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B. C. Myxa, H. ®@. Kako

benopycckuii 2ocyoapcmeennulii ynugepcumem ungpopmamuxu u paouosnekmponuxu, Munck, beaapyce

MHTET'PAJIbI U UHTET' PAJIBHBIE IPEOBPA3OBAHU S, CBA3AHHBIE C COBMECTHBIM
BEKTOPHBIM 'AYCCOBCKHUM PACIIPEAEJEHUEM

AHHoTanus. Bo MHOTMX NPUJIOKEHUAX JKeIaTeIbHO pacCMaTPUBATh HE OAMH CIIyYalHBIH BEKTOP, a HA0Op ciryyailHbIX
BEKTOPOB C COBMECTHBIM pacripe/eieHueM. [laHHasi cTaThs MOCBsIIEHAa HHTErpajaM M UHTErPajbHBIM MpeoOpa3oBaHHsIM,
CBSI3aHHBIM C COBMECTHOH BEKTOPHOI rayCCOBCKOW (DYyHKIIMEH IIIOTHOCTH BEPOSITHOCTU. Takue HHTErpajbl 1 npeodpa3oBa-
HUsI BO3HUKAIOT B TEOPHUU CTATUCTHYECKHUX PEIICHHH, B YaCTHOCTH B TEOPHHU AYaJIbHOTO YIpaBJICHHs, KOTOpas 6a3upyeTcs
Ha TEOPUU CTATUCTHUYECKUX penreHuil. OXHNM U3 IPECTaBICHHBIX PE3yJIbTaTOB SBJISETCSI HHTErPajl OT COBMECTHON BEKTOP-
HOH rayCCOBCKOM ()YHKIIMHU INIOTHOCTH BEPOSITHOCTH. [IpyTre pe3ynbTaThl — 3TO popMyJiia HOIHOH BEpOSTHOCTH U opMyrIa
Baiteca, chopMynnpoBaHHBIE B TEPMUHAX COBMECTHOH BEKTOPHOH TayCCOBCKOH (hyHKIIMEH MIOTHOCTH BEPOSTHOCTH. B ka-
YecTBe MpHUMepa MOITydeHbl OaifecoBCKHME OLECHKH KO (PHUINCHTOB MHOKECTBEHHOH GyHKInU perpeccud. [IpennoxeHnsle
HHTETPAIIBI MOTYT OBITH UCIIOIH30BAHBI KaK TAOMHMYHBIE HHTETPANIBI B Pa3JIMYHBIX 00TACTAX UCCIEAOBAHNIN

KiroueBbie c1oBa: 6aiileCOBCKHE OLCHKH, COBMECTHOE BEKTOPHOE IayCCOBCKOE PaCIpesieNieHne, MHOTOMEPHbIE HHTe-
rpaJibl, (hopMyIia MOJTHON BEPOSTHOCTH, (popmyna baiieca, MHOKeCcTBeHHAs: GYHKIUS PErPECCHH.

Juas uutupoBanus. Myxa, B. C. HTerpansl u HHTErpanbHble TpeoOpa3oBaHus, CBSI3aHHBIE C COBMECTHBIM BEKTOP-
HBIM rayccoBckuM pacrpezneienuem / B. C. Myxa, H. ®@. Kako / Bec. Hau. akan. naByk bemnapyci. Cep. ¢i3.-mat. HaByK. —
2021.—T. 57, Ne 2. — C. 206-216. https://doi.org/10.29235/1561-2430-2021-57-2-206-216

Introduction. The integrals connected with probability distributions are used in many applications,
one of them being the statistical decision theory, or, in other words, the Bayesian approach in statistics
[1-4]. The statistical decision theory attracts much attention due to the ability to formulate problems in
strict mathematical form and to process data in real time. One of the technical problems solved by the
statistical decision theory is the dual control problem [5]. The equations of dynamic programming in the
dual control problem contain the integrals connected with the multivariate probability distributions. The
integrals and integral transformations connected with the vector Gaussian distribution were considered
in papers [6, 7]. However, it is desirable to consider not one separate random vector, but a number of ran-

© Mukha V. S, Kako N. F., 2021



Becui HanpistnanbHait akaapmii naByk benapyci. Cepbist (isika-maramatbianbix HaByk. 2021. T. 57, Ne 2. C. 206-216 207

dom vectors. In this paper, the results of works [6, 7] are generalized for the case of the joint Gaussian
distribution.

