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ROBUST STABILIZABILITY AND STABILIZATION OF THREE-TIME-SCALE LINEAR 
TIME-INVARIANT SINGULARLY PERTURBED SYSTEMS WITH DELAY

Abstract. The objective of this study is to obtain the stabilizability conditions and a stabilizing composite state feedback 
control for the exponential stabilization of three-time-scale singularly perturbed linear time-invariant systems with multiple 
commensurate delays in the slow state variables and with two small parameters of perturbation (TSPLTISD). The stabilizability 
conditions and the stabilizing feedback do not depend on the small parameters and are valid for all of their sufficiently small 
values. The approach used in this work is the nondegenerate decoupling transformation that splits the TSPLTISD into three 
regularly dependent on the small parameters subsystems, which are lower in dimensions than the TSPLTISD. Further, the 
decoupled subsystems are approximated by three subsystems that do not depend on the small parameters. It is proven that the 
stabilizability of the approximating subsystems guarantees the robust (with respect to small parameters) stabilizability of the 
original TSPLTISD. Finally, we obtain a representation of a parameter free composite feedback control for the TSPLTISD, 
stabilizing it for all sufficiently small values of the parameters. A numerical example is given.
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РОБАСТНАЯ СТАБИЛИЗИРУЕМОСТЬ И СТАБИЛИЗАЦИЯ ТРЕХТЕМПОВЫХ ЛИНЕЙНЫХ 
СТАЦИОНАРНЫХ СИНГУЛЯРНО ВОЗМУЩЕННЫХ СИСТЕМ С ЗАПАЗДЫВАНИЕМ

Аннотация. Целью работы является получение условий стабилизируемости и построение композитной стаби-
лизирующей обратной связи по состоянию для трехтемповых линейных стационарных сингулярно возмущенных 
систем с кратными соизмеримыми запаздываниями в медленных переменных состояния и с двумя малыми параме-
трами при части старших производных (ТСВЛССЗ). Условия стабилизируемости и стабилизирующая обратная связь 
не зависят от малых параметров и действительны для всех их достаточно малых значений. Применяемый в работе 
подход использует невырожденное преобразование, которое полностью расщепляет зависящую от двух малых па-
раметров сингулярно возмущенную систему на три регулярно зависящие от параметров подсистемы меньших раз-
мерностей, чем исходная система, которые аппроксимируются подсистемами, не зависящими от малых параметров. 
Доказано, что стабилизируемость аппроксимирующих подсистем гарантирует робастную (по малым параметрам) 
стабилизируемость исходной ТСВЛССЗ. Получено представление не зависящего от параметра композитного управ-
ления с обратной связью для ТСВЛССЗ, стабилизирующего ее при всех достаточно малых значениях параметров. 
Приведен численный пример.

Ключевые слова: сингулярно возмущенные системы, запаздывание, декомпозиция, стабилизируемость, стаби-
лизирующее композитное управление с обратной связью
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Introduction. Singularly perturbed systems (SPS) are found in a broad class of applications ranging 
from engineering applications to areas such as quantum mechanics [1–3]. Whenever parameters of per-
turbation that represent small parasitics such as electrical resistance, viscosity, friction, etc. are present in 
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classes of dynamic systems, this can lead to SPSs with high dimensionality. SPSs are composed of vari-
ables with different tempos, which leads to solutions rapidly varying at different tempos in different do-
mains. Thus, in practical applications, due to the stiffness of such systems, accurate analysis and control 
of such systems are challenging and complex [4, 5]. But, due to the presence of variables with different 
tempos, the system can be decomposed into its subsystems according to the tempo of the variables [4]. 
Decomposed subsystems are lower in dimensionality compared to the original system and do not depend 
on parameters. As a result, analysis of the system properties such as stabilizability, controllability etc, and 
the design of the controller for such systems are less complex compared to that of the original SPS [4, 5].

For systems with delays, the conditions for the stabilizability are established in the literature [6–9]. 
Even though there are previous studies [10–14] (see also references in [10]) on the stabilizability of linear 
two- and three-time-scale SPSs with single state delays, no work has been published on more complex 
and generalized higher order SPSs with multiple delays. In [14] Chang-type [15] non-degenerate trans-
formation is used in a stabilization problem for a two-time-scale singularly perturbed system with a sin-
gle state delay in the slow state variable. To the authors’ knowledge, the stabilization of TSPLTISDs has 
not yet been well explained. In [16] a three-time-scale SPS without delay is considered and a non-singu-
lar linear transformation is introduced in such a way that the original system is diagonalized and sim-
plified, the analysis of the stability properties of the overall system is reduced to analyzing the reduced 
subsystems. A similar study has been conducted in [17] where the time-scale separation and stability of 
linear time-varying and time-invariant multiparameter SPSs are discussed. 

