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use of tetrad formalism and the matrix 10-dimension formalism of Duffin — Kemmer — Petieau. After separating the variables,
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YACTHUIA CO CIIMHOM 1 B IUJIMHAPUYECKOM BA3UCE:
METOA ITIPOEKTUBHbBIX OIIEPATOPOB

AnHoTanms. B HacTosmeit pabore cucrema ypaBHEHHUH, ONMUCHIBAIONIAs YaCTUILy CO CIIMHOM 1, U3y4aeTcsl B I[UJIMH-
JPUYIECKHX KOOPAMHATAX C HCIOJIE30BaHUEM TeTPATHOro opManu3Ma 1 MaTpudaHoro 10-meproro dpopmanmzma Jladduna —
Kemmepa — Iletne. Ilocne pasnmeneHus mepeMEHHBIX sl pemieHus cuctembl 10 ypaBHEHHH OTHOCHTEIBHO MEPEMEHHOU
INPUMEHSETCS] METOJ, MpeaIokeHHbIH PenopoBbIM — [ POHCKMM U OCHOBAHHBIH Ha MPUMEHEHUH TPOEKTHBHBIX OMEPATOPOB.
IIpu HanuuUK BHELIHEr0 OJHOPOAHOIO MAarHUTHOIO IOJIS IOCTPOCHBI B SBHOM BUJE TPH HE3aBUCUMBIX Kjacca BOJHOBBIX
(YHKIHN C COOTBETCTBYIONMMH JHEPreTHUSCKUMH CrieKTpaMu. OTAENBHO HccieayeTcs: 6e3MaccoBoe Moje CO CIIUHOM 1
Hal{IeHO YeThIpe TNHEITHO HE3aBUCUMBIX PEIICHNUS, 1Ba U3 KOTOPBIX KaITHOPOBOYHEIE, @ OCTATbHbIC ABAa HE COACPIKAT KaJlu-
OpoBOYHBIX cTeneHel cBobobl. [lpu a3ToM Takske ucnonb3yercs metox Penoposa — ['poHckoro.

KuroueBbie ciioBa: mosie co cnuHoM 1, ypaBHenue Jlabduna — Kemmepa, nuiauHapudeckass CUMMETPHS, METOJ
MIPOCKTUBHBIX ONEPaTOPOB, MACCHBHAS M 0€3MacCOBBIE YAaCTHIIBI, KATHOPOBOUHBIC CTEIIEHH CBOOO/IEI
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Introduction, initial equations. In this paper, the system of equations describing a spin 1 particle
is studied in cylindric coordinates with the use of tetrad formalism and matrix 10-dimension formalism
of Duffin — Kemmer — Petieau. Applying the Fedorov — Gronskiy method [1, 2], we examine this field in
the massive case in the presence of an external magnetic field, getting three independent classes of wave
functions and corresponding energy spectra. We also study the massless particle, focusing attention on
separating two gauge solutions. At this also the Fedorov — Gronskiy method is used. The Proca system
of tensor equations for the vector particle has the form

D - MY, =0, D,¥,-Dy¥,-MY, =0, (1)
where D, =0, +ied,. We will use the wave function
O=Yo,¥,¥Y2,¥Y3;Y01, Y02, VY03, ¥ 23,¥31,¥Y12) = (Hy; H>).

Let us transform egs. (1) to the matrix form. The first equation gives K “D,H, — MH,| =0, where

. -1 . .. . . -1 |
KOZ—I SREEERE 1 Ul EEEEEEREREINE [ N SRR -1 PE 2 SR +1
R S . [ -
-1 . .. e ...+l
The second equation leads to D,L*H; — MH , = 0, where
01 00 -1 0 0 O 0 0 0 0 0O 0 0 O
0 010 00 00 -1 0 0 0 0 0 0 O
o [0 0 01 1 00 00O , 0 0 0 0 ;5 -1 0.0 0
L= , L= , L’= , L= :
00 00 00 00 0 0 01 0 0 -1 0
00 0O 00 0 -1 0 0 0 0 0 10 O
00 00 0 010 0 -1 00 0 0 0 O
So the system (1) can be written as follows
K°D,Hy~MH,=0, D,L*H,—MH,=0,
0 K¢ H 2
(DaBa—M)CD=O, B = , o= ! @
L 0 H)

