Имеем

$$a_2a_3 = (e_2 + a_{26}e_6)(e_3 + a_{36}e_6) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда имеем: $x_1=0, x_2=0, x_3=0, x_4=0, x_5=1$, поэтому $a_{56}=0$. Остальные произведения векторов a_1, a_2, a_3, a_4, a_5 являются нулевыми, они не накладывают никаких ограничений на компоненты этих векторов. Итак, следующее подпространство является подалгеброй в алгебрах $L_5^6+L_1$ и $L_5^3+L_1$:

$$h_1^4 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3, e_4, e_5\}.$$

Базис (2). Имеем

$$a_1a_4 = (e_1 + a_{15}e_5)(e_4 + a_{45}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в алгебре $L_5^6 + L_1$, порождаемых базисом (2).

1. Неразложимые 6-мерные нильпотентные алгебры Ли.

Лемма 4. Базис (1) не порождает никакие 5-мерные подалгебры во всех алгебрах L_6^1 — L_6^{22} .

Доказательство. Каждая алгебра Ли $L_6^1 - L_6^{22}$ имеет произведение базисных векторов, равное e_6 , например, $e_1e_5=e_6$ в L_6^1 и L_6^2 , $e_1e_2=e_6$ в L_6^3 , $e_1e_3=e_6$ L_6^4 и т. д. Однако вектор e_6 не может быть записан как линейная комбинация векторов a_1 , a_2 , a_3 , a_4 , a_5 из базиса (1). Предположим, напротив, что вектор e_6 есть линейная комбинация a_1 , a_2 , a_3 , a_4 , a_5 :

$$e_6 = x_1 a_1 + x_2 a_2 + x_3 a_3 + x_4 a_4 + x_5 a_5.$$

Тогда

$$x_1e_1 + x_2a_2 + x_3e_3 + x_4e_4 + x_5e_5 + (x_1a_{16} + x_2a_{26} + x_3a_{36} + x_4a_{46} + x_5a_{56} - 1)e_6 = 0.$$

Отсюда имеем: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_6 = 0$, что невозможно, так как e_6 является вектором стандартного базиса. Лемма 4 доказана.

Лемма 5. Базис (4) порождает подалгебру

$$h_4 = Span\{e_1 + a_{13}e_3, e_2 + a_{23}e_3, e_4, e_5, e_6\}$$

в неразложимых алгебрах L_6^3 , L_6^4 , L_6^5 , L_6^6 , L_6^7 , L_6^{12} , L_6^{13} , L_6^{14} , L_6^{16} . Данный базис (4) не порождает никакие подалгебры в остальных неразложимых 6-мерных нильпотентных алгебрах Ли.

Доказательство. Рассмотрим алгебру L_6^3 . Имеем

$$a_1a_2 = (e_1 + a_{13}e_3)(e_2 + a_{23}e_3) = e_6 + a_{23}e_4 - a_{13}e_5,$$

поэтому произведение a_1a_2 принадлежит подпространству, порожденному базисом (4). Аналогично остальные произведения базисных векторов a_1 , a_2 , a_3 , a_4 , a_5 принадлежат этому подпространству. Следовательно, получена подалгебра h_4 в L_6^3 . Для остальных перечисленных неразложимых алгебр Ли ситуация аналогична алгебре L_6^3 .

В качестве примера алгебр, не имеющих подалгебр, порожденных базисом (4), рассмотрим алгебру L_6^1 . Для произведения a_1a_2 имеем

$$a_1a_2 = (e_1 + a_{13}e_3)(e_2 + a_{23}e_3) = e_3 + a_{23}e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = a_{23}$, $x_4 = 0$, $x_5 = 0$, поэтому $e_3 = 0$, что невозможно. Это означает, что не существует подалгебр в алгебре $L_6^{\scriptscriptstyle 1}$, порождаемых базисом (4).

Рассмотрим также алгебру L_6^{10} как дополнительный пример. Имеем

$$a_1a_2 = (e_1 + a_{13}e_3)(e_2 + a_{23}e_3) = e_3 + a_{23}e_5 - a_{13}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = a_{23}$, $x_5 = -\gamma a_{13}$, поэтому $e_3 = 0$, что невозможно. Это означает, что не существует подалгебр в L_6^{10} , порожденных базисом (4). Лемма 5 доказана.

