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FOURIER SERIES FOR THE MULTIDIMENSIONAL-MATRIX FUNCTIONS  
OF THE VECTOR VARIABLE

Abstract. In the article, the theory of the Fourier series on the orthogonal multidimensional-matrix (mdm) polynomials  
is developed. The known results from the theory of the orthogonal polynomials of the vector variable and the Fourier series 
are given and the new results are presented. In particular, the known results of the Fourier series theory are extended to 
the case of the mdm functions, what allows us to solve more general approximation problems. The general case of the ap-
proximation of the mdm function of the vector argument by the Fourier series on the orthogonal mdm polynomials is realized 
programmatically as the program function and its efficiency is confirmed. The analytical expressions for the coefficients of 
the second degree orthogonal polynomials and Fourier series for possible analytical studies are obtained.
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РЯДЫ ФУРЬЕ ДЛЯ МНОГОМЕРНО-МАТРИЧНЫХ ФУНКЦИЙ ВЕКТОРНОЙ ПЕРЕМЕННОЙ

Аннотация. В статье развивается теория рядов Фурье по ортогональным многомерно-матричным полиномам. 
Приводятся известные результаты теории ортогональных полиномов векторной переменной и рядов Фурье и пред-
ставлены новые результаты. В частности, известные результаты теории рядов Фурье распространяются на случай 
многомерно-матричных функций, что позволяет решать более общие задачи аппроксимации. Выполнена програм-
мная реализация общего случая аппроксимации многомерно-матричной функции векторного аргумента рядом 
Фурье по ортогональным многомерно-матричным полиномам и подтверждена ее работоспособность. Получены так-
же аналитические выражения коэффициентов полиномов и рядов Фурье второй степени для возможных аналитиче-
ских исследований. 

Ключевые слова: ряды Фурье, многомерно-матричные ортогональные полиномы, многомерная полиномиаль-
ная регрессия
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Introduction. The most important tool for research of the real systems and processes is approxima-
tion. The mathematical models of the real systems and processes are their approximate mathematical 
images. The various methods of approximation exist, one of which is approximation by Fourier series. 
This article is devoted to approximation of the functions of several variables by Fourier series on the 
orthogonal polynomials. 

The history of the orthogonal polynomials of both one and several arguments dates back to 
Hermite [1]. Hermite in [1] and then P. Appel and Kampe de Feriet in [2] studied in details the properties 
of the so-called Hermite polynomials of one and two arguments. The general theory of the orthogonal 
polynomials of many arguments is developed in the work [3]. As per the works [1–3], this theory is con-
structed as the theory of two bi-orthonormal sequences of the polynomials: basic and conjugate. In the 
work [4], it is proposed to choose a polynomial with the unit coefficient at the highest degree as the basic 

© Mukha V. S., 2024



16  Proceedings of the National Academy of Sciences of Belarus. Рhysics and Mathematics series, 2024, vol. 60, no. 1, рр. 15–28

polynomial. This theory uses the classical (scalar) mathematical approach and is therefore the classical 
theory. The classical theory can be found also in [5, 6]. The classical approach is characterized by bulki-
ness and poor formalization, which entail the practical loss of the theoretical and algorithmic generality.

In the current article, the multidimensional-matrix (mdm) approach is used that is free from these 
pointed above disadvantages. The foundations of the theory of the multidimensional matrices were laid 
by N. P. Sokolov in the works [7, 8]. This theory was developed later in the works [9, 10]. Sokolov’s 
theory has a number of applications today, an overview of which can be found in the work [11]. These 
are vector multiconnected Markov chains, parallel factor analysis, multiindex linear programming prob-
lems, educational timetable problem, mdm statistical decisions, finite-dimensional moments of the sta-
tionary random sequences and their estimations, mdm principal components method, mdm data model 
in databases and OLAP-systems, mdm regression analysis and other applications. 

The author of the current article is aware of the works related to the multidimensional matrices and 
appeared in recent time. Primarily, these are the works using the terms “multiway data” or “multiway 
arrays” (see, for example, [12, 13]). The authors of these works do not refer to the works of N. P. Sokolov 
It is not clear whether they are aware of the Sokolov’s works or not. These works does not use the theory 
of N. P. Sokolov and have no own mathematical theory. Graphical (geometrical) representations of the 
multiway arrays prevail in these works. Secondly, it is the work [14] the author of which announces his 
own “multidimensional matrix mathematics”. This approach also assumes the continuation of the devel-
opment to the mathematical completion. 

The current article is devoted to use the mdm theory of the orthogonal polynomials and the Fourier 
series of the vector argument [15, 10] in regression analysis. This theory is the combining of the ideas of 
the works [3, 4] on the basis of the mdm mathematical approach. It is how the mdm theory of the orthog-
onal polynomials and the Fourier series of the vector argument arose.

The basic definitions of the theory of the multidimensional matrices in English can be found in the 
appendix A3 to the current article and in the appendix to the article [16].