Let us generalize this equation to the Riemannian space-time. For any given metric g,q(x), we choose

some tetrad dS? = gap (x)dx“dxﬁ, gap(X) = e(4)a (x); then the covariant equation should be written
as [3, 4]

{B“(X)(iJrZa(x)j—M}‘P(X)=0, ©
ox“
where the local matrices B%(x) and their blocks are defined with the help of the tetrads
. . . 0 K,
B (x) = el (P =| . @
L“e( ) 0

The corresponding connection X (x) is defined by the following relations
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symbols J (”1]; and J (“2]; stand for generators for the vector W,(x) and the antisymmetric tensor ‘¥, (x).
Equation (3) may be presented with the use of the Ricci rotation coefficients

o . 1
{BC (e(oé) P ied, +5JabYabc) —M}\P(x) =0, Yiable = ~Vbale = €(b)pio€in)C(r)- ©)

In the block form, instead of (6) we have equations

1
[Kceg)aa + KCJ(”;; Eyabc}Hz - MH, =0,

(7)
, o 1
[L‘eg)aa + LI Eyabc}Hl — MH, =0.

Cylindric coordinates and tetrad. In cylindric coordinates x* = (,7,¢,z) and tetrad (see [4, 5]),
equations (7) can be written in the form (we take into account the presence of the external uniform mag-
netic field)

I Oy +eBri/2+J3
k02 g1 0 galutebr @ 4 k3, = mm,,
ot or r Oz
- ®)
Oy +eBr? 2+ Jt
00, 9 p0etelr O 4 2 9\, = M,
Ot or r Oz

When separating the variables, it is convenient to use the cyclic basis. This basis is defined by the
requirement of diagonality of the matrix /' for the vector field H, = (). The necessary transformation
H{|=UH, is determined by the following matrix U:

1 0 0 0
0 —-1/~2 i/~2 0

U= V2 i ; )
0 0 0 1

0 1/42 /42 0

we can verify that the needed equality is valid. Correspondingly, the generators for the vector and tensor
transform to the cyclic basis in accordance with the rules

T =yi®tut, T =7YQI+I107Y. 10
Ji J J

Let us find the 6-dimensional form of the tensor generator J (122) (firstly in the Cartesian basis):

0 -1 00 00
1 000 00
3 0 000 00
JPH,=j%H,+H,j%, H,={E.B}Y) = J&= 11
YHy=j "Hy+Hjj » ={E;,B;} 3=l 0 0 0 -1 o n
0 00 1 00
0 000 00

Let us find the cyclic representation for this generator; the initial formula has the form
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0 Ewn Ex Ex

—-E1o 0 B3 -Byy -1 =D =12
Dy =0= s, JOo=j o+e T,
Ll —Ex —Bj3p 0 B @
—E3y By —Bio 0
with the use of which we derive
-1
0 —-E 0 E5 .0 .
0 |Ee 0 =Bxw o _—, |. .1 . . .
Je=i , T =i : (12)
B3p 0 B . A .
_Eyx 0 -By O 0
-1

It is also necessary to transform the matrices of equation (6) to the cyclic basis. We will perform the
transformation in the block form: H =UH,H, =(U QU)H, = C,H,; so we get the rule

0 K¢
L 0

0 CKC5y!
CoLOCT! 0o |

We find the explicit form of the matrix C, in H, =C,H,,and it is omitted. Further, we obtain expressions
for the matrix blocks in the cyclic basis, and they are also omitted.
We separate the variables in equations (8) taking into account the substitutions

E;
q)o E2
I‘_Il _ e—ifteim(beikz D, , [__12 :e—ifteimd)eila E; ) (13)
CDZ Bl
CDg BZ
Bs
With the use of notations
d m+eBr’/2 d m+1+eBr’/2
ap=—+———, Gy =——+——,
dr r dr r
d m+eBr/2 d m-1+eBr?/2
bm:__—7 bm—lz__—J
dr r dr r

the resulting system of differential equations in the variable » reads as follows

birEy — ami By —N2UkEy =\2M®g,  a,By —2i(kB; —cE) =2M ®y,

1By —bp 1By +N2i€Ey =N2M®y, by, By +~2i(kB) + €E3) = 2M®;

an®o —2ic®, =\2ME;,  —2i(k®g +e®,)=~2ME>, (14)
by ®o —2ie®; =2ME;, —by®, +2ik®5 =2MB,,

B ® | + A @3 =2MBy,  —anu®, —2ik®, =~2MB;.