1. Integrals connected with the joint vector Gaussian distribution. The random k=-component
vector 27 = (31,...,2 k= ) 1s distributed by the Gaussian (or normal) law if its probability density function
has the following form:

f(é)=;_exp[—l(a—vE)Tdal(é—vE)], M
2m'= |dz | 2

where &T =(&1,--,Ek ) 18 the row vector of the arguments, vi= (Vg)»-»VEz ) 18 the row vector of the
parameters, dz = (d =ij)» bLJj=1, Lkz, is the symmetric positive deﬁnlte (kg % kg)-matrix of the
parameters, d=' is the matrix inverse to the d=, |dz | is the determinant of the matrix dz, and 7 is the
transpose symbol. The parameters vz and dz are the mathematical expectation and variance-covariance
matrix of the random vector E respectively.

The following integral connected with function (1) was proved in [6]:

[ ex (—%&TA§+BTE,]d§= enfE 4! |exp(%BTA_1BJ, @
k

where é =(&15-0Ck2 )y A=(a; ), z ,j=Lk=, 1is the symmetric positive definite matrix,
T'= (Bl, Bkﬁ) 1s the row vector, 4™ is the matrix inverse to the 4, | 47" | is the determinant of the
matrix A, and E*Z is the k<-dimensional Euclidean space.

In some cases, it is desirable to consider not one random vector with the Gaussian distribution, but
several random vectors with the joint Gaussian distribution. This case is possible to study by partition-
ing the vector £ =(£,&,,...,.& k= ) With kz components into m vectors with k1,k2,,....kn cornponents
ki + ko +...+ kp = kz, so that the vector & in (1) is &7 =(§1T,§£, z—,m), where 7,27, &7 are the
row vectors. Let as partition also the vector vé =(Vgs..VE iz ) in (1) into m vectors with ky,k2,,....kp

components, so that vi = (vf 1,vT 2y f k_) and partition the rows and columns of the matrix dz!
into m groups of rows and columns, agreed with the partitioning of the vectors &’ and vL, so that

dz' =(dlE] ), i, =1,m, where dE’/ are blocks of the matrix dz!. As a result, we get the following
expression instead of formula (1):

1 1 m P
> seesom) = T /—/————— - i— V=i d.:’J i—V=i)|=
fE1,€2,0.8m) o |d5|eXp( 2;1]2:1(& vz;) dz'(§; -V ,])]

:;Hexp[——ZZE;,Td”JEU +ZZVH,d”f§J ——ZZV_,d”]v— J 3)
,[(2n)kﬁ|d:| zl]l j=li=1 11]1

We will call expression (3) as the joint Gaussian probability density function of the random vectors
E1,E2,....E . It is supposed that the matrix dz =(d=z;,;), i,j=1,m, in (1) is partitioned into the blocks
corresponding to the blocks of the matrix dz', so that the dz i 1s the variance-covariance matrlx of the
random vector Z;, and the dz; ;, i # j, is the covariance matrix of the random vectors =, E . The V= 18
the mathematlcal expectation of the random vector &,.

Let us formulate the task of generalizing formula (2) to the case of many vector variables, i. e. the
task of calculating the integral connected with function (3). More specificly, let it be required to calculate

the following integral:

j_ exp(—%aTAa+BTajd§ @)

gk

provided the matrix 4 is the symmetric positive definite and the vector & consists of m vectors.
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In order to solve this task, we partition the k--component vectors &’ and B' into m vectors with
ki,ky,....,k,,, components, k| + ks +...+ k,, =k, i. e. represent them in the forms of 7 = (&7 ,£2,..,€T)
and BT =(B{,BY,...,BL) so that the vectors £l and B/ consist of the same numbers of components. We
partition also the rows of the matrix 4=(a; ;), i,j=1,k=, into m groups of rows and the columns into
m groups of columns, coordinated with the partition of the vectors &” and B”. As a result, we obtain the
matrix with block elements 4, ; (the so-called block matrix), which we will denote

