ISSN 1561-2430 (Print) ISSN 2524-2415 (Online) УДК 538.911:537.622.6:53.092 https://doi.org/10.29235/1561-2430-2020-56-2-232-238

Поступила в редакцию 27.11.2019 Received 27.11.2019

В. С. Гончаров, С. В. Труханов

Научно-практический центр Национальной академии наук Беларуси по материаловедению, Минск, Беларусь

ТРЕУГОЛЬНАЯ МАГНИТНАЯ СТРУКТУРА СОЕДИНЕНИЯ Mn₃Sb

Аннотация. Метастабильное соединение Mn₃Sb образуется при высоком давлении и температуре и распадается при нагревании выше 420 К на Mn₂Sb и Mn. Имеет кубическую кристаллическую структуру, описываемую пространственной группой Pm-3m (№ 221) с параметром решетки *a* = 0,400 нм. В настоящей работе по результатам нейтронографических исследований и с учетом данных магнитометрии показано, что Mn₃Sb является антиферромагнетиком, и предложена модель магнитной структуры с треугольной конфигурацией равных по величине магнитных моментов. Магнитные моменты атомов марганца, составляющие базис элементарной магнитной ячейки, лежат в плоскости (111) и образуют равносторонний треугольник. По нейтронографическим данным определены магнитные моменты атомов марганца при разных температурах.

Ключевые слова: соединение Mn₃Sb, магнитная структура, антиферромагнетик, нейтронная дифракция

Для цитирования. Гончаров, В. С. Треугольная магнитная структура соединения Mn₃Sb / В. С. Гончаров, С. В. Труханов // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2020. – Т. 56, № 2. – С. 232–238. https://doi. org/10.29235/1561-2430-2020-56-2-232-238

Vladimir S. Goncharov, Sergei V. Trukhanov

Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus, Minsk, Belarus

TRIANGULAR MAGNETIC STRUCTURE OF THE Mn₃Sb COMPOUND

Abstract. The Mn_3Sb metastable compound is formed at high pressure and temperature and it decomposes upon heating above 420 K into Mn_2Sb and Mn. It has a cubic crystalline structure describing the Pm-3m ($N \ge 221$) space group with a lattice parameter of a = 0.400 nm. In the present work, according to the results of neutron diffraction investigations and taking into account magnetometry data, it is shown that Mn_3Sb is an antiferromagnet, and a model of the magnetic structure with a triangular configuration of equal magnetic moments in magnitude is proposed. The magnetic moments of manganese atoms, constituting the basis of a unit magnetic cell, lie in the (111) plane and form an equilateral triangle. According to neutron diffraction data, the magnetic moments of manganese atoms were determined at different temperatures.

Keywords: Mn₃Sb compound, magnetic structure, antiferromagnet, neutron diffraction

For citation. Goncharov V. S., Trukhanov S. V. Triangular magnetic structure of the Mn_3Sb compound. Vestsi Natsyianal'nai akademii navuk Belarusi. Seryia fizika-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2020, vol. 56, no. 2, pp. 232–238 (in Russian). https://doi.org/10.29235/1561-2430-2020-56-2-232-238

Введение. Соединение Mn₃Sb образуется в условиях высокого давления и температуры и имеет кубическую структуру с параметром кристаллической решетки a = 0,400 нм. Атомы марганца занимают положение 3с (0, ½, ½), сурьмы – положение 1а (0, 0, 0) пространственной группы Pm-3m (221) (рис. 1) [1, 2].

Это соединение при комнатной температуре и атмосферном давлении находится в термодинамически неравновесном состоянии и разрушается при нагревании выше температуры 420 К с образованием двух фаз: Mn_2Sb и Mn. Из магнитных измерений известно, что удельная намагниченность образца соединения Mn_3Sb очень мала и составляет в поле 0,86 Tл ~1 A·M²/кг во всем температурном интервале вплоть до температуры разрушения [1, 3]. Такой характер температурной зависимости удельной намагниченности допускает несколько основных вариантов магнитного состояния данного соединения.

[©] Гончаров В. С., Труханов С. В., 2020

Рис. 1. Кристаллическая структура соединения $\mathrm{Mn_3Sb}$

Fig. 1. The crystal structure of the Mn₃Sb compound

Если в образце присутствует небольшое количество ферромагнитной или ферримагнитной примесной фазы (в данном случае это может быть либо фаза протяженного состава $Mn_{1+x}Sb$, либо соединение Mn_2Sb), то в диапазоне измерений соединение Mn_3Sb может находиться в антиферромагнитном либо в парамагнитном состоянии. Если же образец является однофазным, то соединение Mn_3Sb может быть ферримагнетиком или слабым ферромагнетиком, если это допускает симметрия его пространственной группы.