This study has also been greatly influenced by the results of [12, 14, 16, 17], and the major objec-
tive of this study is to obtain solutions for the stabilization problem for complex generalized higher 
order SPSs with multiple delays. Hence, this study considers a more generalized class of the problem, 
a linear time invariant three-time-scale singularly perturbed system with multiple commensurate de-
lays in the slow state variable (TSPLTISD). In the context of decomposition of the considered SPS, in 
[18] the generalization of the Chang-type transformation [15] on the three-time scale singularly per-
turbed time-invariant system with multiple commensurate delays in slow state variables is carried out 
which decouples the SPS into its lower dimensional subsystems according to the tempo of the vari-
ables. The simulation results of study [19] indicate that the asymptotic method is effective in the ap-
proximation of sub-systems of SPS without compromising the qualitative behaviour of the solutions. 
Thus, a similar schema to that of study [18] is used in the asymptotic decomposition of the considered 
three-time-scale SPS. In [20], based on the first Lyapunov method and decomposition, it is proven that 
the exponential stability of the asymptotically approximated subsystems guarantees the exponential 
stability of the original three-time-scale system with delay and the established conditions are robust 
with respect to the small parameters.

Considering the results of studies [10–14], on similar DS and BLSs, theorems are proven for the DS 
and BLSs of the considered three-time-scale SPS with respect to the stabilizability of the subsystems. It is 
further proven that the decomposed exact slow and fast subsystems are ( )µ  closer to the DS and BLSs, 
respectively. Based on the preliminary results, the robust sufficient conditions for the stabilizability of 
the obtained lower dimensional subsystems with respect to small parameters ε1, ε2 > 0 and for the overall 
stabilizability of the considered TSPLTISD are extensive discussed with relevant illustrative examples. 
A representation of a parameter free composite stabilizing feedback control for the system is obtained. 

Statement of the problem. Let us consider a three-time-scale singularly perturbed linear time-in-
variant system with multiple commensurate delays in the slow state variables (TSPLTISD): 
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here 1 2 3, , , , = 1,3 ,  = 0,  i j i i iA A A B i j k  are constant matrices with appropriate dimensions, = const > 0h  
is a delay, 2 10 < 1,ε ε   are small parameters, 0 0

1 1 2 2(0, ],  (0, ],ε ∈ ε ε ∈ ε  that describe the time-scale 
separation, x is the slow variable, y is the fast variable and z is the fastest variable, ,∈u U  U is a set of 
piecewise continuous vector functions for t ≥ 0. Let 0(0) .ϕ  x  Note that since 2 1 1,ε ε   then 
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tions, where ( )θr  is the Euclidean norm. Let [ ]×
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ring of polynomials of ℝ. Let 
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 be a differentiation operator, e–ph be a delay operator: 

1
1 1

=0
( ) = ( ),    ( ) = ( );    A ( ) [ ],    = 1,3, ,   = 1,3 ,i

lph jph ph jph n n ph
i i j j

j
e v t v t h e v t v t jh e A e e i B j        

be the matrix operators.
D e f i n i t i o n  1. For a given ε1 > 0, ε2 > 0, unforced ( )( ) 0≡u t  TSPLTISD (1)–(3) is considered to be 

exponentially stable if constants exist α > 0 and K ≠ 1 such that for any 1 2 30 0 0,  ,  ∈ ∈ ∈n n nx y z    
and a piecewise continuous n1-vector function φ(θ), [ ,0),θ∈ −kh  the solution ( )( ), ( ), ( ) ,  0,≥x t y t z t t  of 
system (1)–(3) with initial conditions: 

0 0 0(0) = ,    (0) = ,    (0) = ,    ( ) = ( ),    [ ,0),θ ϕ θ θ∈ −x x y y z z x kh

satisfies the inequality { } ( )0[ , ]( ), ( ), ( ) (0) (0) .α
−

− ϕ +≤ +t
khx t y t z t Ke y z

D e f i n i t i o n  2. For a given 1 2> 0,  > 0,ε ε  TSPLTISD (1)–(3) is considered to be stabilizable by 
feedback if the linear state feedback control exists:

 1 2 3( ) = F ( ) ( ) ( ) ( ),− + +phu t e x t F y t F z t  (4)

with the feedback gain ( ) 1 2 31 2 3F ( ), , [ ] ,− × × ×∈ ⊕ ⊕ph r n r n r ne F F z    such that closed loop system (1)–
(3), (4) is exponentially stable for the given 1 2> 0,  > 0.ε ε

In this case control law (4) is called the stabilizing composite state-feedback.
D e f i n i t i o n  3. If numbers * *

1 2> 0,  > 0ε ε  exist such that TSPLTISD (1)–(3) is stabilizable for any 
*

1 1(0, ]ε ∈ ε  and *
2 2(0, ],ε ∈ ε  we say that stabilizability is robust with respect to parameters ε1, ε2. 

