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Abstract. The objective of this study is to obtain the stabilizability conditions and a stabilizing composite state feedback
control for the exponential stabilization of three-time-scale singularly perturbed linear time-invariant systems with multiple
commensurate delays in the slow state variables and with two small parameters of perturbation (TSPLTISD). The stabilizability
conditions and the stabilizing feedback do not depend on the small parameters and are valid for all of their sufficiently small
values. The approach used in this work is the nondegenerate decoupling transformation that splits the TSPLTISD into three
regularly dependent on the small parameters subsystems, which are lower in dimensions than the TSPLTISD. Further, the
decoupled subsystems are approximated by three subsystems that do not depend on the small parameters. It is proven that the
stabilizability of the approximating subsystems guarantees the robust (with respect to small parameters) stabilizability of the
original TSPLTISD. Finally, we obtain a representation of a parameter free composite feedback control for the TSPLTISD,
stabilizing it for all sufficiently small values of the parameters. A numerical example is given.
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POBACTHASI CTABUJIM3UPYEMOCTH U CTABHMJIM3ALIM S TPEXTEMIIOBBIX JIMHEMHBIX
CTAIHMOHAPHBIX CUHTYJSIPHO BOSMYIIEHHBIX CUCTEM C 3AITA3JbIBAHUEM

AnHoTanms. [{ensio paboTH! ABIISETCS MOMyYSHHE YCIOBHH CTAOMIM3MPYEMOCTH U MOCTPOCHNE KOMIIO3UTHOH cTadu-
JIU3UPYIOMEed 00paTHOW CBSI3M MO COCTOSIHUIO JUISL TPEXTEMIIOBBIX JIMHEIHBIX CTallMOHAPHBIX CHHTYJSPHO BO3MYIIEHHBIX
CHCTEM € KPaTHBIMU COM3MEPHMBIMH 3aNa3AbIBAHUSIMH B MEIJICHHBIX IIEPEMEHHBIX COCTOSIHHS U C IBYMS MaJIBIMHU T1apaMe-
TpaMu Ipu acTu ctapmux npou3BoaHbX (TCBJICC3). Yenous cTabuImn3npyeMocT U CTabmIn3npyomas oopaTHast CBSI3b
HE 3aBHUCAT OT MAJBIX MAPaMETPOB M JCHCTBUTEIBHEI JJIS BCEX UX JOCTAaTOYHO MasbIX 3HaueHHHU. [IpuMenseMslii B padoTte
TIOAXO/ MCTIONIB3YEeT HEBBIPOXKICHHOE NPeoOpa30BaHne, KOTOPOE TMOIHOCTHIO PACIIETIAET 3aBUCAIIYIO OT ABYX MAaJbIX Ia-
paMeTpoB CHHTYISPHO BO3MYIIEHHYIO CHCTEMY Ha TPH PETYISPHO 3aBHUCSIINE OT MapaMeTPOB MOJCUCTEMbI MEHBIINX Pas3-
MEpPHOCTEH, YeM UCXOJIHAsI CHCTEMA, KOTOPBIE allTPOKCUMUPYIOTCS MOACHCTEMAMH, HE 3aBUCSIINMHU OT MAJIBIX AapaMETPOB.
JlokaszaHo, 4TO CTaOMJIN3UPYEMOCTDh AMMPOKCUMUPYIOUINX MOJCUCTEM TapaHTHPYeT poOAacTHYIO (0 MaJIbIM MapameTpam)
crabunusupyemocts ucxognoit TCBJICC3. IlonyyeHno npeacTaBiaeHUe He 3aBUCSILETO OT apaMeTpa KOMIIO3UTHOTO yIIpaB-
neHus ¢ odpatHoii cBsa3bio st TCBJICC3, cTabunn3npyomero ee npu BcexX J0CTATOYHO MalbIX 3HAUSHHSX MapaMeTpOB.
IIpuBeneH YuCICHHBINH TPUMED.