Ранее в работе [3] на основании нейтронографических данных, принимая во внимание отсутствие на нейтронограммах рефлексов примесных фаз (за исключением фазы MnO, количество которой составляет около 3 %) и учитывая схожесть ближайшего окружения атомов марганца в соединениях Mn_2Sb и Mn_3Sb , была предложена модель магнитной структуры соединения Mn_3Sb с ферримагнитным (антипараллельным) упорядочением различных по величине атомных магнитных моментов атомов марганца. Однако эта модель предполагает существование разных по величине магнитных моментов атомов Mn в одной кристаллографической позиции, что не является бесспорным.

Целью настоящей статьи является определение магнитного состояния соединения Mn₃Sb и установление его магнитной структуры по результатам магнитометрического и нейтронографического исследований.

Эксперимент. Образцы соединения Mn₃Sb, исследованные в настоящей работе, были синтезированы по технологии, описанной в [2].

Полевые зависимости магнитных характеристик исследуемых образцов в статических полях до 14 Т измерялись по индукционной методике на вибрационном магнитометре Vibrating Sample Magnetometer (VSM) фирмы Cryogenic Limited.

Данные нейтронной дифракции были получены на Мюнхенском исследовательском реакторе FRM-II (Гархинг, Германия) с помощью нейтронного порошкового дифрактометра SPODI с длиной волны нейтронов $\lambda = 0,1548$ нм при температурах 100, 200 и 300 К.

Обработка дифракционных спектров проводилась с помощью программы FullProf [4] методом Ритвельда [5]. Точность определения параметров элементарных ячеек была не ниже 0,005 Å.

Результаты и их анализ. Для определения магнитного состояния применялся метод дифракции нейтронов – практически единственный прямой и эффективный метод исследования магнитной структуры. Сложность заключалась в том, что в данном случае невозможно получить нейтронограмму образца при температуре выше точки перехода в парамагнитное состояние. Поэтому с помощью программного комплекса FullPruf и модели кристаллической структуры, описанной во «Введении», была рассчитана нейтронограмма соединения Mn₃Sb.

Обработка нейтронографических данных для уточнения кристаллической структуры с применением вышеуказанной модели приводит к достаточно хорошему описанию экспериментальной нейтронограммы, за исключением интенсивности нескольких рефлексов, для которых рассчитанная интенсивность оказалась меньше полученной экспериментально. Попытки улучшить соответствие, используя предположение о тетрагональном или ромбоэдрическом искажении структуры, а также поправки на текстурированность образца, к положительному результату не привели, что дает основание предполагать наличие магнитного вклада в интенсивность этих рефлексов. В таком случае элементарная ячейка магнитной структуры должна совпадать с элементарной ячейкой кристаллической структуры и соединение Mn₃Sb должно быть слабым ферромагнетиком. Но в соединении, кристаллическая структура которого описывается кубической пространственной группой, не может быть слабого ферромагнетизма.

С другой стороны, сравнение нейтронограммы, рассчитанной для кристаллической структуры, и нейтронограмм, полученных экспериментально, показало отсутствие как сверхструктурных рефлексов, характерных для антиферромагнитного состояния с магнитной ячейкой, кратной кристаллической, так и рефлексов возможных примесей Mn_{1+x}Sb и Mn₂Sb.

Однако, принимая во внимание особенности синтеза соединения Mn₃Sb из двухфазного сплава (Mn₂Sb + Mn) и учитывая возможность того, что процесс не завершился полностью, можно допустить, что примесная магнитная фаза Mn₂Sb находится в мелкодисперсном состоянии и, соответственно, не обнаруживается дифракционными методами. Для проверки правильности этого предположения были проведены магнитометрические измерения.

На рис. 2 представлены зависимости удельной намагниченности образца Mn₃Sb от магнитной индукции приложенного магнитного поля.

Из анализа формы полевой зависимости удельной намагниченности можно сделать вывод, что она не насыщается в доступных полях вплоть до 14 Тл как при комнатной температуре, так и при температуре 10 К. Такое поведение характерно для магнитного фазового состояния, подобного состоянию спинового стекла. Это так называемое однородное магнитное фазовое состояние, при котором наблюдается наличие ближнего магнитного порядка в упорядочении спинов. Как правило, оно представляет собой внедрение наномасштабных упорядоченных кластеров в парамагнитной или антиферромагнитной матрице. В нашем случае, вероятно, небольшое количество ферримагнитного соединения Mn₂Sb распределено в виде нанокластеров по объему антиферромагнитной фазы Mn₃Sb.