O b j e c t i v e. The main objective of this paper is to obtain sufficient conditions for the robust stabi-
lizability of TSPLTISD (1)–(3) and to consruct representation of a parameter free stabilizing feedback 
gain for the TSPLTISD. 

Preliminaries. For simplicity in the sequel, where this does not lead to an ambiguous understand-
ing, the argument e–ph in the matrix functions 1( ),  = 1,3 ,A − ph

i e i  etc. will be omitted. 
By ℂ, the set of complex numbers is denoted. Let us consider S(ℂ) to be a set of all complex num-

bers ℂ with a negative real part: ( ) = { : Re < 0}λ∈ λS    is the stability region.
For ε1 > 0, ε2 > 0 let us introduce the matrix operators:
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and define a matrix-valued function as follows: 
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+ + ε ε λ λ − ε ε ε ε λ∈ 

h h
n n ne I e B 

Applying the results of [8, 14] to the system (1)–(3) for a given ε1 > 0, ε2 > 0, we obtain: 
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S t a t e m e n t  1. For a fixed ε1 > 0 and ε2 > 0 system (1)–(3) is stabilizable if and only if:

( ) ( )1 2 1 2 3N , , , = ,     \ .rank −λε ε λ + + ∀λ∈he n n n S 

Note that it suffices to verify the condition of Statement 1 only for a λ from a TSPLTISD (1)–(3) 
spectrum (the set of eigenvalues) 

( ){ }1 2 1 21 2 3( , ) = : det A , , = 0 .−
+ + σ ε ε λ∈ λ − ε ε 

ph
n n nI e

The application of Statement 1 depends on the values of the small parameters, while in various re-
al-life problems these values are unknown, i. e. these problems are uncertain with respect to the parame-
ters. To obtain other conditions for the TSPLTISD stabilization, robust in small parameters, in this work 
we apply the decomposition procedure.

A degenerate system and two boundary layer systems are associated with (n1 + n2 + n3)-dimensional 
TSPLTISD (1)–(3), which are parameter free and smaller dimensional than the original system [21, 18]. Let 
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The degenerate system (slow subsystem, DS) can be obtained from TSPLTISD (1)–(3) by setting 
ε1 = ε2 = 0, which leads to: 
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Here xs(t), ys(t), zs(t) are variables of TSPLTISD (1)–(3) with ε1 = ε2 = 0, us(t) is a control for DS (6). 
Considering the last two equations of obtained system (6) under conditions (5), expressing ys, zs in terms 
of xs аnd substituting the resulting expressions into the first equation of system (6), the DS is obtained in 
the matrix operator form: 
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DS (7) is a n1-dimensional system with multiple commensurate delays. 
The ε1-boundary layer system (the fast subsystem, ε1-BLS), corresponding to TSPLTISD (1)–(3), is 

obtained by setting ε2 = 0 in TSPLTISD (1)–(3) with 1 1 1( ),  ( ),  ( )f f fx t y t z t  as a variables of a TSPLTISD 
system with ε2 = 0, expressing 1( )fz t  from the last equation of the obtained system under conditions (5) 
in terms of 1 1,f fy x  and substituting into the second equation of the system, the following equation is 
obtained: 

1 1 21 1 22 1 2 1ˆ ˆ ˆ( ) = A ( ) ( ) ( ) ( ).−ε + +

ph
f f f fy t e x t A y t B u t

Then by “stretching” the time scale with the transformation 1
1

=τ
ε
t , and “freezing” in this equation the 

slow variables 1
1 1 0

1
:  = 0,   ,≡

τ
f

f f
dx

x x x
d

 and defining 1
1 22 21 1 1ˆ ˆˆ( ) A A ( ) (0) ( ),− −τ ϕ + ε τ

ph
fy e y  

following n2-dimensional ε1-BLS without delay can be obtained: 
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where 1 22 1 2 1 1 1 1ˆ ˆ= ,  = ,  ( ) = ( ) ( )τ ε τ −f f f sA A B B u u u t  is a control for ε1-BLS (9), which we will consider 
with the initial conditions 1

0 22 21 0ˆ ˆˆ(0) = A ( ) (0) .− −+ ϕ +phy y A e y
The ε2-boundary layer system (the fastest subsystem, ε2-BLS), corresponding to TSPLTISD 
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where 2 33 2 3 2 2 1 1= ,  = ,  ( ) = ( ) ( ) ( )τ − τ −f f f f sA A B B u u t u u t  is a control for ε2-BLS (10), which we 
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With the introducing of Chang’s type [15] non-degenerate transformation [18, 19], TSPLTISD (1)–(3) 

can be completely split into its subsystems with separated motions without compromising the qualita-
tive behaviours of original TSPLTISD (1)–(3). Further in [19], it is proven that, under conditions (5) the 
separated subsystems can be asymptotically approximated for sufficiently small ε1, ε2 > 0 to any desired 
degree of accuracy with respect to small parameter of perturbation. 