Согласно леммам 1, 4 и 5 далее достаточно проверить только базисы (2) и (3) для алгебр L_6^1 — L_6^{22} .

Алгебра L_6^1 с произведениями $e_1e_2=e_3$, $e_1e_3=e_4$, $e_1e_5=e_6$.

Базис (2). Имеем

$$a_1a_2 = (e_1 + a_{15}e_5)(e_2 + a_{25}e_5) = e_3 + a_{25}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = a_{25}$, поэтому $a_{35} = 0$. Далее,

$$a_1a_3 = (e_1 + a_{15}e_5)(e_3 + a_{35}e_5) = e_4 + a_{35}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = a_{35}$, поэтому $a_{45} = 0$. Остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 принадлежат подпространству и не накладывают никаких ограничений на компоненты этих векторов. Итак, получена подалгебра

$$h_2^2 = Span\{e_1 + a_{15}e_5, e_2 + a_{25}e_5, e_3, e_4, e_6\}.$$

Базис (3). Имеем

$$a_1a_3 = (e_1 + a_{14}e_4)(e_3 + a_{34}e_4) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_4 = 0$, что невозможно. Это означает, что не существует подалгебр в алгебре L_6^1 , порождаемых базисом (3).

Алгебра L_6^2 с произведениями $e_1e_2=e_3, e_1e_3=e_4, e_1e_4=e_5, e_1e_5=e_6$.

Базис (2). Имеем $a_{35} = 0$ из произведения a_1a_2 , $a_{45} = 0$ из произведения a_1a_3 . Проверим произведение a_1a_4 . Имеем

$$a_1a_4 = (e_1 + a_{15}e_5)(e_4 + a_{45}e_5) = e_5 + a_{45}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = a_{45}$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в алгебре L_6^2 , порождаемых базисом (2).

Базис (3) не порождает никаких подалгебр в алгебре L_6^2 . Этот случай аналогичен предыдущему случаю для базиса (2).

Алгебра L_6^3 с произведениями $e_1e_2=e_6, e_1e_3=e_4, e_2e_3=e_5$.

Базис (2). Имеем

$$a_1a_2 = (e_1 + a_{15}e_5)(e_2 + a_{25}e_5) = e_6 = x_1a_1 + x_2a_2 + x_3e_3 + x_4a_4 + x_5a_5$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = 1$, поэтому произведение a_1a_2 принадлежит подпространству. Далее,

$$a_2a_3 = (e_2 + a_{25}e_5)(e_3 + a_{35}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3e_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебры в L_6^3 , порожденной базисом (2).

Базис (3). Имеем

$$a_1 a_2 = (e_1 + a_{14} e_4)(e_3 + a_{34} e_4) = e_4 = x_1 a_1 + x_2 a_2 + x_3 a_3 + x_4 a_4 + x_5 a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_4 = 0$, что невозможно. Это означает, что не существует подалгебры в L_6^3 , порожденной базисом (3).

Алгебра L_6^4 с произведениями $e_1e_2=e_5$, $e_1e_3=e_6$, $e_2e_4=e_6$. Базис (2). Имеем

$$a_1a_2 = (e_1 + a_{15}e_5)(e_2 + a_{25}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебры в L_6^4 , порожденной базисом (2).

Базис (3). Имеем

$$a_1 a_2 = (e_1 + a_{14} e_4)(e_2 + a_{24} e_4) = e_5.$$

Значит, произведение a_1a_2 принадлежит подпространству, порожденному базисом (3). Аналогично остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 также принадлежат этому подпространству (без ограничений на их компоненты). Следовательно, получена подалгебра

$$h_3 = Span\{e_1, +a_{14}e_4 e_2 + a_{24}e_4, e_3 + a_{34}e_4, e_5, e_6\}.$$

Алгебра L_6^5 с произведениями $e_1e_3=e_5$, $e_1e_4=e_6$, $e_2e_4=e_5$, $e_2e_3=\gamma e_6$. Базис (2). Имеем

$$a_1a_2 = (e_1 + a_{15}e_5)(e_3 + a_{35}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебры в L_6^5 , порожденной базисом (2).