Рис. 2. Полевые зависимости удельной намагниченности образца Mn₃Sb

Fig. 2. Field dependences of the magnetization of the Mn₃Sb sample

Рис. 3. Модель магнитной структуры соединения Mn₃Sb.

Учитывая, что в элементарной ячейке данного соединения находятся три магнитоактивных атома, то антиферромагнитная структура, вероятнее всего, должна быть неколлинеарной (треугольной).

В работах [6, 7] рассмотрены теоретически возможные варианты магнитной структуры изоструктурного соединения Mn₃Pt, среди которых есть и треугольные конфигурации равных по величине магнитных моментов атомов марганца. Методом проб и ошибок была выбрана совпадающая с ядерной элементарная ячейка магнитной структуры, в которой магнитные моменты атомов марганца (базис элементарной ячейки) лежат в плоскости (111) и образуют равносторонний треугольник.

На рис. 3 представлена элементарная ячейка кристаллической структуры соединения Mn₃Sb, в которой атомы марганца расположены в центрах граней. Атомы сурьмы находятся в узлах кристаллической решетки. Стрелками показаны магнитные моменты атомов марганца.

При обработке дифракционных данных по методу Ритвельда в рамках предложенной модели магнитной структуры установлено хорошее соответствие экспериментальных и рассчитанных нейтронограмм. При расчетах уточнялись параметры кристаллической решетки и величины магнитных моментов, а также учитывался вклад от примесной фазы MnO, количество которой, согласно расчетам, не превышало 3 %.

На рис. 4–6 приведены результаты обработки нейтронограмм соединения Mn₃Sb, полученных при разных температурах. Представлены точки экспериментальной нейтронограммы, вычисленный профиль, разностная кривая, положения и индексы дифракционных максимумов.

Результаты обработки нейтронографических данных представлены в таблице, где a – параметр элементарной ячейки, m – магнитный момент на атом марганца, R_p – профильный фактор соответствия, R_m – магнитный фактор соответствия.

Значения структурных и магнитных параметров и факторов соответствия, полученные при уточнении магнитной структуры соединения Mn₃Sb при разных температурах

Т, К	а, нм	<i>m</i> , μ _Б	R _p , %	<i>R_m</i> , %
100	0,3986	3,24	7,88	3,63
200	0,3991	3,15	8,81	3,51
300	0,3999	3,08	8,73	3,47

Рис. 4. Наблюдаемый и рассчитанный спектры нейтронной дифракции соединения Mn₃Sb при температуре 300 К

Fig. 5. Observed and calculated neutron diffraction spectra of the Mn₃Sb compound at a temperature of 200 K

Хорошее соответствие рассчитанного дифракционного спектра с экспериментальным и низкие значения факторов соответствия свидетельствует о высокой достоверности предложенной модели магнитной структуры. Тем не менее для уточнения магнитного фазового состояния необходимо провести исследование температурных зависимостей удельной намагниченности в зависимости от магнитной предыстории, т. е. в так называемых режимах измерения после охлаждения образца без поля и после охлаждения в поле. Эту задачу планируется решить в ближайшее время.

Заключение. Таким образом, в настоящей работе по результатам обработки спектров нейтронной дифракции и с учетом данных магнитометрии сделан вывод о том, что Mn₃Sb является антиферромагнетиком с неколлинеарной (треугольной) конфигурацией магнитных моментов, и предложена модель его магнитной структуры. По результатам обработки нейтронографических данных определены магнитные моменты атомов марганца при разных температурах.

Благодарности. Авторы выражают благодарность А. П. Сазонову и А. Т. Сенишину за помощь в организации и проведении нейтронографических измерений. Acknowledgments. Authors are grateful to A. P. Sazonov and A. T. Senishin for help in organization and realization of the neutron diffraction measurements.

Список использованных источников

1. Mn₃Sb: a new L12-type intermetallic compound synthesized under high-pressure / T. Yamashita [et al.] // J. Alloys Comp. – 2003. – Vol. 348, № 1/2. – P. 220–223. https://doi.org/10.1016/s0925-8388(02)00834-4

2. Гончаров, В. С. Синтез и кристаллическая структура нового соединения Mn₃Sb / В. С. Гончаров, В. М. Рыжковский // Неорган. материалы. – 2005. – Т. 41, № 6. – С. 647–649.

3. Магнитное упорядочение в соединении Mn₃Sb по данным нейтронной дифракции / В. М. Рыжковский [и др.] // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2011. – № 2. – С. 9–13.