From [18] and [19] follows the next statement:
T h e o r e m  1. Let (5) be satisfied, then parameters * *
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TSPLTISD (1)–(3) is transformed into an equivalent system with separated motions: 

( ) ( )1 1( ) = A , , ( ) B , , ( ),− −
ξ ξξ ε µ ξ + ε µ

ph pht e t e u t

( ) ( )1 1 1( ) = A , , ( ) B , , ( ),− −
η ηε η ε µ η + ε µ

ph pht e t e u t

( ) ( )2 1 1( ) = A , , ( ) B , , ( ),− −
β βε β ε µ η + ε µ

ph pht e t e u t

where for all sufficiently small parameters ε1 and ε2, μ < ε1:

( ) ( ) ( )
( ) ( ) ( )

1 1 1

1

1 2

1

1 1 1

1 1 1 11 2

A , , = A ( ) O( ),      A , , = A O( ),      A , , = A O( ),

B , , = B O( ),      B , , = B O( ),      B , , = B O( ).

− − − −
ξ η β

− − −
ξ η β

ε µ + ε µ + ε µ +

ε µ ε+ ε µ + ε µ

ε ε

ε ε+

εph ph ph ph
s f f

ph ph ph
s f f

e e e e

e e e

Note that since ( )1 2det , , 1−ε ε ≡phT e  [18], then the time-independent transformation ( )1 2 ,T ,  −ε ε phe  
is the Lyapunov transformation.

Stabilizability of the subsystems of the TSPLTISD. 
D e f i n i t i o n  4. The unforced DS (7) ( )( ) 0≡su t  is said to be exponentially stable if con-

stants αs > 0 and Ks ≠ 1 exist that for any 10 ∈ nx  , 1( ) PC([ ,0); )nkh      the solution ( ), 0,≥sx t t  
of DS (7) with initial conditions 0(0) = , ( ) = ( ),  [ ,0),θ ϕ θ θ∈ −s sx x x kh  satisfies the inequality 

[ ,0] .( ) −α
−≤ ϕst

s s khx t K e  The unforced ε1-BLS (9) ( )1 1( ) 0τ ≡fu  is said to be exponentially stable 
if constants 1 0α >f  and 1 1≠fK  exist that for any 20ˆ ,∈ ny   the solution 1 1ˆ( ), 0,τ τ ≥y  of ε1-BLS (9) 
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with initial conditions 0ˆ ˆ(0) =y y  satisfies the inequality 1 1
1 1ˆ ˆ( ) (0) .−α ττ ≤ f

fy K e y  Unforced ε2-BLS 
(10) ( )2 2( ) 0τ ≡fu  is said to be exponentially stable if constants 2 0α >f  and 2 1≠fK  exist that for any 
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fz K e z
D e f i n i t i o n  5. DS (7) is said to be stabilizable if a linear state feedback ( ) = F ( ) ( ),− ph
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exist that the closed loop DS ( ) = A ( ) F ( ) ( )− − + 

ph ph
s s s s sx t e B e x t  is exponentially stable. ε1-BLS (9) 

is said to be stabilizable if the linear state feedback 1 1 1ˆ( ) = ( )τ τfu F y  exists that the closed loop system 
1

1 1 1 1
1

ˆ( ) ˆ= [ ] ( )τ
+ τ

τ
f f f

dy A B F y
d

 is exponentially stable. ε2-BLS (10) is said to be stabilizable if the linear 

state feedback 2 2 2ˆ( ) = ( )τ τfu F z  exists that the closed loop system 2
2 2 2 2 2

2

ˆ( ) ˆ( ) = [ ] ( )τ
τ + τ

τ
f f f

dz z A B F z
d

 

is exponentially stable.
Applying the results in [8, 14] on DS (7) and BLSs (9), (10) the following theorem can be proven [20].
S t a t e m e n t  2. 
a) The DS (7) is stabilizable if and only if:

11rank N ( , ) rank A ( ), = ,      \ ( ).−λ −λ λ λ − ∀λ∈ 

h h
s n s se I e B n S 

b) The ε1-BLS (9) is stabilizable if and only if: 

