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TOTAL PROBABILITY AND BAYES FORMULAE FOR JOINT
MULTIDIMENSIONAL-MATRIX GAUSSIAN DISTRIBUTIONS

Abstract. This paper is devoted to the development of a mathematical tool for obtaining the Bayesian estimations of
the parameters of multidimensional regression objects in their finite-dimensional multidimensional-matrix description. Such
a need arises, particularly, in the problem of dual control of regression objects when multidimensional-matrix mathematical
formalism is used for the description of the controlled object. In this paper, the concept of a one-dimensional random cell is
introduced as a set of multidimensional random matrices (in accordance with the “cell array” data type in the Matlab pro-
gramming system), and the definition of the joint multidimensional-matrix Gaussian distribution is given (the definition of the
Gaussian one-dimensional random cell). This required the introduction of the concepts of one-dimensional cell of the math-
ematical expectation and two-dimensional cell of the variance-covariance of the one-dimensional random cell. The integral
connected with the joint Gaussian probability density function of the multidimensional matrices is calculated. The two formu-
lae of the total probability and the Bayes formula for joint multidimensional-matrix Gaussian distributions are given. Using
these results, the Bayesian estimations of the unknown coefficients of the multidimensional-matrix polynomial regression
function are obtained. The algorithm of the calculation of the Bayesian estimations is realized in the form of the computer
program. The results represented in the paper have theoretical and algorithmic generality.
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®OPMYJIbI MOJHON BEPOSATHOCTH U BAMECA J1JI51 COBMECTHBIX
MHOT'OMEPHO-MATPUYHBIX TAYCCOBCKUX PACIIPEJIEJTEHU

AnHoTanus. Pa6ora nocssmena pa3paboTke MaTeMaTHIECKOTO allapara Ajs HOIydeHus: 0alleCOBCKUX OLCHOK Tapa-
METPOB MHOTOMEPHBIX PEr'PECCHOHHBIX 00BEKTOB B UX KOHETHOMEPHOM MHOTOMEPHO-MAaTpHYHOM onucannu. Takas notpeo-
HOCTB BO3HUKAET, B YACTHOCTH, B 33/1a4€ JyaIbHOTO YIIPABICHHS PErPECCHOHHBIMU 00BEKTaMH, KOT/Ia JJIsl OMUCAHUsSI MHO-
TFOMEPHOI'0 yIpaBJisieMOro 061>e|<Ta IIPUMEHSACTCA MHOFOMepHO—ManM‘[HbIﬁ MaTeMaTHYEeCKU M arrnapar. B cratbe BBOAMUTCA
MOHATHE OTHOMEPHOH CiTyyaifHOM sSueiiKM KaKk COBOKYITHOCTH MHOTOMEPHBIX CITy4YaifHbIX MaTPHIL (B COOTBETCTBUY C JaHHBI-
MU THIIa «MacCHB sSYeeK» B CUCTEME IporpaMMupoBanus Matiab) u faeTcs onpeaeaeHue COBMECTHOTO IayCCOBCKOTO pac-
TIpeJIeTIeHNs MHOTOMEPHBIX CIIyYalHBIX MaTpHIl (ONpe/esIeHne TayCCOBCKOM OHOMEpHOI! cirydaifHoH sueiiku). DTo morpe-
00BaJIO BBEICHHS TIOHSTHS OMHOMEPHOH STUSHKHM MaTeMaTHIeCKOT0 OKUIAHUS U TIOHSTHS ABYMEPHOH sSTUeiikn BapHaIuii-ko-
BapHalUi OJHOMEPHON ClydailHOW syekku. Jlanee BBIYMCISCTCS ONUH WHTErpal, CBSA3aHHBIM ¢ (QYHKIMECH COBMECTHON
rayCCOBCKOH MJIOTHOCTH BEPOSTHOCTH MHOTOMEPHBIX CllydailHbIX MaTpHil. [IpuBoasiTcs 1Be HOPMYIIBI IOIHON BEPOSITHOCTH
u ¢opmyna balieca 1 COBMECTHBIX MHOTOMEPHO-MAaTPHYHBIX TAyCCOBCKHUX pacmpeaeneHuidl. Ha ocHOBe 3THX pe3ynbTa-
TOB TIOJTy4eHB! 0alleCOBCKNE OLEHKH HEM3BECTHBIX KOI((GHUINEHTOB MHOTOMEPHO-MAaTPHIHON MOTHMHOMHUANBHON QYHKITHH
perpeccun. AITOPUTM pacdera 0alleCOBCKUX OICHOK pealin30BaH B BHAE KOMIIBIOTEpHOI mporpammsl. [IpencraBieHHbIC
pe3yabTaThl 00J1aJaI0T TEOPETUIECKOM U aJIrOpUTMHYECKOH OOITHOCTHIO.