KuroueBble c10Ba: CHHTYIISIPHO BO3MYIIIGHHBIE CHCTEMBI, 3alla3/bIBaHNe, JEKOMIIO3HIINS, CTA0UIH3UPYEeMOCTb, CTa0u-
JU3UpYIoNIee KOMIIO3UTHOE YIIpaBJIeHHE C 00OPaTHOW CBS3BIO

Jas nutupoBanus. Hamurama, Y. A. PobacTHast cTaOMIM3HPyeMOCTh U CTAOMIN3alNs TPEXTEMIIOBBIX JIMHEHHBIX CTa-
[IMOHAPHBIX CHHTYISPHO BO3MYIICHHBIX cHcTeM ¢ 3amas3neiBanueM / Y. A. Hanmurama, O. b. Llexan // Bec. Ham. akan. HaByk
Benapyci. Cep. ¢iz.-mat. HaByk. — 2023. — T. 59, Ne 2. — C. 110-120. https://doi.org/10.29235/1561-2430-2023-59-2-110-120

Introduction. Singularly perturbed systems (SPS) are found in a broad class of applications ranging
from engineering applications to areas such as quantum mechanics [1-3]. Whenever parameters of per-
turbation that represent small parasitics such as electrical resistance, viscosity, friction, etc. are present in
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classes of dynamic systems, this can lead to SPSs with high dimensionality. SPSs are composed of vari-
ables with different tempos, which leads to solutions rapidly varying at different tempos in different do-
mains. Thus, in practical applications, due to the stiffness of such systems, accurate analysis and control
of such systems are challenging and complex [4, 5]. But, due to the presence of variables with different
tempos, the system can be decomposed into its subsystems according to the tempo of the variables [4].
Decomposed subsystems are lower in dimensionality compared to the original system and do not depend
on parameters. As a result, analysis of the system properties such as stabilizability, controllability etc, and
the design of the controller for such systems are less complex compared to that of the original SPS [4, 5].

For systems with delays, the conditions for the stabilizability are established in the literature [6—9].
Even though there are previous studies [10—14] (see also references in [10]) on the stabilizability of linear
two- and three-time-scale SPSs with single state delays, no work has been published on more complex
and generalized higher order SPSs with multiple delays. In [14] Chang-type [15] non-degenerate trans-
formation is used in a stabilization problem for a two-time-scale singularly perturbed system with a sin-
gle state delay in the slow state variable. To the authors’ knowledge, the stabilization of TSPLTISDs has
not yet been well explained. In [16] a three-time-scale SPS without delay is considered and a non-singu-
lar linear transformation is introduced in such a way that the original system is diagonalized and sim-
plified, the analysis of the stability properties of the overall system is reduced to analyzing the reduced
subsystems. A similar study has been conducted in [17] where the time-scale separation and stability of
linear time-varying and time-invariant multiparameter SPSs are discussed.

This study has also been greatly influenced by the results of [12, 14, 16, 17], and the major objec-
tive of this study is to obtain solutions for the stabilization problem for complex generalized higher
order SPSs with multiple delays. Hence, this study considers a more generalized class of the problem,
a linear time invariant three-time-scale singularly perturbed system with multiple commensurate de-
lays in the slow state variable (TSPLTISD). In the context of decomposition of the considered SPS, in
[18] the generalization of the Chang-type transformation [15] on the three-time scale singularly per-
turbed time-invariant system with multiple commensurate delays in slow state variables is carried out
which decouples the SPS into its lower dimensional subsystems according to the tempo of the vari-
ables. The simulation results of study [19] indicate that the asymptotic method is effective in the ap-
proximation of sub-systems of SPS without compromising the qualitative behaviour of the solutions.
Thus, a similar schema to that of study [18] is used in the asymptotic decomposition of the considered
three-time-scale SPS. In [20], based on the first Lyapunov method and decomposition, it is proven that
the exponential stability of the asymptotically approximated subsystems guarantees the exponential
stability of the original three-time-scale system with delay and the established conditions are robust
with respect to the small parameters.

Considering the results of studies [10—14], on similar DS and BLSs, theorems are proven for the DS
and BLSs of the considered three-time-scale SPS with respect to the stabilizability of the subsystems. It is
further proven that the decomposed exact slow and fast subsystems are O(u) closer to the DS and BLSs,
respectively. Based on the preliminary results, the robust sufficient conditions for the stabilizability of
the obtained lower dimensional subsystems with respect to small parameters €, €, > 0 and for the overall
stabilizability of the considered TSPLTISD are extensive discussed with relevant illustrative examples.
A representation of a parameter free composite stabilizing feedback control for the system is obtained.