1 1 1 22rank ( ) rank[ , ] = ,      \ ( ).λ λ − ∀λ∈f n f fN I A B n S 

c) The ε2-BLS (10) is stabilizable if and only if: 

2 2 2 33rank ( ) rank[ , ] = ,       \ ( ).λ λ − ∀λ∈f n f fN I A B n S 

Note that it suffices to verify conditions of Statement 2 only for a λ from the spectra 

1= { : det[ A ( )]= 0}−λσ λ∈ λ − h
s n sI e  of DS (7), 1 2 1= { : det[ ] = 0}σ λ∈ λ −f n fI A  of ε1-BLS (9) and 

2 3 2= { : det[ ] = 0}σ λ∈ λ −f n fI A  of ε2-BLS (10).
Let (5) be satisfied and let 1 2F ( ),  ,  − ph

s f fe F F  be stabilizing linear state feedback gains for DS (7), 
ε1-BLS (9) and ε2-BLS (10) , respectively:

 1 1 1 1 1 2 2 2 2 2ˆ ˆ( ) = F ( ) ( ),      ( ) = ( ),      ( ) = ( )− τ τ τ τph
s s s f f f f f fu t e x t u F y u F z . (11)

Let us define matrices as follows:

 

1
1 1 22 21 2

1 1
2 33 31 3 3 1 22 21 2

1
2 1 2 33 32 3 1 3 2

ˆ ˆ ˆF ( ) = F ( ) A ( ) F ( )

ˆ ˆ ˆA ( ) F ( ) A ( ) F ( ) ,      

= [ ],      = .

− − − − −

− − − − − −

−

 + + + 
  + + + +  

+ +

ph ph ph ph
s f s

ph ph ph ph
f s f s

f f f f

e e F A e B e

F A e B e B F A e B e

F F F A A B F F F  

(12)

T h e o r e m  2. Let (5) be satisfied, DS (7), ε1-BLS (7) and ε2-BLS (10) be stabilizable by a linear state 
feedback with gains 1F ( ),  − ph

s fe F  and 2 ,fF  respectively, then the following conditions are satisfied: 

 
1

22 2 3 23 2 3 33 3 3 32 3 2 33 3 3det ( )( ) ( )  0,      det[ ] 0.− + − + + + ≠ + ≠ A B F A B F A B F A B F A B F
 

(13)

Then, * 0
1 1(0, ]ε ∈ ε  and * 0

2 2(0, ]ε ∈ ε  exist that TSPLTISD (1)–(3) is stabilizable for all *
1 1(0, ]ε ∈ ε  

and *
2 2 2 1(0, ],   ,ε ∈ ε ε ε  i. e. stabilizability is robust with respect to small parameters ε1, ε2 by a com-

posite linear state feedback (4), where 1F ( ),− phe  F2 and F3 are defined in (12).
P r o o f. It follows from [20] that, under the conditions of Theorem 2, TSPLTISD (1)–(3) is stabiliz-

able for sufficiently small ε1, ε2 > 0, preserving the order of the smallness.
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Let us consider a feedback low of form (4), where 1F ( ),− phe  F2 and F3 are not yet defined. Then the 
following closed-loop system can be obtained:

 

11 12 13

1 21 22 23

2 31 32 33

( ) F ( )
( ) = F ( ) ,
( ) F ( )

     
     ε     
     ε     







x t F F x t
y t F F y t
z t F F z t  

(14)

where

 

11 11 1 1 12 12 1 2 13 13 1 3

21 21 2 1 22 22 2 2 23 23 2 3

31 31 3 1 32 32 3 2 33 33 3 3

F ( ) = A ( ) F ( ),      = ,      = ,

F ( ) = A ( ) F ( ),      = ,      = ,

F ( ) = A ( ) F ( ),      = ,      =

− − −

− − −

− − −

+ + +

+ + +

+ + +

ph ph ph

ph ph ph

ph ph ph

e e B e F A B F F A B F

e e B e F A B F F A B F

e e B e F A B F F A B F .  