KuroueBble ciioBa: ciyyvaiiHas siueiika, TaycCOBCKas ciaydaiiHas siueiika, MHOTOMEPHO-MaTpUYHAsI perpeccus, 6aiecos-
CKHUE OLEHKHU
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Introduction. This work is devoted to the problem of obtaining the parameters of multidimensional
regression objects in their finite-dimensional multidimensional-matrix description. The first results in
this direction were published in 1974. In paper [1], three integrals related to the probability density func-
tion of the vector Gaussian distribution were calculated. In paper [2], the Bayesian estimations were ob-
tained for the unknown coefficients of the multiple regression function, which is linear in its coefficients,
provided joint Gaussian priory distribution of the coefficients. In papers [3, 4], the extended version of
these results, which is necessary for further generalization, was published. In paper [5], the more general
case related to the joint vector Gaussian distribution and allowing us to obtain the Bayesian estimations
of the parameters of regression objects with many vector parameters was considered.

In some cases, it is necessary to consider not only the set of random vectors with joint Gaussian dis-
tribution, but also the set of random multidimensional matrices with joint Gaussian distribution. Let us
consider this case that arises, particularly, in the problem of the dual control of multivariate regression ob-
jects [6, 7] when the object is described by the multidimensional-matrix mathematical tool [8, 9]. In this
paper, we generalize the results of work [5] for the case of the joint multidimensional-matrix Gaussian
distribution.

Let 54,2,,...,2,, be g1,92,...,g»~-dimensional random matrices, respectively. Let us combine them
into a set E={E1,5,,...,2,,} ={E;}, ordered by the index i =1,2,...,m, which we will name a random
cell, in accordance with the “cell array” data type in the Matlab programming system. In contrast to the
elements of the multidimensional matrix, we will enclose the elements of the cell into curly brackets, as
it is accepted in the Matlab programming system: = = {=;}. Let us note that a cell is not a multidimen-
sional matrix, so it should be considered as a purly mathematical object.

We will denote the mathematical expectation of the random ¢;-dimensional matrix Z; as vz; = E(E;),
i=1,2,...,m, and the covariance matrix of the random ¢; and ¢ j—dimensional matrices Z,, Ej as

o o o o OO o o
0,0 /— — L. = _= = . _= ==
dE,i,_j ZE( (:l:j)j’ l,] —1,2,...,m, o= a8y _VEi’ =) =Ey _VEj, (._‘l ._]J

is the (0,0)-folded product of the matrlces Ei, 2, [9]. The d=,; is the (g, + ¢,)-dimensional matrix.

Let us combine the mathematical expectations vz, into a set vz ={vz,,vz,,..,vz, } (=1,2,...,m)
which we will name as a mathematical expectation of the random cell E ={E,2,,....5,,}.

Let us combine the covariance matrices dz=; ; into a set dz ={d=; ;} ordered by two indices
i,j=1,2,...,m which we will name as a covariance cell of the random cell E ={E,Z,,...,Z,}.

We will name the cell denoted by dz' ={dé’j } as the (¢; + g))-inverse to the covariance cell

dz ={dz; ;},i,j=12,..,m, if its elements dé’j satisfy the following equalities:

0,(pi+p;) iy O(pitp)) E© at i=j,
J {dE,i,jle’J}z J {dl]dE,ij} ( ql) J
- 0, otherwise,

where E(0,q)) is the (0,¢,)-identity matrix (2¢g,-dimensional matrix) and 0 is the (g; + ¢;)-dimensional zero
matrix.