Базис (3). Все произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 в данном случае принадлежат подпространству, порожденному этим базисом. Следовательно, получена подалгебра

$$h_3 = Span\{e_1 + a_{14}e_4, e_2 + a_{24}e_4, e_3 + a_{34}e_4e_{5e_6}\}.$$

Алгебра L_6^6 с произведениями $e_1e_2=e_6$, $e_1e_3=e_4$, $e_1e_4=e_5$, $e_2e_3=e_5$. Базис (2). Имеем

$$a_1 a_4 = (e_1 + a_{15}e_5)(e_4 + a_{45}e_5) = e_5 = x_1 a_1 + x_2 a_2 + x_3 a_3 + x_4 a_4 + x_5 a_5.$$

Отсюда следует: $x_1, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в L_6^6 , порожденных базисом (2).

Базис (3). Имеем

$$a_1a_3 = (e_1 + a_{14}e_4)(e_3 + a_{34}e_4) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, , поэтому $e_4 = 0$, что невозможно. Это означает, что не существует подалгебры в L_6^6 , порожденной базисом (3).

Алгебра L_6^7 с произведениями $e_1e_3=e_4$, $e_1e_4=e_5$, $e_2e_3=e_6$. Базис (2). Имеем

$$a_1a_4 = (e_1 + a_{15}e_5)(e_4 + a_{45}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в L_6^7 , порожденных базисом (2).

Базис (3). Имеем

$$a_1a_3 = (e_1 + a_{14}e_4)(e_3 + a_{34}e_4) = e_4 + a_{34}e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = a_{34}$, $x_5 = 0$, поэтому $e_4 = 0$, что невозможно. Это означает, что не существует подалгебры в L_6^7 , порожденной базисом (3).

Алгебра L_6^8 с произведениями $e_1e_2=e_3+e_5, e_1e_3=e_4, e_2e_5=e_6.$

Базис (2). Имеем

$$a_1a_2 = (e_1 + a_{15}e_5)(e_2 + a_{25}e_5) = e_3 + e_5 - a_{15}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = -a_{15}$, поэтому $a_{35} = 1$. Далее,

$$a_1a_3 = (e_1 + a_{15}e_5)(e_3 + a_{35}e_5) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = 0$, поэтому $a_{45} = 0$. Далее,

$$a_2a_3 = (e_2 + a_{25}e_5)(e_3 + a_{35}e_5) = a_{35}e_6,$$

т. е. принадлежит данному подпространству. Это означает, что получена следующая подалгебра в L_6^8 :

$$h_2^3 = Span\{e_1 + a_{15}e_5, e_2 + a_{25}e_5, e_3 + e_5, e_4, e_6\}.$$

Базис (3). Имеем

$$a_1a_3 = (e_1 + a_{14}e_4)(e_3 + a_{34}e_4) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_4 = 0$, что невозможно. Это означает, что не существует подалгебры в L_6^8 , порожденной базисом (3).

Алгебра L_6^9 с произведениями $e_1e_2=e_3, e_1e_3=e_4, e_1e_5=e_6, e_2e_3=e_6$.

Базис (2). Имеем

$$a_1a_2 = (e_1 + a_{15}e_5)(e_2 + a_{25}e_5) = e_3 + a_{25}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = a_{25}$, поэтому $a_{35} = 0$. Далее,

$$a_1a_3 = (e_1 + a_{15}e_5)(e_3 + a_{35}e_5) = e_4 + a_{35}e_5) = e_4 + a_{35}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = a_{35}$, поэтому $a_{45} = 0$. Остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 не накладывают никаких ограничений на их компоненты. Это означает, что получена следующая подалгебра в L_6^9 :

$$h_2^2 = Span\{e_1 + a_{15}e_5, e_2 + a_{25}e_5, e_3, e_4, e_6\}.$$

Базис (3). Имеем

$$a_1a_3 = (e_1 + a_{14}e_4)(e_3 + a_{34}e_4) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_4 = 0$, что невозможно. Это означает, что не существует подалгебры в L_6^9 , порожденной базисом (3).