(15)

Since the closed loop system (14), (15) is of the form of TSPLTISD (1)–(3), then (see Theorem 1) un-
der conditions (13), a Chang’s type [15] decoupling transformation 1 2T( , , )−ε ε

phe  with 1L ( , , )−ε µ

ph
i e  

and 1H ( , , ),   = 1,2,3,−ε µ

ph
i e i  exists [18] satisfiying the equations:

 

( )
( )

( )
( )

31 3 1 33 3 3 2 2 2 11 1 1 13 1 3 2

3 21 2 1 23 2 3 2

32 3 2 33 3 3 3 2 2 12 1 2 13 1 3 3

3 22 2 2 23 2 3 3

21 2 1 1 1 11 1 1 1 1

A F [ ]L L [A F ] [ ]L

L [A F ] [ ]L = 0,

[ ]L L [ ] [ ]L

L [ ] [ ] = 0,

A F L [A F ] L

+ − + + ε + − + +

+µ + − +

+ − + + ε + − + +

+µ + − +

+ + ε + − ε

  

 

  

 

 

B A B F B A B F

B A B F

A B F A B F A B F A B F

A B F A B F L

B B

( )
12 1 2 1 22 2 2 1

23 2 3 2 23 2 3 3 1 1 1 13 1 3 3 1 13 1 3 2

[ ]L [ ]L

[ ]L [ ] L L [ ]L L [ ]L = 0.

+ − + −

− + + + + ε + − +

 

      

A B F A B F

A B F A B F L A B F A B F
 

(16)

The transformation ( )1 2T , , −ε ε

phe  brings closed-loop system (14), (15) to the decoupled one:

 ( ) ( ) ( )1 1 1 2 1( ) = A , , ( ),      ( ) = A , , ( ),      ( ) = A , , ( ),− − −
ξ η βξ ε µ ξ ε η ε µ η ε β ε µ β 



ph ph pht e t t e t t e t
 

(17)

where 

( ) ( ) ( )1 1 1A , , ,  A , , ,  A , ,− − −
ξ η βε µ ε µ ε µph ph phe e e

are defined by: 

 

11 1 1 12 1 2 1 13 1 3 2 13 1 3 3 1

22 2 2 1 1 12 1 2 23 2 3 3 1 1 13 1 3 3

33 3 3 1 2 13 1 3 3 23 2 3

A ( ) = A F ( )L ( )L  ( )L L ,

A ( ) = L ( )  ( )L  L ( )L , 

A ( ) =  L ( ) L ( ).

ph

ph

ph

e B A B F A B F A B F

e A B F A B F A B F A B F

e A B F A B F A B F










      

        

       

   

   

 
 

(18)

We will look for 1F ( ),− phe  F2 and F3: 

 1 1 1 2 2 2 1 2 3 3 2F ( ) = F ( ) L ( ) L ( ),     = L ,     = .− − − −+ + +  

ph ph ph ph
s f f f f fe e F e F e F F F F F  (19)

Substituting (19) into (16) and taking (8) into account μ < ε1, under conditions (5) we obtain: 

 

1
1 22 21 2

1
3 33 32 3 1

1
2 33 31 3 3 1 1

1

1

1

,

.

ˆ ˆ ˆL ( ) = A ( ) F ( ) O( )

L ( ) = [ ] O( ),

L ( ) = A ( ) F ( ) L ( ) O( )

− − − −

− −
ε

− − − − −

 + + 

+ +

 + + ε+

ε



ε



 

ph ph ph
s

ph
f

ph ph ph ph
s f

e A e B e

e A A B F

e A e B e B F e  

(20)

Substituting (19) and (20) into (18), we obtain after transformation that decoupled closed loop control 
system (17) with feedback (4), (19) has the form:
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 1

1 1

1

1

2 2 2 2

11

( ) = A ( ) F ( ) O( ) ( ),

( ) = [ O( )] ( ),

( ) = [ O( )] ( ),

− − ε

ε

 ξ + + ξ 
ε η +

ε

+ η

ε β + + β







ph ph
s s s

f f f

f f f

t e B e t

t A B F t

t A B F t  

(21)

i. e. decoupled closed loop subsystems (17) are O(ε1)-close to the closed loop DS, ε1-BLS, ε2-BLS, with 
feedback (11), respectively.

Since according to the assumptions of Theorem 2 DS, ε2-BLS, ε1-BLS are stabilizable by the feed-
back with gains 2 1F ( ),  ,  ,− ph

s f fe F F  respectively, so the closed loop DS, ε1-BLS, ε2-BLS are stable, and 
taking into account the preservation of the stability under the small additive perturbations of the system 
parameters it follows that system (21) is stable for all sufficiently small values ε1 > 0, ε2 > 0. 

Original closed-loop system (14), (15) is obtained from (17) by the non-degenerate transformation 
1

1T ( , , )− −ε µ

phe  [18]. Since the stability is preserved under the non-degenerate transformation, then 
closed loop systems (14), (15) are also stable for all sufficiently small parameters ε1 and ε2, and therefore 
TSPLTISD (1)–(3) is stabilizable by (4), (19).