In this notations, we can define the Gaussian probability density function f{(§) of the random cell
E={&81,2,,...,2,} by the following expression:

0.9i 0.qj [
f(&)=Ms= exp(——zz ((&i—vzi (d’;’f(&j—vaj))j}

i=1 j=l1
0,qi

0,q;
=Mz exp ) 2 (Ei—vs, [zda’j(&j_VEj)J =
i=1 j=1

6" ’f&,)]+z§ [v="a ’faj)]—lii v (dngE,.)j]:

i=1j=l1 tl]l

1

=M= exp[——Zi !

11]1
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zl]l

=M= exp(——zz (° (aidéf)aj}

+§§ " (O’qi (vadé”) ')—lii N (O’qi (indé’j)VEjj], (1)

i=1j=1 2ic=1

where & = {&1,§2,---,§m} is the cell-argument of the probability density function corresponding to the
random cell 2= {Z,2,,...,2,,}, |d=|is the determinant of the covariance cell dz, k2 is the number of

JCem'= |ds |

1. Integral connected with the joint Gaussian distribution of the multidimensional random ma-
trices. The following theorem relative to the joint Gaussian distribution of the multidimensional random
matrices (1) is fulfilled.

Theorem 1 (the integral connected with the joint Gaussian distribution of the multidimensional
random matrices). If A=1{4;;}, i,j=1,2,..,m, is a two-dimensional symmetric positive definite cell,
A= {4y i ] =1,2,...,m, is the cell inverse to the cell A, | A7"| is the determinant of the cell A,
E={&}, i = 1,2,....m, is a one-dimensional cell composed of the q,-dimensional matrices &; allowing

the scalar elements of the cell £, Mz =

0.qi .
the multiplication (O’q-’ (A,-,jE_,j)E_,,-), k; is the number of the scalar components of the matrix &,

ki+ky+...+ky=k=, B= {B,} is a one-dimensional cell composed of the q-dimensional matrices B,

allowing the multiplication 0.i (Bi€:), E k2 s the kz-dimensional Euclidean space, then the following
equality is fulfilled:

1 exp(—gz > (400 (aiaj>)+ > (Bjaj)Jdal dE =

i=1 j=l1 Jj=1
=\(@n)*= |47 |exp[ 212 Y (a °’°<Bl~Bj))J. )
i=1 j=1

This theorem is the generalization of theorem 1 from paper [5] (the integral connected with the joint
Gaussian distribution of the random vectors) to the multidimensional-matrix case. We obtain it applying
the theorem on the associated multidimensional matrices [9] to theorem 1 of paper [5].

2. Total probability formulae for the joint Gaussian distribution of the multidimensional ran-
dom matrices. Theorem 2 (total probability formula 1 for the joint Gaussian distribution of the
multidimensional random matrices). Let = = {Z;}, i = 1,2,...,m, be a one-dimensional random cell, com-
posed of the q-dimensional matrices Z,, k; the number of the scalar components of the matrix Z,, f(&) the
probability density function of the cell E, k= = ki + ky +...+ k,, the number of the scalar components of
the cell Z, f(V/€) the condition probability density function of a p-dimension matrix Y, ky the number of
the scalar components of the matrix Y, E k2 the ks-dimensional Euclidean space. If in the total probabi-
lity formula

fO= ] f19f(©de ©)

gke

the conditional probability density function f(y/§) is represented in the form

1 lm mn quj 0.0: mn 0.g; 1
/) ——— —_ qiE.S; )E VWVEN-=W |,
ACKES rc)ky|dy|exp[ 22/2:1 (> ,])§J)+j§l V&)= ] e)

where S, are the elements of a symmetric positive definite cell S = {S,}, i,j=12,...m, and the
probabzlzty density function f(§) is represented in the form
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f(é)=MseXp( ZZ”’(Oq’(@z—vul>d”)<é,—vu,>)J

11]1

=Mz exp[—gi 5 (" (e e )+

i=1j=1
+§:§:O"Ij (O,qi (VE,- l: )éfj_%iz (O,l]i (Vsidé’j)vijj} ®)
i=1j=1 i=1j=1
1

Jem'dz |

then integral (3) (the total probability formula) is defined by the following expression

Mz =

1 1 m.m O,Qj 0.0: i 1
f0= ] F619fEdE= exp| XX (M (BB, ——c}
Ei Je' dz | dy | 4| (21-:1,:1 | )

where

A:(A,,,-):(dgusi,j), i,j=1,m,

B(B)(

EME

:?j E,j+Vvijs izlam:

0

M§

c-3

qj . P
"ve M@ ve )+ W
i=lj

1

This theorem is the generalization of theorem 2 from work [5] (the total probability formula for the
joint vector Gaussian distribution) to the multidimensional-matrix case. The proof is performed by mul-
tiplication f{(y/§)f(&) in formula (3) which is followed by integration using formula (2), or by applying the
theorem on the associated multidimensional matrices [9] to theorem 2 of work [5].