A=(4yy), ij=Lm. 5)
Let the following integral be subjected to the following calculation:
1
| exp(——aTAa+BTéjda= [ exp| >S5l +ZB & [dEi-dEp. ©)
gz 2 gz 204

Let us proceed to the calculation of integral (6).
The application to the block matrix 4 = (4; ) (5) of the generalized (block) Gauss algorithm [8] gives
us the following block upper triangular matrix:

0 0 0
Al(,l) AI(,Z) Al(,nz
A(l) A(l) i
G=| O A 2 \=(450), ij=Tm. Q)
0 0 oA

If i > j then the blocks A(l D in (7) is qual to zero SA(’j D' =0). The determinant of the block upper
triangular matrix G (7) is equal to the product of the determinants of the diagonal blocks and the same
as the determinant of the matrix A4 [8]:

0 1 -1 1| Gl
|G AP 1AL | A 5 A= T[4l
i=1

The matrix 4 can be represented in the form of
A4=G"DG, ®)

where D is the block diagonal matrix
_ -1 -1 )\~
D =diag )" (a8h) o (0] . ©

_ ~ | S
We denote the diagonal blocks of the matrix D (9) as D;; = (Al.(,’fl)) , i =1,m. The following equalities
are fulfilled:

1D =Gl A=) A5 | (10)
SG=HA=E ik
i=1

Let us suppose that we can find in the block form the inverse matrix G = (Gi’j ), I,j= I,_m The
replacing of variables

x=Gz (11)

transforms the integrated function F'(x) = exp(——?3 A&+ B EJ in (4) to the following function of the
argument z:

F(z2) :exp[—%zTPz+Dz),
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where

P=(GH" 4G,

D=B"G'=(D)=| S BIGH |, i=
- _( i)_ ZBJG 5 l_1>m~ (12)
=i

Since, given (8),
P=GH 467'=(¢HY' G"DGG'=D
we have the following function of the argument z = (z;), i = I,_m (z; are vectors):

F(Z)zexp(—%zTﬁz+Dzj. (13)

As it is known, the following equality is fulfilled when the variables are replaced:
[F(x)dx=J|F(z)dz, (14)
where J is the Jacobian of the transformation (11):
_ . m i -1
JEGTHDEITI(45) L
i=I

Let us rewrite function F(z) (13) as the function of the elements of its matrices:

1 i-n\ <
F(z)=exp ——z "Dz + Dz =exp —522, (Ai,l- ) zi+Y.Diz; |=

i=1 i=1

H (__Zz (A(l 1)) Zi+DiZij- (15)
Substituting (15) into (14), we obtain
f F(x)dx=J]] _[ exp[——z, (A(’ 1)) Z,-+D,-zl~jdz,-. (16)
EkE kE

The integral in the right-hand side of expression (16) is the integral of type (2). In such a case

[ exp(—%z, (A(’ v) zl-+D,-z,~jdz,. :\/(2n)ki |(Al.{’;.‘”)|exp(%DiAl{§‘”D,~T ) (17)

EkE

Substituting (17) into (16), we obtain the following formula

Lexp(-%gTA&Bngdg: ) exp{—gzzg, ,jaj+zB @Jdél -dE, =
gz

gke i=1j=1

T ki 4G-1) (, D
—g\/@ﬂ) |(A,-,,- ) IeXp(Z D; A DJ

i 1
or in block-matrix form
) exp(—%gTAmBngdg: )= | D! |exp(%DﬁlDTj. (18)
EfE

Let us come back in (18) from the matrices D and D to the matrices 4 and B. Since | D|=| 47! | (formula
(10)), D' = GA™'GT (formula (8)) and D = BTG ™! (formula (12)), then
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pD'DT =BTG'GA7'\GT (G B=BT47'B,

and instead of (18) we get the following expression:

{_exp[—%érA&BTéjd& ] exp[—gzza ué,+ZB a]dél dEy =
E*=

pke i=1 j=l1
=J(2m)*= |A_1|exp[%BTA_1Bj=w/(2n)k5 |A_1|exp( zzB A B; ] (19)
i=1 j=l1

It should be taken into account that the matrices 4 and B in (19) are block matrices, i. e. 4 =(4; ;), B=(B;),
i, j =1,m, and one deals with the block operations of inversion and of multiplication.
Let us summarize the obtained result in the form of the following theorem.
Theorem 1 (the integral connected with the joint Gaussian distribution of the random vectors). If
=(4,), i,J =1,m, is the square block symmetric positive definite matrix, A = (4Y) is the block matrix
inverse to the matrix A= (4;, ]) |A_ | lS the determinant of the matrix A, ET = (£ 2, €1 is the
vector composed of vectors é';l ?;2 - é m and permitting the block multlpllcatzon AE, k; is the number
of the scalar components of the vector &, ki +ky +...+k, =k, BT =(BlT,BzT,...,B,£) is the vector of

the parameters composed of vectors BlT ,BzT ,...,B,Z and permitting the block multiplication BI-T &, then
equalities (19) are fulfilled.
2. Total probability formulae for the joint vector Gaussian distribution.

Theorem 2 (total probability formula for the joint vector Gaussian distribution). Let
== :{,:5, ,:5,) be a random vector composed of vectors E{,Eg,...,E,Z;, k= ; the number of
the scalar components of the vector 2, i =1,m, f(§) the probability density function of the vector ="
kz =kzj+kzo +...+ ks the number of the scalar components of the vector 2, f(y/€) the conditional
probability density function of the random vector Y, ky the number of the scalar components of the vec-

tor Y, and E*= the ke-dimensional Euclideal space. If in the total probability formula

fM=[ fO/9f(©adg (20)

gke

the conditional probability density function f(y /&) is represented in the form

1
JE)m e expd—— Ts. v, ,——W 21
f(y/¥) r)md |eXp{ 2,21]21&" NS, +Z g } 1)

where S, ; are the blocks of a block symmetric positive definite matrix S = (S;)), i, =1,m, Vi are the

blocks of a block matrix V' (VT) i=1,m, Wis a scalar, and the probability density function f(§) is
represented in the form

1) =+exp(—1§ S (& -ven) dE (&, —VE,/‘)J =
J2m*E | dz | 2i454

e i E e ), e
T)" = i=1i i=1j i=1j

where dé’j are the blocks of a block symmetric positive definite matrix dz' = (dé’j ), i,j= 1,m, vg’i are
the blocks of a block matrix vi =(v£3,~), i=1,m, then integral (20) (the total probability formula) is
defined by the following expression

f= [ /89 f(&)dE= 1

exp(lBTAlB—lez
ghs Jem* |d=||dy 4] \2 2
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_ ! exp( S S Bl 4B, ——C] 23)
Jem™ dzlldy 4] \2E55
where
A=(4i))=(dL +8;;)=ds'+S, ij=Lm, (24)
B=(Bl-):[2d§f'va,j+VfJ:d§1va+V, i=1Lm, (25)
Jj=1
C=Y>vELdtv=;+w. (26)

i=1j=1

Proof. Multiplying (21) by (22), we get the following expression of the integrated function in (20):

f(y/i)f(i)—\/(z )kY+kf|d ||d |exp{——z‘izl<§z ljaj +ZB§1 = }a 27)
T ¥ i=1j

where 4, B, C are determined by formulae (24), (25), (26). In order to integrate the received function we
can use formula (19) and write the equality

2m)k= m
)= | £ e =—JCD 1A eXp(ZlBTA_lB—le_
ke \/(Zn)k}“rk: |dy || dz | 12 2
The proof is completed.

The functions f(y /&) and f(§) in total probability formula (20) are usually given not in the form of
expressions (21), (22), but in the natural for the Gaussian distribution form. In this case, theorem 2 takes
the form of theorem 3, more convenient for the practical utilization.