Алгебра L_6^{10} с произведениями $e_1e_2=e_3,\,e_1e_3=e_5,\,e_1e_4=e_6,\,e_2e_4=e_5,\,e_2e_3=\gamma e_6.$

Базис (2). Имеем

$$a_2a_4 = (e_2 + a_{25}e_5)(e_4 + a_{45}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в L_6^{10} , порожденных базисом (2).

Базис (3). Имеем

$$a_1 a_2 = (e_1 + a_{14} e_4)(e_2 + a_{24} e_4) = e_3 + a_{26} e_6 - a_{14} e_5 = x_1 a_1 + x_2 a_2 + x_3 a_3 + x_4 a_4 + x_5 a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = -a_{14}$, $x_5 = a_{24}$, поэтому $a_{34} = 0$. Далее,

$$a_1a_3 = (e_1 + a_{14}e_4)(e_3 + a_{34}e_4) = e_5 + a_{34}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = a_{34}$, поэтому произведение a_1a_3 принадлежит соответствующему подпространству. Далее имеем

$$a_2a_3 = (e_2 + a_{24}e_4)(e_3 + a_{34}e_4) = \gamma e_6 + a_{34}e_5.$$

Отсюда: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = a_{34}$, $x_5 = \gamma$, поэтому произведение a_2a_3 принадлежит данному подпространству. Остальные произведения векторов a_1 , a_2 , a_3 , a_4 , a_5 не накладывают никаких ограничений на их компоненты. Это означает, что получена следующая подалгебра в L_6^{10} :

$$h_3^1 = Span\{e_1 + a_{14}e_4, \, e_2 + a_{24}e_4, \, e_3, \, e_5, \, e_6\}.$$

 Π е м м а 6. Базис (3) не порождает никакие 5-мерные подалгебры во всех алгебрах L_6^{11} – L_6^{22} . Доказательство. Для алгебры L_6^{11} имеем

$$a_1a_3 = (e_1 + a_{14}e_4)(e_3 + a_{34}e_4) = e_4 + a_{34}e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = a_{34}$, $x_5 = 0$, поэтому $e_4 = 0$, что невозможно. Это означает, что не существует подалгебр в L_6^{11} , порожденных базисом (3). Аналогичное рассуждение в отношении произведения a_1a_3 справедливо для алгебр L_6^{12} — L_6^{22} . Лемма 6 доказана.

В соответствии с леммами 1–6 достаточно проверить базис (2) для алгебр $L_6^{11} - L_6^{22}$

Алгебра L_6^{11} с произведениями $e_1e_2=e_3,\,e_1e_3^-=e_4,\,e_1e_4=e_5,\,e_2e_3=e_6.$ Базис (2). Имеем

$$a_1a_4 = (e_1 + a_{15}e_5)(e_4 + a_{45}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в L_6^{11} , порожденных базисом (2).

Алгебра L_6^{12} с произведениями $e_1e_3=e_4,\,e_1e_4=e_5,\,e_2e_5=e_6.$ Базис (2). Имеем

$$a_1a_3 = (e_1 + a_{15}e_5)(e_3 + a_{35}e_5) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = 0$, поэтому $a_{45} = 0$. Далее,

$$a_1a_4 = (e_1 + a_{15}e_5)(e_4 + a_{45}e_5) = e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 1$, т. е. произведение $a_1 a_4$ принадлежит подпространству, порожденному базисом (2). Остальные произведения a_1 , a_2 , a_3 , a_4 , a_5 не накладывают никаких ограничений на их компоненты. Это означает, что получена следующая подалгебра в L_6^{12} :

$$h_2^4 = Span\{e_1 + a_{15}e_5, \, e_2 + a_{25}e_5, \, e_3 + a_{35}e_5, \, e_4, \, e_6\}.$$

Алгебра L_6^{13} с произведениями $e_1e_2=e_5,\,e_1e_3=e_4,\,e_1e_4=e_6,\,e_2e_5=e_6.$ Базис (2). Имеем

$$a_1a_2 = (e_1 + a_{15}e_5)(e_2 + a_{25}e_5) = e_5 - a_{15}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = -a_{15}$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в L_6^{13} , порожденных базисом (2).