Projective operator method. In order to solve system (14) we will use the Fedorov — Gronskiy
method based on projective operators [1]. We start with the operator of the third projection of the spin
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Y =—iJ%; it is readily verified that it satisfies the minimal equation Y (¥ —1)(¥ +1) =0. This minimal
equation permits us to introduce three projective operators:

Py=1-Y2, P+1=%Y(Y+1), P_1=%Y(Y—1). (15)

Accordingly, the complete wave function can be expanded into the sum of three parts:
Y=Y¥Yo+¥Y,+¥Y., Ys=FY, oc=0+1,-1. (16)

With the use of the explicit form of the generator ¥ = —iJ 12 we find the following structure for three
projective constituents (these expressions refer to the cyclic basis)

Dy(r) 0 0
0 0 D (r)
D, (r) 0 0
0 D5(r) 0
wo=| ° w, = ° y_, -|F10) (17)
Ey(r)| i 0 0 |
0 E;3(r) 0
0 Bi(r) 0
By (r) 0 0
0 0 Bs(r)

The above system of 10 equations (14) can be written in the matrix form. Let us act on this system by
projective operators (15); in this way, we obtain three subsystems:

BBy —iN2E2k — i Ey =N2M @y,

Py,  iN2¢Ey —apBi by 1B =\N2M®,, (18)
—iV2(k®g +e®y) =V2MEy, by @)+ apa®3 =~2MBy;
iN2eEs +iN2kB + by, By =2M @5,

Py, (19)
b, @ —iN2e®s =N2MEs,  —by @, +i2k®; = 2MB;:

iN2€E| + ap, By —iN2kBy =\2M @,

(20)
a,®o—iN2e®, =\2ME,, —iN2k®,—a,®,=2MB;.

In accordance with the Fedorov — Gronskiy method [1, 2], each projective component from (17) has to be
determined by only one function:

D 0 0
0 0 D,
(OF) 0 0
0 D, 0
0 0 E;
Wo(r)= E fo(r), ¥a@)= 0 Sa@), Y@= 0 S, (21)
0 E; 0
0 B 0
B, 0 0
0 0 B
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where the columns are composed of some numerical coefficients. So we reduce the systems to another
form

Eibp1f1 —iN2KEs fo = Esamii fo1 =N2M® £,

P, iN2€E, fo — Biamii f11 = B3bm 1 f1 =N2M D, fo, (22)
~iN2(k® fo + €@ fo) =N2ZMEs fo,  ®ibpoifoi +@3dmsi fr1 = N2MB; fo;
iIN2€Es f11+iN2KBy f11 + Boby fo = 2M D5 £,

P.1, (23)
~® by fo —iN2e®3 f1) =N2MEsf11, —®b,, fo +i2kDs [ =2MB, f.1;

P iN2€E| f_1 + Baay, fo —iN2kBs f-1 =2M®, £y, 24)
15

@ oapfo—iN2eD [ =\2ME f1, —iN2k® [ —Dra, fo=2MBsf ..

Besides, according to the Fedorov — Gronsky method, equations (22)—(24) are to be consistent with the
following differential constraints

bpafa(r)=Cifo(r), amfo(r)=Cof1(r), amufu(r)=Csfo(r), bufo(r)=Cafu(r), 25)

where C,, C,, C;, C, are some numerical parameters. Relations (25) will allow us to transform the
differential equations (22)—(24) to the algebraic form. In this way, we get

E\Cy —iN2kEy — EsCy =\N2M ®y,
Po, l'\/Esz —31C3 —B3C1 = \/EMCDL (26)
—i2(k® +e®y) =V2ME,, ®,C)+®3C3 =\2MB,;

iN2€E; +iN2kBy + B,Cy =2M @5,

1> 27)
" —®(Cy —in2e®3 =\2ME;, —®,Cy+iN2k®D; =2MB;;

iN26¢E, + BsCs —in2kBy =\2M ®,
P INzEL 20 —1 3 1 (28)

CD()Cz—l'\/EE(D] :\/EMEl, —i\/qu)l—(I)QCZZ\/EMBg.
Note that in the massless case, these equations take a simpler form:

E\Cy —in2kEy — E5C3 =0,

Py,  iN2eE,—BiCs—B3Cy =0, (29)
—iV2(k®g +e®y)=2E;,  ©,Cy+D3C3 =~2B;
l'\/EEE3 +l\/§kBl +BzC4 = 0,

P, (30)
’ —®0C4—i\/§€q)3:\/§E3, -®,Cy +i\/5k(b3:\/§Bl;

i\/Ec’El +BzC2 —i\/EkB3 :0,

@31
®oCy —iN2e®) =2E),  —iN2kD| - ®,Cy =/2B;;

we will turn to considering the massless case later. From constraints (25) one can derive the second
order equations:
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bpam fo(r)=CiCafo(r), ambu-1f-1(r)=CrCf1(r),
am+1bmf0 (}") = C3C4f0 (l"), bmam+1f+l (I") = C4C3f+l (}")

Taking in mind the linearity of eqgs. (25), we conclude that the parameters in each pair can be chosen as
equal: C, = C,, C, = C;. Therefore the constraints and the second order equations take on the form

b1 f-1(r)=Cifo(r),  amfo(r)=Cifo(r), (33)
it fr1 (1) =Cs3fo(r), b fo(r)=Csfu(r);

(32)

(bm—lam _Clz)fO :07 (ambm—l _Clz)f—l :0>

(34)
(amibn=C3) fo=0,  (buama —C3) fu=0.
Further we get (for brevity we use the notation eB = B)
2 2.2 2
d”1d _B7r" m  piB-c? =0,
dr2 rdr 4 r2 ) )
= C3=C{-2B, (35)

(dz Jr1 d B** m?®

- ———Bm-B-C3 |fy =0,
dr2 rdr 4 r2 S]fo

d* 1d B** (m-1)° 2

— - - -Bm—-C{ | f-1=0,
(drz rdr 4 P2 " ]/

d*> 1d B**? (m+1)2 2

— - -Bm-C =0.
(drz - dr 4 2 m 3| fa

Thus, we have only three different equations and the identity C7 = C£ —2B. Let us introduce the new
parameter X = B—Cf, then the three equations are written as follows (we transform them into the
variable x = Br? / 2)

2 2
S SRR A MCTE LT AR &) P
dx? xdx 4 x2 x\ 2 2B

d*> 1d 1 [(m-1/2* 1( m+1 X
2, —_t - +— - +— - :0’ 36
(dxz xdx 4 x?2 x 2 2B S (36)
d> 1d 1 [(m+D)/2)* 1 m-1 X
3, - +—| — +— =0.
[dxz xdx 4 x? x 2 2B S

These three equations are of the same type. It is enough to investigate the first, and the results for
another two can be obtained by formal changes. Let us search solutions of the first equation in the form
fo(x)= x1e“F (x); the equation for F(x) reads

XF"+(2A+1+2Cx)F + l(AZ—(m/z)2)+ 7Y To W oINS NN (FCE B | G
X 2 2B 4
impose the restrictions
AP —(m/2)*=0=>A=%|m/2|, C2—%=O:>C=i%.

To get solutions that vanish at the point » = 0 and in infinity, we choose A=+|m /2|, C=-1/2; so the
equation simplifies
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"+ (| m| 1=y | mm L X Ve
2 2 2B

This is an equation of the confluent hypergeometric type with parameters

a=———+———, c=\m|+l, F=®(a,c,x). (37)

The polynomial condition a = —n, gives

|m|+m+%+mj>o, m=0,1,2,.; (39)

1, X=+2B(

to this spectrum there correspond the following solutions
Ll
L fo)=x 2e7 PR,  F()=®(nm|+,x). (39)
The other two equations lead to similar results. So we have

|m|

fo)=x 2e2F(x),  F(x)=®(=n|m|+1,x),

, mlam 1 (40)
x =28/ |>B, m =012,
2 2
Hml
fa)=x 2 e 2F(x), Fa(x)=®(-ny|m—1]+1,x),
’ |m—1]+m+1 1 (1)
x=2p| I 5B, ny=01,2,..:
2 2
Jml
fa=x 2 e™2FR(x), Fi(x)=O(-n3,|m+1]+1,x),
, 42)

|m+1|+m—1

X=ZB( +%+n3)>B, n3=0,1,2,....