The functions f(y/&) and f(§) in total probability formula (3) are usually given not in the form of ex-
pressions (4), (5), but in the natural for the Gaussian distribution form. In this case, theorem 2 takes the
form of theorem 3. Such representation is more convenient for practical utilization.

Theorem 3 (total probability formula 2 for the joint Gaussian distribution of the multidimension-
al random matrices). Let Z = {Z},i =1,2,...,m, be a one-dimensional random cell, composed of the q-di-
mensional matrices Z,, k; is the number of the scalar components of the matrix =, f(§) the probability
density function of the cell B, kg = ki + ko +...+ k,, the number of the scalar components of the cell E,
S/E) the condition probability density function of a p-dimensional matrix Y, ky the number of the scalar
components of the matrix Y, E k2 the kz-dimensional Euclidean space. If in the total probability formula

fO= | f/1e)fE©dsg ©)

EkE

the conditional probability density function f(y/€) has the following form

0,p 2
1 1 -1 L
/ Bl —— - d - ’ql hl' l' s
1018 =y = [ ; (y 50 a)”

where h; is a (p + q,)-dimensional matrix, allowing the multiplication 0.qi (hi&;), and the probability
density function f(€) has the following form
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1 12 %4 (0, y
f(§)=—_exp[——zz ( ((&,-—va,-)d’a’f)(&,-—vs,.)j],
JemE | dz | 2id;3

then the integral (6) (the total probability formula) is defined by the following expression:

0,p D)
1 1 4 L
f(/8)f(E)dE =————exp| — | Dy (y—z 4 (h,-vE,»j ,
J@o* | Dy | 2 [ = j

f(y)= {

11

where

m m O,q .
Dy =dy+y > (" (hidzy )y )
i=1 j=1

This theorem is the generalization of theorem 3 from work [5] to the multidimensional-matrix case.
It is obtained by applying the theorem on the associated multidimensional matrices [9] to theorem 3 of
work [5].

3. Bayes formula for the joint multidimensional-matrix Gaussian distribution. Theorem 4 (the
Bayes formula for the joint multidimensional-matrix Gaussian distribution). Let = = {£}, i =1,2,...,m, be
a one-dimensional random cell, composed of the q;-dimensional matrices E,, k; the number of the scalar
components of the matrix 2, f(§) the probability density function of the cell Z, k= = k| +ky +...+ k,, the
number of the scalar components of the cell E, f(y/&) the condition probability density function of a
p-dimensional matrix Y, ky the number of the scalar components of the matrix Y, E k2 the ks-dimensional
Euclidean space. If in the Bayes formula

ety TESGIE)

{ F(©f(y/8)dg

7

[

the conditional probability density function f(y/ &) is represented in the form

1 0.0 2 0, 1
JE)=——— expd—— i (8.8, )E TVE )y —=WY, 8
VACAES) '7(2n)ky|d |exp{ lZUZl ( (& ,1)§1)+JZ::1 V&) 2 } ®)

where S, ; are the elements of a symmetric positive definite cell S = {S,}, i,j= L,2,....m, and the
probabzlzty density function f(§) is represented in the form

f©=M= exp[——zz (008 - vz e )& —vs»)}:

lljl

— M- exp(—%ff Y (0"“ (éidgf)g_,j+

i=1j=1
m m 04j 0,gi ;i 1m m 0.9, 0,gi i
5 vz )5S vzt vz, )| ©)
i=1j=1 i=1;=1
1

Jem' jd=|

then the posterior probability density function f(&/ y) of the random cell = defined by the Bayes formu-
la (7) has the following form

Mz =

F&/ =;exp(—%°’2 e {&—NE}Z}J, (10)
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where the cell D3 is defined by the expression
D' ={DY ) ={dL +8;;}, ij=1.2,m,
Dz ={Dx= ;} is the two-dimensional cell inverse to the cell Dz 1,

moOg;, ..
B=(By=3 " (d¥/v=,)+V;,
Jj=1

m .
Nz ={Ng;}="{47'B} :{z 0.1+ (DE,I-,,-B})}, i=12,..,m. (11)
Jj=1

The expression “{& — NE}2 means the (0,0)-folded square of the one-dimensional cell £ — Nz. In this case
the elements of the cells are multiplied in the sense of the (0,0)-folded production. If one denotes

£—Nz =¢, then

°=°{a—Na}2=°=°{é}2={°=°<£,-£,->}=n={m,j}, i,j=12,..,m.