Алгебра L_6^{14} с произведениями $e_1e_3=e_4, e_1e_4=e_6, e_2e_3=e_5, e_2e_5=\gamma e_6$. Базис (2). Имеем

$$a_2a_3 = (e_2 + a_{25}e_5)(e_3 + a_{35}e_5) = e_5 + \gamma_{35}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1=0, x_2=0, x_3=0, x_4=0, x_5=\gamma a_{35},$ поэтому $e_5=0,$ что невозможно. Это означает, что не существует подалгебр в $L_6^{14},$ порожденных базисом (2). Алгебра L_6^{15} с произведениями $e_1e_2=e_3+e_5, e_1e_3=e_4, e_1e_4=e_6, e_2e_5=e_6.$

Базис (2). Имеем

$$a_1a_2 = (e_1 + a_{15}e_5)(e_2 + a_{25}e_5) = e_3 + e_5 - a_{15}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = -a_{15}$, поэтому $a_{35} = 1$. Далее, имеем

$$a_1a_3 = (e_1 + a_{15}e_5)(e_{3+}a_{35}e_5) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = 0$, поэтому $a_{45} = 0$. Остальные произведения векторов a_1 , a_2, a_3, a_4, a_5 принадлежат соответствующему подпространству без дополнительных ограничений на компоненты этих векторов. Это означает, что получена следующая подалгебра в L_6^{15} , порожденная базисом (2):

$$h_2^3 = Span\{e_1 + a_{15}e_5, e_2 + a_{25}e_5, e_3 + e_5, e_4, e_6\}.$$

Алгебра L_6^{16} с произведениями $e_1e_3=e_4,\,e_1e_4=e_5,\,e_1e_5=e_6,\,e_2e_3=e_5,\,e_2e_4=e_6.$ Базис (2). Имеем

$$a_2a_3 = (e_2 + a_{25}e_5)(e_3 + a_{35}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в L_6^{16} , порожденных базисом (2).

Алгебра L_6^{17} с произведениями $e_1e_2=e_3,\,e_1e_3=e_4,\,e_1e_4=e_6,\,e_2e_5=e_6.$ Базис (2). Имеем

$$a_1a_2 = (e_1 + a_{15}e_5)(e_2 + a_{25}e_5) = e_3 - a_{15}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, $x_5 = -a_{15}$, поэтому $a_{35} = 0$. Далее имеем

$$a_1a_3 = (e_1 + a_{15}e_5)(e_3 + a_{35}e_5) = e_4 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$, $x_5 = 0$, поэтому $a_{45} = 0$. Все остальные произведения векторов a_1, a_2, a_3, a_4, a_5 принадлежат соответствующему подпространству. Следовательно, получена подалгебра

$$h_2^2 = Span\{e_1 + a_{15}e_5, e_2 + a_{25}e_5, e_3, e_4, e_6\}.$$

Алгебра L_6^{18} с произведениями $e_1e_2=e_3,\,e_1e_3=e_4,\,e_1e_4=e_6,\,e_2e_3=e_5,\,e_1e=\gamma e_6.$ Базис (2). Имеем

$$a_2a_3 = (e_2 + a_{25}e_5)(e_3 + a_{35}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в L_6^{18} , порожденных базисом (2).

Алгебра L_6^{19} с произведениями $e_1e_2=e_3,\,e_1e_3=e_4,\,e_1e_4=e_5,\,e_1e_5=e_6,\,e_2e_3=e_6.$ Базис (2). Имеем

$$a_1a_4 = (e_1 + a_{15}e_5)(e_4 + a_{45}e_5) = e_5 + a_{45}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = a_{45}$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в L_6^{19} , порожденных базисом (2).

Алгебра L_6^{20} с произведениями $e_1e_2=e_3$, $e_1e_3=e_4$, $e_1e_4=e_5$, $e_1e_5=e_6$, $e_2e_3=e_5$, $e_2e_4=e_6$. Данная алгебра Ли близка по своей структуре к алгебре L_6^{19} , поэтому проверяется таким же образом, как и базисы (2)—(3) не порождают никаких подалгебр в этой алгебре L_6^{20} . Проверим только один базис.