Note that the X value in all three cases (40)—(42) should be the same. Therefore, we can use the sim-
plest quantization rule for the quantity X:

X=2BN>0, N=lml*m

+%+n, n=0,1,2,.... 43)

Write down the expressions for C;, C;:

Ci=6iNX—-B, C3=83iNX+B, & =1, &3=1; (44)

the quantities C| and C; turn out to be purely imaginary; the quantities 6, and 6, are still considered as
independent. However, it can be proven that different choices of signs do not matter because they lead to
equivalent results which differ only by simple linear transformations.

The study of the algebraic system. Let us turn to the algebraic system in the presence of a uniform
magnetic field. We will follow the case 6; =+1, 85 =+1. We write the system in the matrix form AZ = 0;
from vanishing the determinant of the matrix, we obtain

det A=32M (k> + M2 +X—52)(Bz(k—f)(k+f)+M2(k2 + M2 +X—52)2)= 0; @5

the variable X can take three different values. In dimensionless variables
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i:E’ i:K, i=b, Xi

M M M2 W:xia i:192737 (46)

these roots are given by the formulas

x1=E2-K*-1, x;=-bNE?>-K*+E*-K?-1, x3=+bE*-K>+E*-K>-1. (@7

Eqs. (47) can be solved with respect to the energy parameter (taking in mind that £* — K> > 0):
2
E*-K?=1+2bN, Ez—Kzzi(bi\/b2+8bN+4) . (48)

Let us consider this system at x = x,. We verify that the rank of the matrix is equal to 9. If we remove
the first row, then the rank of the remaining matrix will be the same. We verify that by removing the first
column, we get a 9 x 9 matrix with a non-vanishing determinant. Thus, we obtain the inhomogeneous
system, its solutions have the form

0
E
=
@, 0
D, _l,\/E2—1<2—1—b
@4 2
E; —iM
x1, |E2|=®g K . 49)
Ex . E*-K?*-1+b
B 2
B, L ENEP-K?-1+b
B; 2K
0
L ENE?-K’-1-b
1 \/EK

Solutions referring to the roots x, and x5 can be found similarly. In relation (49) the quantity @, can
be arbitrary, for example, @, = 1. So, we have found three series of energy and respective exact wave
functions.

Massless case. In the massless case (see (29)—(31)), interaction with the magnetic field should be
excluded; so the second order equations are written as follows (note that X = —C?):

d> 1d m?
1, |—+-—-"4Xx|fo=0,
[dr2 rdr p? Jfo

2 IRty
2, [%+%%—@+X}f_1:0, (50)
r r
d*> 1d (m+1)?
3, + — +X =0.
[d}/‘z }"d}" rz f+l

In order to have solutions of egs. (50) consistent with the gauge solutions (which will be specified below),
the parameter X should be equal to —C 2 =X =¢2-k>. In the variable z =/ X, r, three equations from
(50) take the Bessel form
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2 2
N {d_+§%+1—m—2Jfo(2)=0, S0(2) = Li sy (2);

+——+1-
dz* zdz 22

2 2
) [d_ ld  _ (m-1) J @) =0, f1(2)= LaJ sy (2); (51

2 2
N (d_ 1d ,_(m+)

dz* zdz z?

]f+1(z) =0, f41(2)=L3J gy (2).

Further, we will consider solutions that are regular at the point z = 0:
Jo(2)=LiJpw(2),  f-1(2) = Ladpm-y(2),  f+1(2) = L3 s (2). (52)

Let us transform the above constraints (taking in mind C; = C, = C3 =+/—X; now the operators of the
first order do not contain the term Br%/2)

bud f1(P) =N=X fo(r),  amfo(r) =~=X f_1(r),
Am f11(F) ==X fo(r),  bufo(r) ==X f11(r)

to the variable z, then we get the following equations

d -1 . d .
(— - m—jL2J|m—1| (2) = iL1J p(2), (— + ﬁjL1J|m| (2)=iLyJ y—y(2),
z dz z