4. Rodriguez-Cravajal, J. Recent advances in magnetic structure determination by neutron powder diffraction / J. Rodriguez-Cravajal // Physica B: Cond. Matter. – 1993. – Vol. 192, № 1/2. – P. 55–69. https://doi.org/10.1016/0921-4526(93)90108-i

5. Rietveld, H. M. A Profile Refinement Method for Nuclear and Magnetic Structures / H. M. Rietveld // J. Appl. Crystallogr. – 1969. – Vol. 2, № 2. – P. 65–71. https://doi.org/10.1107/s0021889869006558

6. Yohei Kota. Ab-initio Study on the Magnetic Structures in the Ordered Mn_3Pt Alloy / Yohei Kota, Hiroki Tsuchiura and Akimasa Sakuma // IEEE Trans. Magnetics. – 2008. – Vol. 44, No 11. – P. 3131–3133. https://doi.org 10.1109/ TMAG.2008.2001678.

7. Magnetic Structures and Exchange Interactions in the Mn – Pt System / E. Kren [et al.] // Phys. Rev. – 1968. – Vol. 171, № 2. – P. 574–586. https://doi.org/10.1103/physrev.171.574

References

1. Yamashita T., Takizawa H., Sasaki T., Uheda K., Endo T. Mn₃Sb: a new L12-type intermetallic compound synthesized under high-pressure. *Journal of Alloys and Compounds*, 2003, vol. 348, no. 1–2, pp. 220-223. https://doi.org/10.1016/s0925-8388(02)00834-4

2. Goncharov V. S., Ryzhkovskii V. M. High-Pressure Synthesis and Crystal Structure of the New Compound Mn₃Sb. *Neorganicheskie materialy = Inorganic Materials*, 2005, vol. 41, no. 6, pp. 557–559. https://doi.org/10.1007/s10789-005-0168-z

3. Ryzhkovskii V. M., Goncharov V. S., Agafonov S. S., Glazkov V. P., Somenkov V. A., Sazonov A. P., Senyshyn A. T. Magnetic ordering in Mn3Sb determined by neutron diffraction data. *Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques*, 2011, vol. 5, no. 1, pp. 9–13. https://doi.org/10.1134/s1027451011020170

4. Rodriguez-Cravajal J. Recent advances in magnetic structure determination by neutron powder diffraction. *Physica B: Condensed Matter*, 1993, vol. 192, no. 1–2, pp. 55–69. https://doi.org/10.1016/0921-4526(93)90108-i

5. Rietveld H. M. A Profile Refinement Method for Nuclear and Magnetic Structures. *Journal of Applied Crystallography*, 1969, vol. 2, no. 2, pp. 65–71. https://doi.org/10.1107/s0021889869006558

6. Kota Yohei, Tsuchiura Hiroki, Sakuma Akimasa. Ab-initio Study on the Magnetic Structures in the Ordered Mn₃Pt Alloy. *IEEE Transactions on Magnetics*, 2008, vol. 44, no. 11, pp. 3131–3133. https://doi.org/10.1109/TMAG.2008.2001678

7. Kren E., Kadar G., Pal L., Solyom J., Szabo P., Tarnoczi T. Magnetic Structures and Exchange Interactions in the Mn – Pt System. *Physical Review*, 1968, vol. 171, no. 2, pp. 574–586. https://doi.org/10.1103/physrev.171.574

Информация об авторах

Information about the authors

Гончаров Владимир Сергеевич – кандидат физико-математических наук, старший научный сотрудник лаборатории физики магнитных материалов, Научнопрактический центр Национальной академии наук Беларуси по материаловедению (ул. П. Бровки, 19, 220072, г. Минск, Республика Беларусь). E-mail: goncharov@ physics.by

Труханов Сергей Валентинович – кандидат физико-математических наук, ведущий научный сотрудник лаборатории технологии и физики роста кристаллов, Научно-практический центр Национальной академии наук Беларуси по материаловедению (ул. П. Бровки, 19, 220072, г. Минск, Республика Беларусь). Vladimir S. Goncharov – Ph. D. (Physics and Mathematics), Senior Researcher of the Laboratory of Physics of Magnetic, Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus (19, P. Brovka Str., 220072, Minsk, Republik of Belarus). E-mail: goncharov@physics.by

Sergei V. Trukhanov – Ph. D. (Physics and Mathematics), Leading Researcher of the Laboratory of the Technology and Physics, Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus (19, P. Brovka Str., 220072, Minsk, Republik of Belarus).