Базис (2). Имеем

$$a_1a_4 = (e_1 + a_{15}e_5)(e_4 + a_{45}e_5) = e_5 + a_{45}e_6 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_{45} = a_{45}$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в L_6^{20} , порожденных базисом (2).

Алгебра L_6^{21} с произведениями $e_1e_2=e_3,\,e_1e_5=e_6,\,e_2e_3=e_4,\,e_2e_4=e_5,\,e_3e_4=e_6.$ Базис (2). Имеем

$$a_2a_4 = (e_2 + a_{25}e_5)(e_4 + a_{45}e_5) = e_5 = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5.$$

Отсюда следует: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$, поэтому $e_5 = 0$, что невозможно. Это означает, что не существует подалгебр в L_6^{21} , порожденных базисом (2). **Алгебра** L_6^{22} **с произведениями** $e_1e_2 = e_3$, $e_1e_3 = e_5$, $e_1e_5 = e_6$, $e_2e_3 = e_4$, $e_2e_4 = e_5$, $e_3e_4 = e_6$. Алгебра L_6^{22} имеет почти такую же таблицу произведений, как и алгебра L_6^{21} , отличие состоит лишь в том, что произведение e_1e_3 является нулевым в L_6^{21} , но ненулевым в L_6^{22} . Значит, рассматривая базис (2) по той же схеме, как в случае алгебры L_6^{21} , мы получим тот же результат, а именти базис (2) из так учестве поческая в случае объекты. но, базис (2) не порождает никакие подалгебры в алгебре L_6^{22} .

Суммируем результаты изучения подалгебр 6-мерных нильпотентных алгебр Ли в табл. 1.

Таблица 1

Table 1

Все возможные 5-мерные подалгебры 6-мерных нильпотентных алгебр Ли	Соответствующие 6-мерные нильпотентные алгебры Ли
$h_1^1 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3, e_4 + a_{46}e_6, e_5 + a_{56}e_6\}, a_{46} \neq 0, a_{56} \neq 0$	$L_3 + 3L_1$
$h_1^2 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3, e_4, e_5 + a_{56}e_6\}, a_{56} \neq 0$	$L_3 + 3L_1, L_4 + 2L_1$
$h_1^3 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3, e_4 + a_{46}e_6, e_5\}, a_{46} \neq 0$	$L_3 + 3L_1, L_5^1 + L_1, L_5^4 + L_1$
$h_1^4 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3, e_4, e_5\}$	$ \begin{vmatrix} L_3 + 3L_1, L_4 + 2L_1, L_5^1 + L_1, L_5^2 + L_1, L_5^3 + L_1, L_5^4 + L_1, \\ L_5^5 + L_1, L_5^6 + L_1 \end{vmatrix} $
$h_1^5 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3 + a_{36}e_6, e_4 + a_{46}e_6, e_5\}, a_{36} \neq 0, a_{46} \neq 0$	$L_5^4 + L_1$
$h_1^6 = Span\{e_1 + a_{16}e_6, e_2 + a_{26}e_6, e_3 + a_{36}e_6, e_4, e_5\}, a_{36} \neq 0$	$L_5^4 + L_1, L_5^5 + L_1$
$h_2^1 = Span\{e_1 + a_{15}e_5, e_2 + a_{25}e_5, e_4 + a_{45}e_5, e_6\}, a_{45} \neq 0$	$L_3 + 3L_1, 2L_3$
$h_2^2 = Span\{e_1 + a_{15}e_5, e_2 + a_{25}e_5, e_3, e_4, e_6\}$	$L_3 + 3L_1, 2L_3, L_4 + 2L_1, L_6^1, L_6^9, L_6^{12}$
$h_2^3 = Span\{e_1 + a_{15}e_5, e_2 + a_{25}e_5, e_3 + e_5, e_4, e_6\}$	$L_6^8, L_6^{12}, L_6^{15}, L_6^{17}$
$h_2^4 = Span\{e_1 + a_{15}e_5, e_2 + a_{25}e_5, e_3 + a_{35}e_5, e_4, e_6\}, a_{35} \neq 1, a_{35} \neq 0$	L_6^{12}
$h_3^1 = Span\{e_1 + a_{14}e_4, e_2 + a_{24}e_4, e_3, e_5, e_6\}$	$L_3 + 3L_1, 2L_3, L_5^1 + L_1, L_5^4 + L_1, L_5^4 + L_1, L_6^4, L_6^5, L_6^{10}$
$h_3 = Span\{e_1 + a_{14}e_4, e_2a_{24}e_4, e_3 + a_{34}e_4, e_5, e_6\}, a_{34} \neq 1$	$L_5^4 + L_1, L_6^4, L_6^5$
$h_4 = Span\{e_1 + a_{13}e_3, e_2 + a_{23}e_3, e_4, e_5, e_6\}$	$L_5^4 + L_1, L_5^5 + L_1, L_6^3, L_6^3, L_6^4, L_6^5, L_6^6, L_6^7, L_6^{12}, L_6^{13}, L_6^{14}, L_6^{16}$
$h_5 = Span\{e_1 + a_{12}e_2, e_3, e_4, e_5, e_6\}$	Все 32 разложимые и неразложимые 6-мерные
	нильпотентные алгебры Ли
$h_6 = Span\{e_2, e_3, e_4, e_5, e_6\}$	Все 32 разложимые и неразложимые 6-мерные
	нильпотентные алгебры Ли