Statement of the problem. Let us consider a three-time-scale singularly perturbed linear time-in-
variant system with multiple commensurate delays in the slow state variables (TSPLTISD):

k

X(t)= Y Ay jx(t — jh)+ Appy(t) + Aizz(t) + Buu(t), xeR™, Q)]

=0

‘ k
g1y(t) = Y A1 jx(t — jh) + Apy(t) + Ao3z(t) + Bou(t), yeR"2, )

=0

k

SQZ(I) = z A31jx(t—jh)+A32y(t)+A33Z(t)+B3u(t), S Rn3, ue Rr, t>0, (3)

J=0
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here A;17,4i2,413,Bi, 1= 1,_3, Jj =0,k are constant matrices with appropriate dimensions, / = const > 0
is a delay, 0 <e; < g1 <1, are small parameters, &; € (0,8?], €, € (0,8(2)], that describe the time-scale
separation, x is the slow variable, y is the fast variable and z is the fastest variable, u €U, U is a set of
piecewise continuous vector functions for # > 0. Let ¢(0)= xo. Note that since £, < &; <1, then
€18 K€y, 8—2<<1, uég—z — 0. Letpu<g,.

€1 €1 10

Let ||r||[a 5= SUP ||r(9)|| be the uniform norm defined in the space of piecewise continuous func-
? cla,
tions, where ||r(9)|| is the Euclidean norm. Let R™"'[z] be a set of (» x n)-matrices with entries from a

ring of polynomials of R. Let p = Z be a differentiation operator, e " be a delay operator:

e Pty =v(t—h), e Phu(t)y=v(t—jh);, Ap(e M2 iAl-l je P e RPN i=13B;, j=1,3,
j=0
be the matrix operators.

Definition 1. Foragiveng, >0,&,>0,unforced (u(r)=0) TSPLTISD (1)—(3) is considered to be
exponentially stable if constants exist a > 0 and K # 1 such that for any xo e R"!, yg e R"2, zg e R"
and a piecewise continuous n,-vector function ¢(0), 6 €[—k#h,0), the solution (x(t), y(t),z(t)), t>0, of
system (1)—(3) with initial conditions:

x(0)=xo, ¥(0)=yo, 2(0)=z0, x(0)=9(8), 6e[-kh,0),

satisfies the inequality ||{x(t),y(t),z(t)}|| <Ke ™™ (||(p||[_kh’0] +[v(0)]|+ ||z(0)||).

Definition 2. Fora given g1 >0, g, >0, TSPLTISD (1)—(3) is considered to be stabilizable by
feedback if the linear state feedback control exists:

u(t) =Fy (e P"x(t) + Foy(t) + F3z(7), @)

with the feedback gain (F1 (e, Fy, Fs ) eR™[Z]®R™2 ®@R"™"3, such that closed loop system (1)—

(3), (4) is exponentially stable for the given €, >0, €, > 0.

In this case control law (4) is called the stabilizing composite state-feedback.

Definition 3.Ifnumbers & >0, &5 >0 exist such that TSPLTISD (1)—(3) is stabilizable for any
€€ (O,ST] and g, € (0,8;], we say that stabilizability is robust with respect to parameters €, €,.

Objective. The main objective of this paper is to obtain sufficient conditions for the robust stabi-
lizability of TSPLTISD (1)—(3) and to consruct representation of a parameter free stabilizing feedback
gain for the TSPLTISD.

Preliminaries. For simplicity in the sequel, where this does not lead to an ambiguous understand-
ing, the argument ¢ " in the matrix functions A [l(e_ph ), i= 1,_3, etc. will be omitted.

By C, the set of complex numbers is denoted. Let us consider S(C) to be a set of all complex num-
bers C with a negative real part: S(C)={A e C:Re A <0} is the stability region.

For g, > 0, €, > 0 let us introduce the matrix operators:

Api(e™h Ain A3 B
A(81,82,€_ph)= el'An(e™™) e'dy e'dn |, B(si,ex)=|e'By |,
e2' Azi(e™™) er'dsy er'dn £2'B;

and define a matrix-valued function as follows:

N(Sla‘gza?\"e_;\’h)é |:}\41n1+n2+n3 _A(SlaSZ:e_Xh)3B(Sla82)j|7 7\‘ € (C

Applying the results of [8, 14] to the system (1)—(3) for a given g, > 0, &, > 0, we obtain:
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Statement 1. For afixed €, > 0 and &, > 0 system (1)—(3) is stabilizable if and only if:

rankN(sl,sz,k,efM)=n1+n2 +ns3, V?\,EC\S(C)

Note that it suffices to verify the condition of Statement 1 only for a A from a TSPLTISD (1)—(3)
spectrum (the set of eigenvalues)

o(e,€2) = {k eC:det[klnl+n2+n3 —A(gl,gz’e_ph )} _ 0}.