Substituting the constructed 2F ( ),  − ph
s fe F  and 1fF  into (4) and considering approximations (20) 

for 1L ( , , ),  = 1,2,3,−ε µ

ph
i e i  we obtain:

  
  

1 1 1
1 22 21 2 2 33 31 3 3 2 22

1
21 2 1 2 33 32 31 1 121

ˆ ˆ ˆˆ( ) = F ( ) A ( ) F ( ) ( ) F ( )

ˆ ˆA F ( ) O( ) ( ) ( ) O( ) ( ) O( ) ( ).

ph ph ph ph ph
s f s f s f

ph
s f f f f

u t e F A e B e F A A e B e B F A

B e x t F F A A B F y t F z t

       

 

      
              

 

Comparing the last representation with (12) we obtain:

11 2 1 13( ) = F ( ) O( ) ( ) [ O( )] ( ) [ O( )] ( ).− + ε ε ε  + + + + 
phu t e x t F y t F z t

Taking into account the preservation of the stability under the small additive perturbations of the system 
parameters, we conclude that state feedback (4), (12) stabilizes TSPLTISD (1)–(3). End of Proof.

C o r o l l a r y. Let (5) and the conditions of Statement 2 be satisfied. Then * 0
1 1(0, ]ε ∈ ε  and * 0

2 2(0, ]ε ∈ ε  
exist that TSPLTISD (1)–(3) is stabilizable for all *

1 1(0, ]ε ∈ ε  and *
2 2 2 1(0, ],  ,ε ∈ ε ε ε  i. e. stabilizabil-

ity is robust with respect to the small parameters ε1, ε2. 
Results and verifications. An illustrative example of TSPLTISD is considered: 

 
1

2

( ) = ( ) ( ) ( ),      , , ,
( ) = ( ) ( ) 0.5 ( ),
( ) = ( 1) ( ) 0.1 ( ),      ( ) ,

− + ∈
ε + +
ε − − + + ∈







x t x t y t u t x y z
y t x t y t u t
z t x t z t u t u t



  

(22)

with the initial conditions: 

  (0) = 1,      (0) = 0,      (0) = 1,      ( ) = 1,     1,0 .x y z x     (23)

Considering system (22) parameters in the form of (1)–(3) can be denoted as: 
1 2 3 11,0 11,1 12 13 1 21,0

21,1 22 23 2 31,0 31,1 32 33 3

= 1,      = = = = 1,      = 1,      = 0,      = 1,      = 0,      = 1,     = 1,
= 0,      = 1,      = 0,      = 0.5,      = 0,      = 1,      = 0,      = 1,      = 0.1.

−

−

h n n n r A A A A B A
A A A B A A A A B

The characteristic equation of (22) 

( )1 1 2
1 2 1 2 2 1 1( , , ) ( 1) 2 = 0,   ,− −ω ε ε λ = ε ε λε − λ ε − λε − λ + λ∈� 

the spectrum of system (22)

 

( ){ }
( ) ( ){ }

1 2 1 2

1 2 1 2 1
2 1 1 1 2 1 1 1 2

( , ) = det : , , , = 0

1 1 6 , 1 1 6 , .

−λ

− − −

σ ε ε λ∈ ω ε ε λ =

= ε + ε − − ε + ε ε + ε + − ε + ε ε

he

 
(24)
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According to (24) the real parts of all the elements of the spectrum σ(ε1, ε2) are positive, i.e. sys-
tem (22) is unstable for all ε1 > 0, ε2 > 0, as shown in Fig. 1, considering 1 20.1,  0.001ε = ε =  and 

( ) 0, 0.≡ ≥u t t
The DS for (22) has the form ( ) = 2 ( ) 1.5 ( ),  ( ) = 1,  [ 1,0],+ θ θ∈ − s sx t x t u t x  and its spectrum is 

σs = {2}. The real part of the element of the spectrum σs is positive. i. e. DS for (22) is unstable. Since for 
N ( , ) = [ 2 1.5]−λλ λ −s e  the rank N ( , ) = 1−λλ h

s e  for ,∀λ∈  as per the results of Statement 2, DS is 
stabilizable, namely by a stabilizing feedback with the gain F ( ) < 4 / 3.− ≡ −ph

s se F

The ε2-BLS for (22) has the form 2
2 2

2

ˆ( ) ˆ ˆ= ( ) 0.1 ( ),  (0) = 0,τ
τ + τ

τ
dz z u z

d
 and its spectrum is 2 = {1}.σ f  

The real part of the element of the spectrum 2σ f  is positive. i.e. ε2-BLS for (22) is unstable. Since for 
2 ( ) = [ 1 0.1]λ λ −fN  the 2rank ( ) = 1λfN  for ,∀λ∈  as per the results of Statement 2, ε2-BLS is 

stabilizable, namely by a stabilizing feedback with the gain 2fF  if 2 < 10.−fF  

The ε1-BLS for (22) has the form 1
1 1

1

ˆ( ) ˆ ˆ= ( ) 0.5 ( ),  (0) = 0,τ
τ + τ

τ
dy y u y

d
 and its spectrum is 1 = {1}.σ f  

The real part of the element of the spectrum 1σ f  is positive. i.e. ε1-BLS for (22) is unstable. But since 
for, 1( ) = [ 1 0.5]λ λ −fN  the 1rank ( ) = 1λfN  for ,∀λ∈  as per the results of Statement 2, ε1-BLS is 
stabilizable, namely by a stabilizing feedback with gain 1fF  if 1 < 2.−fF