3 а м е ч а н и е. Абелева алгебра $6L_1$ не включена в табл. 1, так как все ее подпространства являются ее подалгебрами.

В дополнение к табл. 1 приведена табл. 2, в которой для каждой нильпотентной 6-мерной алгебры Ли (левый столбец) выписаны все 5-мерные подалгебры, содержащиеся в них (правый столбец). Кроме того, для каждой подалгебры указана изоморфная этой подалгебре 5-мерная нильпотентная алгебра из списка в работе [2]. Изоморфная алгебра для группы подалгебр или для отдельных подалгебр следует после двоеточия.

Таблица 2

Table 2

$L_3 + 3L_1$	$h_1^1, h_1^2, h_1^3, h_1^4, h_2^1, h_2^2, h_3^1$: $(L_3 + 2L_1)$; h_5, h_6 : $(5L_1)$
$2L_3$	$h_2^1, h_2^2, h_3^1, h_5, h_6: (L_3 + 2L_1)$
$L_4 + 2L_1$	h_1^2, h_1^4, h_2^2 : $(L_4 + L_1)$; h_5 : $(L_3 + 2L_1)$; h_6 : $(5L_1)$
$L_5^1 + L_1$	h_1^3, h_1^4 : (L_5^1) ; h_3^1, h_5 : $(L_3 + 2L_1)$; h_6 : $(5L_1)$
$L_5^2 + L_1$	h_1^4 : (L_5^2) ; h_5 : $(L_4 + L_1)$; h_6 : $(5L_1)$