The application of Statement 1 depends on the values of the small parameters, while in various re-
al-life problems these values are unknown, i. e. these problems are uncertain with respect to the parame-
ters. To obtain other conditions for the TSPLTISD stabilization, robust in small parameters, in this work
we apply the decomposition procedure.

A degenerate system and two boundary layer systems are associated with (n, + n, + n;)-dimensional
TSPLTISD (1)—(3), which are parameter free and smaller dimensional than the original system [21, 18]. Let

det dz3 0, det| Az — Ay 33 Az |20, (5)
The degenerate system (slow subsystem, DS) can be obtained from TSPLTISD (1)—(3) by setting
€, = &, = 0, which leads to:
250 = Ani(e™™)x, () + Ay (1) + A3z (0) + By (0),
0= AZ] (e—ph )xs (t) + A22ys (t) + A23Zs (t) + B2us (t)a (6)
0=As1(e ")xs (1) + A3y (£) + A3z, () + Bou (1),
Here x(?), y,(t), z,(¢) are variables of TSPLTISD (1)-(3) with &, = €, = 0, u(?) is a control for DS (6).
Considering the last two equations of obtained system (6) under conditions (5), expressing y,, z, in terms

of x, and substituting the resulting expressions into the first equation of system (6), the DS is obtained in
the matrix operator form:

x5(1) = Ag(e™P")xs (0)+ Byus (0), (7)

where

A€y =Api(e ™)~ A3 AT Asi(e ")~ A Ay Ar1, By = By — Ai3433B3 — AnAn ' By,
A = A — A3A53 52, By =By — Ay A3l By, Axy = Ayy — A3 A3iAzy, Agy=An —AnAiAs. (8)

DS (7) is a n,-dimensional system with multiple commensurate delays.

The g,-boundary layer system (the fast subsystem, g,-BLS), corresponding to TSPLTISD (1)—(3), is
obtained by setting €, = 0 in TSPLTISD (1)—(3) with x (), y s1(¢), z s1(¢) as a variables of a TSPLTISD
system with €, = 0, expressing z r1(¢) from the last equation of the obtained system under conditions (5)

in terms of y r1,Xx 1 and substituting into the second equation of the system, the following equation is
obtained:

e1y 11(6) = A1 (e P)x 11(t) + Anay 11(8) + Bort 11 (2).

Then by “stretching” the time scale with the transformation t; =—, and “freezing” in this equation the

€1
: . dxfl — _ : ~ A f-lA —ph
slow variables xi: P =0, xp1=x9, and defining J(t1)=AnAzr(e 7 )e0)+y (e1T1),
T1
following n,-dimensional g,-BLS without delay can be obtained:

dy(t1)

= Apy(t) + B i (t), )
d‘tl
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where A7 = 2122 , Bpi= 3’2 , ur1(t1) =u(erty) —uy(¢) is a control for g,-BLS (9), which we will consider
with the initial conditions $(0) = yo + A2 'As1 (e "")p(0) + .
The &,-boundary layer system (the fastest subsystem, &,-BLS), corresponding to TSPLTISD

()—(3) is obtained by “stretching” the time scale with the transformation t, =— and “freezing”
€2

dx f2 ~0 dy 12
dr 2 ’ dr 2
2(1y) 2 A3_31A31(p(0) +z r2(€272). The following n;-dimensional €,-BLS without delay can be obtained:

in (1)-(3) slow xs> and fast y,, variables =0, x 2 =Xx9, Y2 =yo, and defining

dz(t2)
dT2

= A722(t2) + Broupa(t2), (10)

where Agr = A3z, Byy = B3, uyy(t2) =u(t)—u (1) —us(t) is a control for &,-BLS (10), which we
will consider with the initial conditions Z(0)=z( + A3_31[A310x0 + A3110(=h) + A3 0]

With the introducing of Chang’s type [15] non-degenerate transformation [18, 19], TSPLTISD (1)—(3)
can be completely split into its subsystems with separated motions without compromising the qualita-
tive behaviours of original TSPLTISD (1)—(3). Further in [19], it is proven that, under conditions (5) the
separated subsystems can be asymptotically approximated for sufficiently small g, &, > 0 to any desired
degree of accuracy with respect to small parameter of perturbation.