Fi . 020 100 21 _ 0.2 (-1
inally, the expression { = {&— Nz} }— {Dz n} means the (0,2)-folded product of the two-

dimensional cell Dz' = {D%/} and the two-dimensional cell 1) = {n;,j }, which is defined by the following
formula:

"*Ipg! n}éé 24441 (DL, ;).

Remark. The cell dz ={d= ;}, i,j=1,2,...,m, in formula (9) is the prior covariance cell of the
random cell = =1{=Z,E,,...,2,}, and the cell vg ={vz;}, i=1,2,...,m, is the prior mathematical expec-
tation of the random cell § ={§;,&5,...,& ., }. The two-dimensional cell dz' = (dé’j ), 1,j=1,m,is the cell
inverse to the cell dz. The one-dimensional cell Nz ={Nz;}, i=1,2,...,m, (11) is the posterior mathe-
matical expectation of the random cell E (N =, =EE;/ y)), and the two-dimensional cell Dz ={Dz ;}
is the posterior covariance cell of the random cell . Owing to this, the matrix D, ; is the posterior co-
variance matrix of the random matrices E; and E; (DE,[’ j=cov(E;,E;/ y)).

Theorem 4 is the generalization of theorem 4 of work [5] (Bayes formula for the joint vector Gaussian
distribution) to the multidimensional case. The proof is realized multiplicating f(y /&) f(§) in the nu-
merator of formula (7), integrating in the denominator of formula (7), and dividing the numerator by the
denominator. The proof can be performed also by applying the theorem on the associated multidimen-
sional matrices [9] to theorem 4 of work [5].

4. Bayesian estimations of the coefficients of the polynomial multidimensional-matrix re-
gression. Let us consider an object with the g-dimensional matrix of the input variable x = (x),
J=Uj2sedg)s Jo =12, ko, a=12,..,q, the p-dimensional matrix of the output variable
N=Mm),i=(,iz,....ip), ig =12,...,kyp, p=12,..., p, [9], and suppose that the output variable n has the
stochastic dependence on the input variable x so that the conditional probability density function f{n/x)
exists. We will denote y = @(x) as the regression function of | on x and suppose that the dependence of 1
on x could be represented in the form 1 = @(x) + €, where ¢ is the p-dimensional random matrix with the
zero mean value. Let the values y,1,¥,.2,...,Vo» (measurements) of the output variable be obtained for
the values x1,x5,...,x, of the input variable in the form

yo,p :(P(xu)+zp, le,zr"’n, (12)

where z, 1s the value of the random matrix €, which we will call the measurement error. We will consider
the distribution of the random matrix € to be Gaussian with the zero mean value and the covariance
matrix dy.
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We will agree to use below the following notations for indexing the elements of the multidimen-
sional matrices: i}, i,, ... are separate indices; 7(p) =(i1,i2,...,ip) is a set of p indices (p-multi-index);
lT(p,k) = (lT(p)’l,lT(p)’z,...,lT(p),k) is a set of k p-multi-indices.

Let us suppose that the hypothetical regression function ¢(x) is represented in the form of a polyno-
mial of the degree m [9]:

9x)= > (et )=
k=0 k

NgE

“(xter), m=012,., (13)
0

where ¢, is the (p + kg)-dimensional matrix of the coefficients (parameters),
cp = (Cf(p)j(q’k) ), ip) = (is125000 )y Jiab) = (@) J (@20 (@)K )

symmetric for k > 2 relative the g-multi-indices jg)1,/(g)25-J(q)k» €,y 18 the (kg + p)-dimensional
matrix of the coefficients (parameters),