Окончание табл. 2

$L_5^3 + L_1$	h_1^4 : (L_5^3) ; h_5 , h_6 : $(L_3 + 2L_1)$
$L_5^4 + L_1$	$h_1^3, h_1^4, h_1^5, h_1^6, h_1^1, h_3^1, h_3, h_4, h_5$: (L_5^4) ; h_6 : $(L_3 + 2L_1)$
$L_5^5 + L_1$	$h_1^4, h_1^6: (L_5^5); h_4, h_5: (L_4 + L_1); h_6: (L_3 + 2L_1)$
$L_5^6 + L_1$	h_1^4 : (L_5^6) ; h_5 : $(L_4 + L_1)$; h_6 : $(L_3 + 2L_1)$
L_6^1	h_2^2 : $(L_4 + L_1)$; h_5 : (L_5^1) ; h_6 : $(5L_1)$
L_6^2	h_5 : (L_5^2) ; h_6 : $(5L_1)$
L_6^3	h_4, h_5, h_6 : $(L_3 + L_1)$
L_6^4	h_3^1, h_3, h_4 : $(L_5^1); h_5$: $(L_5^4); h_6$: $(L_3 + L_1)$
L_6^5	h_3^1, h_3, h_4 : (L_5^3) ; h_5, h_6 : (L_5^1)
L_6^6	h_4 : (L_5^3) ; h_5 : (L_5^1) ; h_6 : $(L_3 + 2L_1)$
L_6^7	h_4 : $(L_4 + L_1)$; h_5 : (L_5^1) ; h_6 : $(L_3 + 2L_1)$
L_6^8	h_2^3 : (L_5^2) ; h_5 : (L_5^1) ; h_6 : $(L_3 + 2L_1)$
L_6^9	h_2^2 : (L_5^2) ; h_5 : (L_5^1) ; h_6 : $(L_3 + 2L_1)$
L_6^{10}	h_3^{1} : (L_5^2) ; h_5 : (L_5^1) ; h_6 : (L_5^1)
L_6^{11}	h_5 : $(L_4 + L_1)$; h_6 : $L_3 + 2L_1$)
L_6^{12}	h_2^2, h_2^3, h_2^4, h_4 : (L_5^5) ; h_5 : $(L_4 + L_1)$; h_6 : $(L_3 + 2L_1)$
L_6^{13}	$h_4, h_5: (L_4 + L_1); h_6: (L_3 + L_1)$
L_6^{14}	h_4 : $(L_4 + L_1)$; $h_5 h_6$: (L_5^1)
L_6^{15}	h_2^3, h_4, h_5 : (L_5^6) ; h_6 : $(L_3 + 2L_1)$
L_6^{16}	$h_4: (L_5^6); h_5: (L_5^2); h_6: (L_4 + L_1)$
L_6^{17}	h_2^3 : (L_5^6) ; h_5 : (L_5^1) ; h_6 : $(L_3 + 2L_1)$
L_6^{18}	h_5 : (L_5^1) ; h_6 : $(L_3 + 2L_1)$
L_6^{19}	h_5 : (L_5^2) ; h_6 : $(L_3 + 2L_1)$
L_6^{20}	h_5 : (L_5^2) ; h_6 : (L_5^1)
L_6^{21}	h_5 : (L_5^6) ; h_6 : (L_5^3)
L_6^{22}	h_5 : (L_5^6) ; h_6 : (L_5^3)

Список использованных источников

- 1. Patera, J. Subalgebras of real three- and four-dimensional Lie algebras / J. Patera, P. Winternitz // J. Math. Phys. -1977. - Vol. 18, № 7. - P. 1449-1455. https://doi.org/10.1063/1.523441
- 2. Морозов, В. В. Классификация нильпотентных алгебр Ли шестого порядка / В. В. Морозов // Изв. высш. учеб. заведений. Математика. – 1958. – № 4 (5). – С. 161–171.
- 3. Shtukar, U. Classification of Canonical Bases for (n-2)-Dimensional Subspaces of n-Dimensional Vector Space U. Shtukar // J. Generalized Lie Theory and Applications. - 2016. - Vol. 10, iss. 1. - P. 1-8. https://doi.org/10.4172/1736-4337.1000245

References

- 1. Patera J., Winternitz P. Subalgebras of real three- and four-dimensional Lie algebras. Journal of Mathematical Physics, 1977, vol. 18, no. 7, pp. 1449-1455. https://doi.org/10.1063/1.523441
- 2. Morozov V. V. Classification of nilpotent Lie algebras of the sixth order. Izvestiya vysshikh uchebnykh zavedenii. Matematika = Russian Mathematics (Izvestiya VUZ. Matematika), 1958, no. 4 (5), pp. 161-171 (in Russian).
- 3. Shtukar, U. Classification of Canonical Bases for (n-2)-Dimensional Subspaces of n-Dimensional Vector Space. Journal of Generalized Lie Theory and Applications, 2016, vol. 10, no. 1, pp. 1-8. https://doi.org/10.4172/1736-4337.1000245

Информация об авторе

Information about the author

Штукарь Владимир Леонидович - кандидат физико-математических наук (ул. Первомайская, 8, 212030, г. Могилев, Республика Беларусь). E-mail: shtukarv1@ gmail.com

Uladzimir L. Shtukar - Ph. D. (Physics and Mathematics) (8, Pervomaiskaya Str., 212030, Mogilev, Republic of Belarus). E-mail: shtukarvl@gmail.com