From [18] and [19] follows the next statement:

Theorem 1. Let (5) be satisfied, then parameters €1,62>0 exist that for all
€€ [O,ST), £, €[0,83), €2 K €1, as a result of applying the Chang’s type decoupling transformation

T(Sl,sz,e_ph)

0 x(0)
0 |=T(ene2.67") ¥ |, EOER™, nOER™, B)eR™, 120,
B(t) 2(1)

TSPLTISD (1)—(3) is transformed into an equivalent system with separated motions:
&)= Ac (e @)+ Be (17" Ju(@),
gln(t) = AT] (81 auve_ph )n(t) + B‘I’] (81 auve_ph )u(t)a

e2B(0) = Ag (e e Jn() + By (116" Ju(o),
where for all sufficiently small parameters €, and €,, | < g;:
Ag (81,u,€_ph) =As(e)+0(1), Ay (81,!4,6_’711 ) =An+0(1), Ap (El,uae_ph ) =A sy +0(ey),

Bé(S],u,eiph):Bs+O(81), Bﬂ (Sl,p,eiph):Bf] +O(gy), BB(Sl,u,eiph):sz +O(gy).

Note that since detT gl,sz,e_ph ) =1 [18], then the time-independent transformation T(al,sz,e_ph )
is the Lyapunov transformation.

Stabilizability of the subsystems of the TSPLTISD.

Definition 4. The unforced DS (7) (us(t) = O) is said to be exponentially stable if con-
stants o, > 0 and K # | exist that for any xo e R", ¢(0) € PC([—kh,0);R"") the solution x,(¢), =0,
of DS (7) with initial conditions x(0)=x¢,x;(0)=¢(0), 6 €[—kh,0), satisfies the inequality
||xs (t)|| <K ™ (p||[_kh e The unforced ¢-BLS (9) (ufl(tl) = O) is said to be exponentially stable
if constants a s; >0 and K 1 #1 exist that for any yo € R"?, the solution y(t;), T} 20, of ¢-BLS (9)
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with initial conditions y(0) =y, satisfies the inequality || j/(rl)|| <K fle_af i f/(O)”. Unforced &,-BLS
(10) (ufz (t2)= O) is said to be exponentially stable if constants o r» >0 and K y» #1 exist that for any
29 €R™, thesolution 2(t2), T2 >0, of &,-BLS (10) satisfies the inequality 2 (12 )| < K 2e™*/2" |2(0)).

Definition 5. DS (7) is said to be stabilizable if a linear state feedback u,(¢)=F,(e ”")x4(¢),
exist that the closed loop DS x,(¢) = [AS (efph) + B,F, (e’ph)}cs (¢) is exponentially stable. €-BLS (9)
is said to be stabilizable if the linear state feedback u(t)= Fyp(t;) exists that the closed loop system
dy(t) _

d’[?]

[As1+Bs1Fp1]p(t1) is exponentially stable. &,-BLS (10) is said to be stabilizable if the linear

s .
2(;2) z(t2) =[4y2+ ByaFy2]2(t2)
2

state feedback u(t2) = Fr22(t2) exists that the closed loop system

is exponentially stable.
Applying the results in [8, 14] on DS (7) and BLSs (9), (10) the following theorem can be proven [20].
Statement 2.
a) The DS (7) is stabilizable if and only if:

rank N (h,e )2 rank[unl —A, (e‘”’),BS] —n, VieC\S(C).
b) The €,-BLS (9) is stabilizable if and only if:
rank N 1(L) £ rank[M,, —Ar1,Br]=ny, VAeC\S(C).
¢) The &,-BLS (10) is stabilizable if and only if:
rank N o (L) £ rank[Al,; —As2,Br2]=n3, VAeC\S§(O).

Note that it suffices to verify conditions of Statement 2 only for a A from the spectra
oo ={LeC:det[M, —A (e ™)]=0} of DS (7), 641 = {LeC:det[Al,, -4 ;;1=0} of &-BLS (9) and
62 ={AeC:det[M,; - Af2 1= 0} of &,-BLS (10).

Let (5) be satisfied and let F; (e_ph ), Fr1, Fro be stabilizing linear state feedback gains for DS (7),
€,-BLS (9) and &,-BLS (10) , respectively:

ug()=Fo(e "x;(t), up(t)=Fpip(t), up(@2)=Frazr2(12). an
Let us define matrices as follows:
Fi(e ™) =Fy(e )+ Fpdad [ An(e ")+ BaFy(e ") |+
+F 24353 [A31 (e7"")+ BsFy(e ") + BsF r1 A [Azl (e ")+ ByF (e )ﬂ, (12)
Fy=Fp+Fpdii[ A+ B3sFpl,  F3=Fpa.