Cz,k=(ctj(q,k);(p)), i(p) = (1502500 ) Jigk) = (Jq)s J(@)25e5 S0k )

ct,kz(ck)Tk, Ty =Bpiigiq 1s the transpose substitution of the type “onward” [10],

044 (e x k) ="M (xFe, 1) is the (0,kq)-folded product of the matrices ¢, and x¥, x* = ®x is the (0,0)-folded
k-th degree of the matrix x [9]. Let the ¢; ={c;x}, k=0,1,2,...,m, be the one-dimensional cell of the
coefficients of regression function (13), then the matrix of separate measurement y, , (12) will have the
probability density function of the following form

0,2p

1 m ’
f(yo,u /xp.’ct)zMy eXp _5 dY_l (yo,u - Z O,kq('x}]jcl,k )J s “':1’2:"'7”, (14)
k=0

-1
where M |, = (\l Q)™ |dy |) is the normalizing constant, dy Uis the matrix (0,p)-inverse to the matrix

dy [9], n, is the number of the scalar elements of the matrix y.
The problem consists of finding the Bayesian estimations ¢;,0,¢; 1,...,C;,m 0f the unknown coefficients
€.0,Ct 15---»Ct,m Of multidimensional-matrix regression (13) on the basis of the independent measurements

(xl9y0,1)9(x23y0,2)3"'9(xn9y0,7l)'
Let the random cell ¢; ={c, x}, k=0,1,2,...,m, have the Gaussian probability density function

1mm %9 (0g .
f(ct):Maexp[—Ezz ( ((ct,i—vc,,,-)dc;f)(aj—vc,,j)n:

i=l j=1

1 m %4 (0g; i
=M. exp| —> > ( (c’»idc’,] )Ct,jj-'_

2i20j=0

m m 04 0,9i . 1m m 0.9 0,qi .

+2 2 ( (cl,id(lg;j )Vct,jj—zz )3 ( (Vct,idé;j)vct,jj ’
i=0,j=0 i=0 =0
1
M. = i=0,1,2,....m,

——, {¢,=p+ig,
V2" ld,, |

inwhichd,, ={d.,; ;}, i,j=0,1,2,...,m, is the covariance cell of the random cell ¢,
0,0
deij= E( ((Ct,i —Veierj— Vc[,j)))

is the ((ig + p) + (jig + p))-dimensional matrix, a’;l = {di’tj}, i,j=0,1,2,...,m, is the cell inverse to the
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covariance cell d.,, V¢, ={V¢,0,Ve i Verm) ={Venits 1=0,1,2,...,m, is the one-dimensional cell of
the mathematical expectation of the random cell ¢, (i. e. v, ; = E(c; ;) is the (ig + p)-dimensional matrix),
n, is the number of the scalar elements of the cell c,.

The probability density function of the set of all having measurements Y, ={Vo.1,Y0.2>---»Yon} 1S
defined by the following expression

0,2p 2
_ _ n " 1x _ m
f(yo /X,C):Hf(yo,p /XH,C)ZMJ, eXp _EZ {le(yo,u - Z O’kq(CkXﬁ)J J , (15)
p=1

p=l

where we denote X = {x1,X2,...,X, }.

We should transform expression (15) to form (8) (when the ¢ replaces the &) for applying the Bayes
formula (10). This transformation is given in the Appendix. As a result, in accordance with the Bayes
formula (10), the posterior probability density function of the cell ¢; = {c;;}, i=0,1,2,...,m, is defined
by the following expression:

1 12z 04j (i
= ———ep| 2y | (e ~Ne) (D2 (e =Ney ) | (16)
Nem)™ | D, | i=1j=l

in which
D;'= {Dgy‘} ={d§;j +S,~,_,~} = {dj;;f L (d;lsxix,» )Ti’-’ } i,j=0,1,2,...,m, (17)
B:{Bi}z{foo’jq”’ (ave i)+ " (d;lsyxi)n}, i=0,1,2,...,m, (18)
=
N., =D, B} ={z 0.p+jq (Dc,,,.,ij)}z{th,l.}, i=0,1,2,....m, (19)
j=0
Sxkxx = él 00 (xﬁxﬁ), Syxx = él " (J’HXS)a (20)

370 = (yo,layo,2>--->yo,n)-

The transpose substitutions 7},; in (17) and 7; in (18) are defined by the expressions:

719727---979%)_.19_.27---5_-'7_1
T'lj == — Tl i _j — Jj_“ ) iaj:(),laz,"'5m7
}\'9“5lla125'~'ali:]1a,]2,“~a]j

il,lTZ""’lTi)n .
Li=__—_ _| 1=012,.,m,
Mt,02,..050

where the multi-indices 71,72,...,],',5,172,...,17,‘ contain by ¢ indexes each, and the multi-indices ?_»,ﬁ
contain by p indices each.