Considering the fact that the subsystems of TSPLTISD (22) are stabilizable, and also that (22) sat-
isfies the conditions in Theorem 2, by Theorem 2 it can be stated that TSPLTISD (22) is stabilizable, 
which confirms the previous conclusion for all sufficiently small ε1 > 0, ε2 > 0. 

Let Fs = –2, 1 10= −fF  and 2 20.= −fF  By (12) for system (22) stabilizing feedback can be chosen 
in composite form (4): 

 1 2 3 1 2 3( ) = F ( ) ( ) ( ) ( ),     F 2 20 ,     10,     20.− −+ + = + = = −ph phu t e x t F y t F z t e F F  (25)

The explicit form of the closed-loop system for system (22), (25):

 

1

2

( ) = (3 20 ) ( ) 9 ( ) 20 ( ),

( ) = (2 10 ) ( ) 6 ( ) 10 ( ),

( ) = (0.2 ) ( ) ( ) ( ).

−

−

−

+ + −

ε + + −

ε + + −







ph

ph

ph

x t e x t y t z t

y t e x t y t z t

z t e x t y t z t  

(26)

Fig. 1. Solutions of TSPLTISD (22) for 1 20.1,  0.001,  ( ) 0, 0ε = ε = ≡ ≥u t t

Fig. 2. Solutions of closed-loop system (26) for ε1 = 0.1, ε1 = 0.001
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Resulting closed loop system (26) is stable. The characteristic equation of (26) is

( )1 2 1 2( , , ) det , , = 0, ,−λ ω ε ε λ λ − ε ε λ∈ 

h
c cI A e �

 

where

  1 1 1
1 2 1 1 1

1 1 1
2 2 2

3 20 9 20

A , , = (2 10 ) 6 10 ,

(0.2 )

h

h h
c

h

e

e e

e



    

   

  
 

       
 

     

3 2 2 2
1 2( , , ) 20 e 8 30 e 5 4.−λ −λω ε ε λ = λ − λ − λ + λ + λ +c  For stabilizing control of form (25), let us solve 

closed system (26) with initial conditions (23) and for 1 20.1,  0.001.ε = ε =  The solutions to system (26) 
are shown in Fig. 2, which demonstrates the stability of a closed-loop system.

Conclusion. For the considered three-time-scale singularly perturbed linear time-invariant systems 
with multiple commensurate delays in slow state variable (1)–(3), Statement 1 establishes the conditions 
for the stabilizabilty of TSPLTISD (1)–(3), but the conditions are dependent on parameters of pertur-
bation (ε1, ε2), i.e. are complex due to the high dimensionality and the stiffness of the system. With 
the introduction of the Chang-type transformation [18] TSPLTISD is decomposed into its subsystems, 
which are lower dimensional, devided by tempos and are asymptotically close to three small param-
eter-free subsystems (7), (9), (10). Due to the results of Theorems 1, 2 robust sufficient conditions for 
the stabilizability of TSPLTISD (1)–(3) can be determined based on the stabilizability criteria of its 
Degenerate System and the two Boundary Layer Systems, i. e. ε-free sufficient conditions. Namely, the 
stabili zability of the slow and the fast subsystems of TSPLTISD (1)–(3) yields the stabilizability of orig-
inal system (1)–(3) for all sufficiently small values of the parameters of singular perturbation, preserving 
the order of the smallness, i.e. robustly stabilizable with respect to the small perturbations. Moreover, by 
having a stabilizing state feedback for the Degenerate System and the two Boundary Layer Systems, the 
stabilization of original TSPLTISD (1)–(3) can be performed robustly and independently of the small pa-
rameters, with a composite state feedback of type (4), (12). The results obtained through the illustrative 
example considered also support the results.

Since subregulator problems are mutually independent, a parallel algorithm can be applied to the 
design of subsystemsʼ subregulators separately. The knowledge of the small parameters is not required 
in a composite design. This expands the possibilities of practical implementation of control algorithms 
in real time under conditions of limited computing resources and time.
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