Theorem 2. Let (5) be satisfied, DS (7), €,-BLS (7) and €,-BLS (10) be stabilizable by a linear state
feedback with gains Fs(e™” h ), Fr1 and Fy), respectively, then the following conditions are satisfied:

det| Az + BoFs = (Axs + BaF3 (A + BsFs) " (dsy + BsF2) |#0,  detl Az + BsF3] %0, (13)

Then, €, €(0,e)] and €, €(0,e5] exist that TSPLTISD (1)~(3) is stabilizable for all €, €(0,&]]
and €, € (0,8;], €y K €1, i. e. stabilizability is robust with respect to small parameters €,, €, by a com-
posite linear state feedback (4), where Fy(e™ " m, F, and F are defined in (12).

Proof. It follows from [20] that, under the conditions of Theorem 2, TSPLTISD (1)—(3) is stabiliz-
able for sufficiently small g, €, > 0, preserving the order of the smallness.
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Let us consider a feedback low of form (4), where F; (e_ph ), I, and F; are not yet defined. Then the
following closed-loop system can be obtained:

x(t) Fii Fio Fiz || x(?)
ey() |=|Fa Fan Fxn| y()|, (14)
e22(t) | |Fs1 Fz Fa3 || z(?)
where
Fii(e ”)y=An(e ™)+ BiFi(e™™"), Fia=Ain+BiFs, Fis=A4;3+BF;,
Fai(e ™) =Agi(e )+ ByFi(e "),  Fy = Ay +ByFs, Fy= Ay +ByFs, 15)
Fgl(e_ph):A31(€_ph)+BgF1(€_ph), F32 :A32 +33F2, F33:A33 +B3F3.

Since the closed loop system (14), (15) is of the form of TSPLTISD (1)—(3), then (see Theorem 1) un-
der conditions (13), a Chang’s type [15] decoupling transformation T(e1, €9, efph) with L;(e 1,p,efph)
and ﬁi(sl,u,e_ph ), 1=1,2,3, exists [18] satisfiying the equations:

Asi+B3F —[A33 + B3 F3 10, + 650, ([An +BiF ] -[43 +31F3]I:2)+
+uL; ([A21 +ByF1]1-[4; + BoF31L, ) =0,
Ay + B3Fy —[As33 + B3F3]L3 +e,L, ([AIZ +BiFy]—[ 43 +31F3]I:3)+ 16)
+uLs ([Azz + BaFy|—[Ax + BoF3 ]1:3) =0,
A+ ByF +&Li[Ay +BiF]1-&L 1[4 + BiF> L) —[4x + By L) —
~[ 423 + BaF31Ly +[ A3 + BaF3]L3L  + &1L, ([A13 +BiF3]L5L) [ 43 +B1F3]I:2): 0.

The transformation T(sl ,€2,e 7 h) brings closed-loop system (14), (15) to the decoupled one:

E0=Ac(enme ™ )ED, oM =Aq(sme PO, eB(0)=Ap(erme ™ )B@O), (17)

where

Ag (sl,p,e_ph), ‘X*n (sl,p,e_ph), Kﬁ (el,u,e_ph)
are defined by:
Ac(e™y= Ay +BiFy —(Aip + BiF>)Ly — (413 + BiF3)Loy + (413 + BiF3)LsL,
An(e ™"y = Aoy + BoF> + &1L (A1 + BiF>) — (A2s + BaF3)Ls — &1L (Ai3 + BiF3 )L, (18)
Ap(e ") = As3 + BsFy +e1uLo (413 + BiF3) + uL3(Aos + B2 F3).
We will look for Fi(e "), F, and F;;:
Fi(e ™) =F(e ™)+ FpLi(e ™)+ Fpaly(e™), Fa=Fp+Fpls, Fi=Fp. (19
Substituting (19) into (16) and taking (8) into account p < g, under conditions (5) we obtain:
Lie™) =43 An(e™™) + BoFy(e ™) |+ OGe),
La(e™™) = 43345 + B3Fy, 1+ 0(e1), (20)
La(e™) = 453 [ Asi(e ")+ ByFy(e ")+ BsF ki (e 77") |+ OCer).

Substituting (19) and (20) into (18), we obtain after transformation that decoupled closed loop control
system (17) with feedback (4), (19) has the form:
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E()=[ As(e")+ BiFy(e ")+ 01 [E0),
em(0) =41+ B1F 1 +Oe)(), @1)

Szg(f) =[As2+ByaFra +0(e)IB(),

i. e. decoupled closed loop subsystems (17) are O(g,)-close to the closed loop DS, g,-BLS, &,-BLS, with
feedback (11), respectively.
Since according to the assumptions of Theorem 2 DS, &,-BLS, ¢,-BLS are stabilizable by the feed-

back with gains Fs(e™” h ), Fra, Fr1, respectively, so the closed loop DS, €,-BLS, &,-BLS are stable, and
taking into account the preservation of the stability under the small additive perturbations of the system
parameters it follows that system (21) is stable for all sufficiently small values g, > 0, €, > 0.