The two-dimensional cell Dc_l1 = {Dét] }, i,j=0,1,2,...,m, (17) has the same size as the two-dimen-
sional cell d., ={d,; ;}, i. €. Dé’tj is the ((ig + p) + (jgq + p))-dimensional matrix.

The element B; of the one-dimensional cell B ={B;}, i=0,1,2,...,m, (18) is the (ig + p)-dimensional
matrix.
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Thus, the Bayesian estimation of the coefficient cell of multidimensional-matrix polynomial regres-
sion (13) is defined by one-dimensional cell (19),

m .
& ={N¢,}="{D. B} = { > “P*H4(D,, . ;B ,-)}, i=0,1,2,...,m, 1)
Jj=0

and the two-dimensional cell D.. ={D..; ;} in (16) is defined by the posterior covariance of the
multidimensional-matrix coefficients ¢, k =0,1,2,...,m.
Let us note that we obtained the estimations of the coefficients ¢, for the regression function in the

m
form o(x)= Y. O’kq(xk Crk ) It means that we should prepare the priory characteristics just for these co-
k=0
efficients (not for the coefficients c,).

The use of the single measurement to update the estimation is often of interest. Such a case takes
place in the dual control theory [6—8]. In this case, one should use, instead of expressions (20), the fol-
lowing expressions defining the single measurement (x,, y,):

0,0 0,0
S = (7)o Sy = (venn)

Conclusion. The calculation of the Bayesian estimations of the coefficients of the polynomial mul-
tidimensional-matrix regression by formulae (17), (18), (21) requires the involvement of the computer
equipment. This algorithm was implemented in the form of the m-file-function of the Matlab program-
ming system. The efficiency of the algorithm was confirmed for the examples of the one-dimensional
and two-dimensional matrix-matrix quadratic regressions.

The results obtained in the paper possess the theoretical and algorithmic generality.

Appendix. Let us transform the probability density function

0,2p P
o g 1Y 1 < 0kg k

SGolFe)=Miexp| == | d7'| yop— X *(eixt) (14)

2 p=1 k=0

to the form (8) when the ¢;; replaces the £, 1. e. to the following form:
/x.c)=M" LS S ™ (7 (c,us > 7 (v Ly 2A
J(o/x,c)=My exp —5% 'Zo ( (i i,j)Ct,j)"'ZO ( jct,j)_E ’ 2A)

i=0 j= Jj=

where p ; = jg + p is the dimensionality of the j-th coefficient ¢, ; in (13), to obtain the expressions for the
S;jand the V), as it requires theorem 4.

. - 0,k K\ _ N Okqf k .
Let us take into account, that >’ ™ "(ckx )= > q(x Crk ) Then in (1A)
k=0 k=0

2
(yo,u - i O’kq(ckxﬁ )j = (yw - i O’kq(ckxﬁ )J(YO,H - i O’Iq(xfxct,l )j =

k=0 1=0

=(VowVou)— (yo,u ( 5 "8 xpers )D - (( S 0k (cxxt )] Vou J + [( Z’::O 49k )j(i (s, )B _

1=0 k 1=0
= (yo,uyo,u ) - (é 0q ((yo,,uxfl )ct,z )] - (éo 0.k (Ck (xﬁyo,u ))j + ((éoé 0.kq (Cko’lq ((xﬁxfl )Ct,l ))D

After summation by p, as it is supposed in (1A), we will get

2
z[yo,u DI (8% )} =S 2 —(z 0”q<syxzct,l)j—(z o (cksxky)Hz > (e ™ (Sxkxzc,,z))}

u=1 k=0 =0 k=0 k=07=0
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where

- 2
Sy2:zyo,p, S

a2 i Okl N kel
1 o = 2 VouXy S k= 2 Xpxy = leu ’
pu= p=

g p=l p=l

and after multiplication by d7" we will have

027 n m 2
d}712(y0,u_ Z O’kq(ckxﬁ)J =
pn=1 k=0
0.2p 0,2p m 0,2p mom
= (ar's 2)-2 [d;l(z °”q(syx1ct,z>j]+ [d;‘( I3 O’kq(ckOJq(Sxkx,c,,z))D. (3A)
=0 k=01=0