d
dZ 1 d 3
m+ ) m .
—+—— L3y (2) = ily Ty (2), | — —— | L1 (2) = iL3J 11 (2).
dz z dz z
With the use of the well-known formulas for the Bessel functions
d d
(E+IZ))Jp_Jp—la (__fj-]p_ Jp+1a
we derive the linear relations
4 fo(D)=LiIn(z), [fa(2)=—iliJn1(2), [f11(2)=+LJm(2);
B fo(2)=LiJ-w(2), [f-1(2)=+LiJ mi1(2),  fr1(2) = —iLiJ -1 (2). (54)
Let us turn to the algebraic system. In the massless case, the system (29)—(31) takes the form
C] :Cz :C3 :C4 ==X :M:i\lfz —kz;
WE| —iN2kEy —uE3 =0, i2¢E; —puB; —pB; =0,
P,
—i2(k® +e®y)=2Ey, pud®;+pd; =+/2B;;
iN2€E5 +in2kB; + pB, =0,
+1s
—u®o —iv2e®3 =\2E;5, —pd, +ix2k®; =/2B;;
i\/EEE] +},I.Bz —i\/EkB3 = 0,
1, (55)

],Lq)() —l'\/zfq)l :\/EEl, —i\/EkCDl —M(I)z :\/533.

This system is written in the matrix form ¥ = {@0,@1,@2,@3;El,EQ,E3,Bl,B2,B3}, Ajoxio¥ =0;
The rank of the matrix 4 equals to 7; we may verify that when removing the rows 2, 3, 4 the rank of the
matrix remains the same. Therefore, we have the following system
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=)

0 0 0 -k -2k -iNe -k 0 0
0 0 0 0 0 0 iN2e 2k e -k
0 0

0

w

oS O O
=S 5 6 8

-2 0 0

0
0 —iNe* -k 2k 0 0 0 -2 0 0 ||, |70
2
0 0 0 0 i2¢e 0 0 0 e -k —iN2k||E,
iNe* -k —i2e 0 0 2 0 0 0 0 0 ||B
0 2k —ieE—K 0 0 0 0 0 0 V2 ||B:
B

w

Note that if in the matrix we remove the column 2, 3, 4, then we will get the 7 x 7 matrix with the non-
vanishing determinant, det 47,7 = 8\/§k6(k2 - 62); thus, we obtain the inhomogeneous system with the
following general solution

)

2 2 2 2
Je? —k Je? —k k
0= D - DO; ——Dy,
J2e V2e €
i(k2+52)q) +i(k2—52) ikNe? -k
- 1

E = D — D,,
! 2¢ 2¢ ’ J2e 2
ikNe? —k? i(k* —€?) ikNe? —k?
Ezz— CI)1+ (I)z-i- @3,
V2 < V2 (56)
22 2 . 2 .2 22 2
E3:l(k € )q)1+lk e —k cI)2_l(k +e )CD3,
2¢ \/55 2¢
. iNe? —k? iNe? —k? iNe? —k?
Bl:lkq)S_Tq)Za Bzz \/5 (Dl-l- \/5 (Dg,
[ 2 42
B3:—uq)2—ikq)1.

N

Another method of solving the system is possible. Indeed, eliminating the tensor components

Es =—i(kDg +eDy), 32:%((1)1-”1)3),

NG

Ey=—L 0y —icd;, B =—t_d,+ikds, 7)

V2 V2

E]ZLCI)O—it,fq)l, B3:—ikq)1—iq)2

N5 B

from four remaining equations
ME| —iN2kE; —pE3 =0,  iN2¢E; —uB) —uB; =0,
i\/§€E3 +i\/§kB1 + },I.BZ =0, i\/Ec”E] +}/LBQ —i\/EkB3 =0,

we get the homogenous system for 4 variables (taking in mind p = iNe? —k? )
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—\/562 6\/62 —k? —\/Ekf —E\/62 "y
J2ke ket —k? J2k? ket — k2 ||Po
2

2

[ k™ —e€ / 2 —k? =0
eNe? —k? kNe? —k? )
N N

2 .2 2 2
—6\/62—/{2 6\/; —kNe? —k? k—c

We verify that the rank of the matrix equals to 1. Without changing the rank of the matrix, we can
remove the rows 2, 3, 4. Thus, we get the expression for @,

Ve —k? k Ve —k?
- O ——Py—————
J2e ¢ J2e

If we substitute expression (58) in the formula (57), for the tensor components we find

de? —k? €2k Ne? —k? Ne?—k? Ner—k?
1 +1i O3, Bry=i——O; +i————
¢ 2 V2

) 2_ g2 2,2 Ve —k?
ok N Kk ke g N ks (59)