Original closed-loop system (14), (15) is obtained from (17) by the non-degenerate transformation
T_l(sl,u,e‘ph) [18]. Since the stability is preserved under the non-degenerate transformation, then
closed loop systems (14), (15) are also stable for all sufficiently small parameters €, and ¢,, and therefore
TSPLTISD (1)—(3) is stabilizable by (4), (19).

Substituting the constructed Fy(e™” h ), Fr> and Fyp into (4) and considering approximations (20)
for L;(e1,pe ?"), i=1,2,3, we obtain:

u(t) = [Fs (e ")+ Fpid) (Azl (e "")+ ByF, (e_ph)) + Frad33 (A31 (e"M)+ B3F (e ") + By F r2 A3s %
[ Azt + BaRu(e™™) ||+ Oen) [x(0)+ [ Py + Fradid (s + ByF) + O |0+ (Fyz + O(e1) 200
Comparing the last representation with (12) we obtain:

u(t)=[ Fi(e ™)+ O1) |x(t) + [F2 + O(e1)]y(t) +[F3 + OE)=().

Taking into account the preservation of the stability under the small additive perturbations of the system
parameters, we conclude that state feedback (4), (12) stabilizes TSPLTISD (1)—(3). End of Proof.

Corollary. Let (5) and the conditions of Statement 2 be satisfied. Then 81* € (0, 8?] and € 2* € (0, 8(2)]
exist that TSPLTISD (1)—(3) is stabilizable for all €, € (O,ST] and €, € (0,8;], €, K g1, 1. e. stabilizabil-
ity is robust with respect to the small parameters g,, €,.

Results and verifications. An illustrative example of TSPLTISD is considered:

x(t)=x()-y(@)+u), x,yzeR,

g19(t) = x(t) + y(t) + 0.5u(t), (22)

ez()=—x(t =1+ z(t) +0.1u(z), u(t)eR,
with the initial conditions:

x(0)=1, »0)=0, =z(0)=1, x(0)=1, 66[—1,0). (23)
Considering system (22) parameters in the form of (1)—(3) can be denoted as:
h=1, m=nm=n3=r=1, Ano=1, An1=0, dnp=-1, A43=0, Bi=1, Ayp=l,
A211=0, Ap=1, Ap3=0, By;=05, A43,0=0, A43,=-1, A43»=0, A45=1, B3=0.1
The characteristic equation of (22)

o(e1,82,0) =&1'e3 (Aea —1)(x281 Y —x+2) —0, 2eC,
the spectrum of system (22)
o(g1,€2)= det{k eC: w(sl,sz,k,e_kh)= 0} =

={851 (1+81 —+/1-6¢g; +812 ),851 (1+81 +4/1—6¢; +812 ),851}. (24)
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According to (24) the real parts of all the elements of the spectrum o(g,, €,) are positive, i.e. sys-
tem (22) is unstable for all ¢ > 0, &, > 0, as shown in Fig. 1, considering &; =0.1, €, =0.001 and
u(t)=0,t>0.

The DS for (22) has the form x,(¢) =2x(¢)+1.5u(¢), x;(6) =1, 8 €[-1,0], and its spectrum is
o, = {2}. The real part of the element of the spectrum o is positive. i. e. DS for (22) is unstable. Since for
NS(X,e_)‘) =[A—-2 1.5] the rank Ns(l,e_”’) =1 for VYA € C, as per the results of Statement 2, DS is

stabilizable, namely by a stabilizing feedback with the gain F(e™” h) =F, <-4/3.

P
The ¢,-BLS for (22) has the form =(t2)
T2
The real part of the element of the spectrum G s, is positive. i.e. €,-BLS for (22) is unstable. Since for
Nyga(AM)=[A-1 0.1] the rank N s>(A)=1 for VAe€C, as per the results of Statement 2, &,-BLS is
stabilizable, namely by a stabilizing feedback with the gain Fyy if Fry <-10.
The ¢,-BLS for (22) has the form @ = P(11)+0.5u(ty), (0)=0, and its spectrum is © s = {1}.
T1
The real part of the element of the spectrum © sy is positive. i.e. €-BLS for (22) is unstable. But since

for, N si(A)=[A—1 0.5] the rank N s1(A)=1 for VA €C, as per the results of Statement 2, €-BLS is
stabilizable, namely by a stabilizing feedback with gain Fry if Fp <-2.