Now we transform the second summand in (3A):

0,2p m m 0’217 m 0,[7
(d?l (Z 0.lq (Syxlcnl)jj => (d)71 O’lq(Syxlct,l)) => 0’p+lq( (d)ﬂsyxl )Ct,l j (4A)
1=0 1=0

=0

Let us proceed in (4A) to the element form of the representation:

027 (1 0g O iy
(dy ’ (SyxlCrJ))ZZd P StAedCaaE = 2 AV sig ge E =
rp [ B Al ed]
_ BAe _ _. o _ [ e
=2 7272 A" s q, aCth. aE = Z DAYy E . G = Z IR i (BA)
B il A i e i, A [P /AT
where

. 0,p
Ao -1
i) =(d% sz )= (47'S,0)=2
Then instead of (5A) we will get the expression
0.lg+p
0,2p 0,p T3,
-1 0,/q _ T3 T _ -1 >
(dY (Syxlct,l)) B (11 Zl;l ﬁzfl,...,fl,ﬁcﬁ ,..-,l'l,ll} - ( (dY Syxl ) ct’lj’

from which the expression for the matrix V, of interest follows:

Op/ T3,
Vi= " (di's )

It remains to find the transpose substitution 75 ;. Because Z?? 7 = ZRi..q then
Ea"':Tlaﬁ
T3,l === - = quJrP,P = Tl’
Hy Uyeen 1]

where the multi-index i contains p indices, and multi-indices 7, 7,,..., j; contain g indices each. It is seen,
that this substitution coincides with the substitution in the definition of regression function (13), what is
reflected in its notation 7.

Let us transform now the third summand in (3A):

0.2p m m m m 02p
[d;l > O’kq(cko”q(sxkxlc,,z))j= S Y (a8 i) (6A)

k=01=0 k=01=0

particularly, proceed in (6A) from the matrix form to the element form of representation. We will get

027 (-1 0ka(, 0la g _ g L I I JME |-
v e S ke )| =| X2dT Y cn g 2 SHe ke 1T | %Z Wig |=
i i

A 1 sl Tloeenl
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M. oo
= %Z ,Z, CK,E,...J;@Zfd STl Fire 1T | =

B flenik JlsesJl

_ ME o

= X X A" sq BT TR e TR T K
= =

We denote

T — 0,0
Y TR W -1 _ _
(qX,ﬁ,ﬁ,~~->ﬁc T J1 )= (d 8 STl 1l ) - (dy Sxkxl ) - Qk,l’ k,1=0,12,....m.

Then

F T
Z Z A ST Fire FICU Tl UL e o | =

=X X i i BT T |
Wpeesil A JlyensJ1s
’ ORTED) Coigep)
o D D Y S oy B % Sl b (Qk”, Ct’l)ct’k '
N yeeoslfesh Jlyeeos jIH

As a result, we get for the third summand in (3A) the following expression

0.2p o 0l m.m 0-kap) 0.(g+p) 0,0 - Tk 1
dy | 22 ’q(Ck ’q(Sxkxlcz,l)) =22 ( (dY Sxkxl) Ct,z)chk )

k=01=0 k=01=0

so that

0,0 _ Tk
O = (dy'Suu ) L kI=0,12,m, (7A)

0’0 . . . . .
where Q= (d;lekx,). It remains to find the transpose substitution 7, in (7A). Since

Tkl — == = = =
Aok e JIE DPPR sl T2 then

ooy ks Ay J1sees J1,10
Ty, =| ot S 01,2, m, 8A)

7\/7n5 il:“" ik 5j1 ,""jl
where the multi-indices Ji, j2,..., j/»4,42,..., i contain ¢ indices each, and multi-indices A,[X contain p
indices each. Thus,

0,0 Ty
Sks = (dflsxkxz) o , k,1=012,..,m,

where T} ; is defined by expression (8A).
The required expressions for the matrices V; and S, ; are obtained.
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