Theorem 3. Let=! = :{,:5, ,um) be a random vector composed of vectors J,_g, ,H,Y;,,
ks ; the number of the scalar components of the vector £, i =1,m, f(€) the probability density function of
the vector E, kz =kz)+kzp +...+ k= the number of the scalar components of the vector E, f(y/€) the
conditional probability density function of the random vector Y, ky the number of the scalar components

of the vector Y, and E*= the k=-dimensional Euclideal space. If in the total probability formula

f»=[ f/ef e

EXE

the conditional probability density function f(y/E) has the following form

£/ =;exp(—1(y—ha)fd;‘ (y—h@j
JeO T |dy | 2
1 1 m T m
S — ——(y—zmafj d?l(y—zma,-j ,
Jem Y | dy | PANS Pt

where h=(hi,hy,....hy) is a matrix composed of (ky % kg,)-matrices (blocks) h,, i=1,m, and the
probability density function f(§) has the following form

f(&)=;_exp(i(a—vﬁfd;(a—vﬁ)j=
J2m)*= | dz | 2

=mexp(—l§ i(@i ~ve) dE (& _VE,]')],
) " |dz

i=1 j=1
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wheﬁ vz are blocks of the matrix vz =(vz,;), corresponding to the blocks of the random _vector B,
i=1,m, d5’ are the blocks of the symmetric positive definite matrix dz' =(d’5’1), i,j=1,m, then
integral (20) (the total probability formula) is defined by the following expression:

1 1
f(= f(y/a>f(&)da=—exp[——<y—hvE>TDl(y—hvE)}
Eis J@m)! | Dy | 2 '

T
:;exp ——[y ZhlVEiJ D;l (y_zhiVE,ij P
@™ |py| 2LV = i

where

Dy =dy +hdzh” =dy + Zhida,i,jhjr-
i=1 =1

This theorem is the generalization of the theorem proved in [7].

3. The Bayes formula for the joint vector Gaussian distribution.

Theorem 4(the Bayes formula for the joint Vector Gaussian distribution). LetET = (_ 1T , :5 yeees E,Tn )
be a random vector composed of vectors ElT,Eg, G m , k= ; the number of the scalar components of the
vector 2, f(§) the probability density function of the vector E, kg = k=i +kzo +...4 ks the number of
the scalar components of the vector E, f(y /&) the conditional probability density function of the ran-
dom vector Y, and ky the number of the scalar components of the vector Y. If in the Bayes formula

fEf/E) 08
[ 7@ (/88

E*E

fE/y)=

the conditional probability density function f(y/€) is represented in the form

1
15 N —— S 3 IR v, ,——W
SW/E) (27-5)/‘}’ " |CXP{ 221215 G +Z ‘i }

where S, ; are the blocks of a block symmetric positive definite matrix S = (S, ), i,j = Lm, Vi is the
blocks of a block matrix VT = (V,T), i=1,m, Wis a scalar, and the probability density function f(§) is
represented in the form

f<a)=+exp(——22(él vE,,-)ngf(é,-—v—j))
Jem*=jdz| 2

1 1m m i m m . i
:Wexp{j;;ﬂda”é; +Zl_21v£,l~d5’/<§, 2121 vl dk JV:J}, (29)
™)~ = i=li= i=1j= i=1

where d— are the blocks ofa block symmetric positive definite matrix d— (dé’j ), i,j= L_m, VE,I- are
the blocks of a block matrix vE = (v£ i ), i =1,m, then the posterior probability density function f(&/y) of

the random vector E defined by the Bayes formula (28), has the following form:

f(é/y)=;_exp[—l(a—Na)TDzl(a—Na)j=
2m*= | Dz | 2

o
1

NS S B
J2m)'= | Dz | 2i

I M3
™M=

TMs

J =1

r .. m
DE,i,kBkj Dz’ (éj_ZDE,i,IBlJ}a (30)

where
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D' =(DY)=(d¥ +Si;)=dz' +S, ij=Lm,