Considering the fact that the subsystems of TSPLTISD (22) are stabilizable, and also that (22) sat-
isfies the conditions in Theorem 2, by Theorem 2 it can be stated that TSPLTISD (22) is stabilizable,
which confirms the previous conclusion for all sufficiently small g, > 0, €, > 0.

Let Fy=-2, Fry =-10 and Fy, =-20. By (12) for system (22) stabilizing feedback can be chosen
in composite form (4):

=2(72)+0.1u(t2), 2(0) =0, and its spectrum is G yo = {I}.

u(t) =Fi(e ""x(t) + Foay(t) + Faz(t), F =2+20e "', F, =10, F;=-20. (25)
The explicit form of the closed-loop system for system (22), (25):

X(t) = (3+20e ") x(1) + 9 y(¢) — 20z(),
ep(t) = (2 +10e"")x(t) + 6 y(t) —10z(¢), (26)
£22() = (0.2 + e P")x(t) + y(t) - z().

x10* x(t) 105 — 105 —

- ol ol
7+ 7
6 6
5~ 5
ar o
3 3
2t 2
1+ 1k
o o

: 0 Uj2 014 0:5 0.8 ; 'ItZ 14‘4 1;6 118 2 -|0 0:2 04 D:S 08 1 12 114 116 1:5 2 -10 012 04‘4 016 0:5 1‘ 112 ‘:4 1‘.6 113 2

Time Time Time
Fig. 1. Solutions of TSPLTISD (22) for €, =0.1, €, =0.001, u(¢)=0,#>0
N . x(t) =) 0.03 vt =) 15 T T T T Z(.l) T T T —=0))

15+ 002} + + : + + + + 1 - 1

Time Time Time

Fig. 2. Solutions of closed-loop system (26) for ¢, = 0.1, &, = 0.001
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Resulting closed loop system (26) is stable. The characteristic equation of (26) is

®o(61,62,0) 2 det[M—Ac(sl,ez,e_Ml )J =0,)eC,

where
3+20e 9 -20
Ac(al,sz,e‘“’): 2+10e™™)ei" 6e7t —10e7" |,
02+e ™! et —&3!

oc(e1,62,0) =13 2012 e ™ —8L% + 3002 e "+ 5A + 4. For stabilizing control of form (25), let us solve
closed system (26) with initial conditions (23) and for €1 =0.1, €, =0.001. The solutions to system (26)
are shown in Fig. 2, which demonstrates the stability of a closed-loop system.

Conclusion. For the considered three-time-scale singularly perturbed linear time-invariant systems
with multiple commensurate delays in slow state variable (1)—(3), Statement 1 establishes the conditions
for the stabilizabilty of TSPLTISD (1)—(3), but the conditions are dependent on parameters of pertur-
bation (g, €,), i.e. are complex due to the high dimensionality and the stiffness of the system. With
the introduction of the Chang-type transformation [18] TSPLTISD is decomposed into its subsystems,
which are lower dimensional, devided by tempos and are asymptotically close to three small param-
eter-free subsystems (7), (9), (10). Due to the results of Theorems 1, 2 robust sufficient conditions for
the stabilizability of TSPLTISD (1)—(3) can be determined based on the stabilizability criteria of its
Degenerate System and the two Boundary Layer Systems, i. e. e-free sufficient conditions. Namely, the
stabilizability of the slow and the fast subsystems of TSPLTISD (1)—(3) yields the stabilizability of orig-
inal system (1)—(3) for all sufficiently small values of the parameters of singular perturbation, preserving
the order of the smallness, i.e. robustly stabilizable with respect to the small perturbations. Moreover, by
having a stabilizing state feedback for the Degenerate System and the two Boundary Layer Systems, the
stabilization of original TSPLTISD (1)—(3) can be performed robustly and independently of the small pa-
rameters, with a composite state feedback of type (4), (12). The results obtained through the illustrative
example considered also support the results.

Since subregulator problems are mutually independent, a parallel algorithm can be applied to the
design of subsystems’ subregulators separately. The knowledge of the small parameters is not required
in a composite design. This expands the possibilities of practical implementation of control algorithms
in real time under conditions of limited computing resources and time.
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