2¢ \/55 2¢ \E
,52+k2® Ne?—k’k = Je? —k?

q)3, B3:—ikq)1—i

— l—
2¢ : \/Eg 2¢ \/5

Let us examine three solutions for tensor components, referring to the variants
(®; =1,0,0); (0,5 =1,0); (0,0,d5 =1); making up the 3 x 6 matrix

Dy = @5 (58)

Ds;

D,.

et +k? ket —k? et —k? e —k? ,
—i —i —i 0 ——————— —ik
2¢ \/55 2¢ \/5
y e —k’k _l_fz—kz _H,\/fz—kzk y €2 —k? 0 _iﬁ
V2e € J2e V2 V2ol
et —k? kNer —k? k24 e? . e —k?
—i +i —i +ik ——————— 0
2¢ \/55 2¢ \/5

We can see that rows in this matrix are linearly dependent:

2k

(Row 1)+ 5 (Row 2) =Row 3; (60)
e -k

this means that among three independent solutions (58) one has the gauge nature.

The possibility exists to find another gauge solution as a 4-gradient of the scalar function. Let the
scalar function @(x) obey the massless Klein — Fock — Gordon wave equation in cylindric coordinates,
then explicitly it reads

o2 10 6 1 0* %) Lic ims i
[ Lo ______z]e zftelmq)ezsz(r):()’ (61)
Z

whence it follows an equation of the Bessel form (we use the variable x = Ve — k2 r)
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d> 1d m?
L == =0, £ =Ly ()
[dx2 X dx x? Jf f 4l (%)

Tetrad components of this gauge solution are determined by the formula ®@;(x) = e(ol‘)aad)(x), or in detail
Do=0,0(x), D =0,0(x), D3=—0,D(x), D3 =0.D(x).
r
Taking in mind the substitution for @, we get
. d im .
CDOZ_lff, chz_f’ (I)Zz_fa q)3:ll§f- (62)
dr r
This 4-vector should be transformed to the cyclic basis
q_)():q)o, (T)zzq)g,, (T)l=——CD1+—2CD2, CT)3=—CD1+—2CD2. (63)

Whence we derive
2 2 2 2
— . — . — e“—k d m — e“—k d m
DOy =—iey,, Oo=ik/,,, CDlz——[—Jr—ij, (Ds:—(———ij (64)
V4

It is convenient to examine separately two possibilities:

[2 ;2 _ 2,2
e -k (ierij, Bs - e -k (i_ﬂJJm;

I, ®g=—ieJ,, ®,=ik/,, ®5=- —
0 2 ! 2 dz z J2 dz =z
(65)
— _ — Ne?=k*(d m — e2—k*(d m
i, oy=-ieJ_,, ©,=ikJ_,, <D1=——(—+—jJ_m, ®3=—[———jJ_m
\/5 dz r \/5 dz z

Whence, with the use of the known properties (58) of Bessel functions, we find expressions for relative
coefficients:

— Ve? —k?

I, @ =—iclJ,, ®,=ikLJ,, ® =-
J2

— el -k?

11, Dy =—ielJ_,, ©,=ikLJ_,, D=
2

where we may set L = 1 and L' = 1. Thus, we have found four independent solutions in the massless case,
two of them are gauge ones.

Conclusions. The system of equations describing a spin 1 particle was studied in cylindric coordi-
nates with the use of tetrad formalism and matrix 10-dimension Duffin — Kemmer — Petieau formalism.
After separating the variables, to resolve the system of 10 equations in the variable , we applied the
the Fedorov — Gronskiy method based on the use of projective operators. In the presence of an external
uniform magnetic field, we constructed in an explicit form three independent classes of wave functions
with the corresponding energy spectra. Separately the massless field with spin 1 was studied; there were
found four linearly independent solutions, two of which are gauge ones, and other two do not contain
gauge degrees of freedom.

It should be noted that all four solutions for a massless spin 1 particle are necessary when con-
structing the gauge solutions for a massless spin 2 particle in accordance with the Pauli — Fierz ap-
proach [6, 7].

2

L1, ®3=-

LIy, @3=
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