B=(B;) :(z d&'vz +V,} =dz'vz +V,
Jj=l

m
NE :(NE,i) :DEB = ZDE,i,kBk'
k=1

Proof. Let us note that the given theorem is formulated in the same conditions and notations as
theorem 2. In this case the numerator of the Bayes formula (28) is defined by expression (27) and the
denominator by the total probability formula (23). Dividing (27) by (23), we get the formula

F(&y)= 1 x

J@n= 1(4D) " i (a0

X exp ——ZZ&, ,j§]+ZB &,——ZZB A”B] , 31)
2ia;5m 2

i=1 j=1

where 4 and B are defined by formulae (24), (25). Formula (31) can be written in the following form

(32)

1 T
ly)=—F—m - i—N=;) A4, (&, —N= /)|,
Sf(E&/y) REYE |eXp( lleZl(i i) A (S ,/)]

where

Nz;=> 4"/B;. (33)
j=1

We will be convinced in the equality between (31) and (32) by multiplication in (32) given expression (33).

The matrixdz =(d=;,;), i,j=1,m,informula (29)is the block priory variance-covariance matrix of
the random vector 27 = ( = =7 =" ), the matrices d ’E/ are the elements (blocks) of the block inverse

matrix dg_l = (dé’/ ) i,j —1 m, and the vector v L- (vg 1,\/5 Dyeees vg m) is the block priory mathematical

expectation of the random vector 27 = (TT =7, ,:51) The matrix 4 = (4") in the Bayes formula (32)

is the posterior variance-covariance matrix of the random vectors = (4 L= cov(E;,Z; / y) that we de-

.o m .. m _
note now Dz =(Dz; ;) = A7'=(4"). The vector Nz = (Nz;)=| 3 A”/Bj] =| > D=, ;B |, i=lm,
j=1 j=1
in the Bayes formula (32) is the posterior mathematical expectation of the random vector
=" =(gf.88,..30) (N=i=EGE:i/y).

This completes the proof of theorem 4.

4. Example. Multiple Bayesian regression. We consider an example of obtaining the Bayes es-
timations of the coefficients of the multiple regression function. Let x! = (x1,%1,...,X, 4 ) be the vector
input variable of some regression object and the scalar output variable Y of this object have the Gaussian
probability density function

FlxE) =t exp(——dy (-3 hE k)]
TCdY

k=1

m
where hI=; is the regression function of Y on x. In contrast to the classical case, we consider the case

k=1
when the vector of the basis functions 4’ (hl NI ) contains not the scalar components, but is



214 Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2021, vol. 57, no. 2, pp. 206-216

represented as a set of the vector components th,hzT ,...,h,ﬁ, hiT :h,-T(x), i=12,..,m. The vector

=7 =(=T,27,. .21} is the vector of the coefficients of the regression function which is represented,

like the vector 4, by a set of its vector components =F =7 2 Each vector E, has the kz, scalar com-
ponents. Let the vector coefficients =1,Z1,...,2,, have the mean values vz,,v=,,...,vs,, and the covari-
ance matrices d=; j, i,j=1,2,...,m, so that d= = (dz ;) is the block variance-covariance matrix of the

vector E. Let the vector = have the Gaussian probability density function:

+..t+kz

f(é)—%exp(—lii(ai—vE,,-)ngf@,-—va,j)}, ks = ks,
V2 E dz | 2i51jm1

where 5/ are the blocks of the matrix dz' = (d%/) inverse to the matrix dz = (d=,,;).
Let us formulate the task of finding the Bayes estimations =, of the coefficients =, of the regression

(34

function z hk = on the basis of independent measurements (x1, 1), (X2,12),..0,(Xn, V1 )-

k=1 . . . . . .
Let the regression function be the function of two variables x,, x, in the following form:

2 2
Q=0o+Bx +Pox2 +y1Xi +y2X3 +y3Xx1X2,

where o,B1,82,Y1,Y2,Y3 are the unknown coefficients, and we wish to divide these coefficients into
3 vectors representing the intercept, linear, and quadratic parts of the regression function. Then we have
to choose the following vectors of the coefficients:

= =T =T

Ei=oa, E3=0P1np2) E3=(172,73)
and the following vectors of the basis functions:

h=1, hi=(x.x2), hi =(x12,x22,x1x2).

We will use theorem 4 for solving the task. The set of the measurements y =(y,), p =1,n, is the
vector with following probability density function:
2
‘1( Zh E] . (35)

n 1 1 n
SGIED) =TT/ %0 E) = ———exp| 23 dy
N L =

Let us transform function (35) to the form

(36)

f(f/)—c,E):;exp{——zzal ,,a,+2V £ -n }
Jem™ jdy| 1 Zma

which is supposed in theorem 4. Since we have in (35)
2 m
w{ B2 | (B )| S |-£ 8 etz
J=1 i=l j=1 i=1j=1
then
Zd;luu =d?12uu ZZ (dY ZhuzhE/]E ‘ ZZZE;(‘Z?]SW#J)EP
p=l1 p=1 i=1 j=1 p=1
where

Shnij =2, hu,ih;{,ja Sin =S j)= ( > hu,ih;{,j} i,j=1,m.

H:l H=1
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In such a case we obtain the following expression for S; ; in (36):

Slj_dY Shhz]_dY zhuz W,j> S:(Si,j)zd)jlshha i,j=Lm.
pn=1

Further, since in (35)

d s oSl gt S v nl 2. =S gilsT =
Z quz w2 = 2| Ay X yphu |E; =2 dy S B,
J=1 p=l

~.
I

where

-

ST=(Sh.)=| Syuhl; | ij=1
yh/ Zyu Mo v =Sy )= Xy |, L=l
p=l1

then we obtain the following expression for V’ jT in (36):

v =dy'sh., =di' zyH L V=)= (dv'S ) =dy'Sh, j=Lm.

The probability density function f{§) (34) is presented easily in the following form:

f(é';):;exp(——zzgduﬁj+Z(§:szd”j§,——ZZled”v”],
1I(27‘c)k~|d | lljl Jj=1\i=l 11/1

supposed in theorem 4.
Thus, on the basis of theorem 4 (formula (30)), the joint posterior probability density function of the
coefficients =¢,Z1,...,2 ,, has the following form:

f(a/J_”f)=+CXP(—1(E—NE)TD§I(E—NE)j=
2m)*= | Dz | 2
T
=+GXP[_12 Z (&1 - z DE,[,kBkj Di:?] (gj - ZDE,j,lBl j},
(2m)*= | D= | 2i1j=1 k=1 I=1

D' =(DY)=(d¥ +dy'Si ;) =dz' +d7'Sm.  Swn =S ;)= (zhu, u,} i j=Lm,

m ..
B:(Bi)z(ZdlE,JVE,j'i‘leSyh,i]:dElVE+dY1Syh: yh_(Syhz (zyp. uzja NE:DEB-
j=1

The Nz and the D, are the block posterior mathematical expectation and the block posterior vari-
ance-covariance matrix of the random vector Z respectively.

The calculations are performed in the following order. The parameters of the un-
known block vector parameter E distribution are given: the block variance-covariance matrix
dz =(d=; ), i,j=1,m, and the block vector of mathematical expectation vi =(v£,l~), i=1m.

Then the block matrix dgl =(d§j ) inverse to the matrix dz is calculated. Further, the block matri-
ces Sun =(Smni /) Syn =(Syn ;). B=(B;)=(ds"vz)+dy'Sy, i=Tm, are calculated. After that the

block matrix DE_1 = (Dé’j): (dé’j +d{1Shh,,-,j), i,j=1,m, is formed and the inverse to it block matrix

Dz =(D=,,;), i, j =1,m, is calculated. Finally, the block vector of the posterior mathematical expectation
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Nz = Dz B is defined. For performing these operations we need the programs of transposing, multiplying
and inverting of the block matrices.

Conclusion. The results obtained in this paper are aimed at solving the dual control problems for-
mulated in works [9, 10]. The sequence of the control actions in the dual control of the multivariate sto-
chastic objects is defined by the functional equations of the dynamic programming [9], which contain
the integrals like the integrals calculated in this article. One of the practical examples is the task of the
optimal allowance distribution as the task of the dual control considered in work [10].
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