1. Orthogonal polynomials of the vector variable. Let Ω be some closed region of the space Rn, 
ρ(x), ,x∈Ω  be nonnegative function (weight function) such that the integrals (the moments of the weight 
function ρ(x)) 

 
( ) ,    0,1,2,...,i

i
x

x x dx i
Ω

ν = ρ < ∞ =∫
 

 (1)

exist, and L2(ρ,Ω) be the space of the functions with integrable square in Ω with the weight ρ(x). Here xi 
is the (0,0)-rolled degree of the one-dimensional matrix x: 0,0 0,0( ) ( )i ix x x x x= = ⋅   [A3, 16]. We will 
often avoid the notation (0,0)-rolled degree and will write xi instead of 0,0 ( ).ix

A mdm r degree polynomial Qr(x) of the vector (one-dimensional) variable x∈Ω  is defined as fol-
lows [15, 10]:

 
( ) ( )0, 0,

( , ) ( , )
0 0

( ) ,     0,1,2,...,
r r

k k k k
r r k k r

k k
Q x C x x C r∗ ∗

= =

= = =∑ ∑
 

 (2)

where *
( , )r kC  are the (r + k)-dimensional matrices of the coefficients,

( )1 1

*
( , ) ,..., , ,..., ,     0,1,2,...,     0,1,2,..., ,

r kr k i i j jC c r k r∗= = =

symmetrical with respect to the indices of their two multiindices 1 1( ,..., ), ( ,..., )r ki i j j  and satisfying the 
conditions 

( ) ( ), ,* * * *
( , ) ( , ) ( , ) ( , ), .r k k k r kH B

r k k r k r r kC C C C+ += =

The notations ,r k kH +  and ,r k kB +  mean the transpose substitutions of the types “back” and “forward” 
respectively [10, A3, 16]. Each of the indices of the multiindices 1 1( ,..., ), ( ,..., )r ki i j j  takes the values 
1,2,..., .n
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D e f i n i t i o n. The sequence of the mdm polynomials Qr(x) (2) is called orthogonal in L2(ρ,Ω) if the 
following conditions are satisfied:

 

0, 0,1,..., 1,
( ) ( ) ( )

0, ,r k

k r
Q x Q x x dx

k rΩ

= = −
ρ ≠ =

∫
 

 (3)

where ( ) ( )r kQ x Q x  is the (0,0)-rolled product of the matrices Qr(x) and Qk(x): ( )0,0( ) ( ) ( ) ( ) .r k r kQ x Q x Q x Q x=  
We will often avoid the notation (0,0)-rolled product and will write AB instead of  0,0(AB). 

The two sequences of the orthogonal polynomials of many variables are considered: the basic se-
quence Pr(x) and the sequence Qr(x) conjugate of Pr(x), 0,1,2,... .r =

D e f i n i t i o n. The mdm r degree polynomial in L2(ρ,Ω) of the following form 

 
( ) ( )

1 1
0, 0,

( , ) ( , )
0 0

( ) ,     0,1,2,...,
r r

k k r k k r
r r k k r

k k
P x C x x x C x r

− −

= =

= + = + =∑ ∑
 

 (4)

is called the basic polynomial, where C(r,k) are (r + k)-dimensional matrices of the coefficients,

1 1( , ) ,..., , ,...,( ),     0,1,2,...,     0,1,2,..., 1,
r kr k i i j jC c r k r= = = −

symmetrical with respect to the indices of their two multiindices 1 1( ,..., ), ( ,..., )r ki i j j  and satisfying the 
conditions

, ,
( , ) ( , ) ( , ) ( , ),     .r k k k r kH B
r k k r k r r kC C C C+ += =

D e f i n i t i o n. The mdm polynomial Pr(x) (4) is called the basic orthogonal r-degree polynomial in 
L2(ρ,Ω) if it is orthogonal to the homogeneous polynomials 2 1 0,01, , ,..., ,   ( ) :r k kx x x x x− =

 

0, 0,1,..., 1,
( ) ( )

0, .
k

r

k r
P x x x dx

k rΩ

= = −
ρ ≠ =

∫
 

(5)

D e f i n i t i o n. The sequences of the mdm polynomials Pr(x) (4) and Qr(x) (2) are called the com-
pletely orthonormal in L2(ρ,Ω) if the conditions (3), (5) are satisfied and the following condition

 ( , )

0, 0,1,..., 1,
( ) ( ) ( )

, ,


 
   

 r k
r r

k r
Q x P x x dx

D k r  
 (6)

is satisfied too. Here D(r,r) is the 2r-dimensional order n matrix with the following structure:

 1 2 1 2( , ) , ,..., , , ,..., 1 2 1 2( ),     , ,..., , , ,..., 1,2,..., .
r rr r i i i j j j r rD d i i i j j j n= =   (7)

The elements of this matrix are defined by the expression

 
1 2 1 2

1 2 1 2 1 2
, ,..., , , ,...,

1 2 1 2

! !... !, ( , ,..., ) ( , ,..., ),
0, ( , ,..., ) ( , ,..., ),r r

n r r
i i i j j j

r r

r r r perm i i i j j j
d

perm i i i j j j
=

=  ≠  
(8)

in which 1 2( , ,..., )rperm i i i  means any permute of the values of the indices 1 2 1 2, ,..., , ...r ni i i r r r r+ + + = , 
and rk is the number of repetitions of the k-value, 1,2,..., .k n=

The matrix D(r,r) (7), (8) has such a useful property that for any q-dimensional matrix 

1 2 1 2, ,..., , , ,...,( )



q r ri i i j j jC с  with q ≥ r symmetrical with respect to the indices 1 2, ,..., rj j j  the following equali-

ty is fulfilled [10]:
0,

( , )( ) ! .r
r rCD r C=

Let us introduce the initial i-th order moments ix
ν  and the initial-central and central-initial (i + j)-th 

order moments ,   i j i j
c cx x x x

ν ν  of the weight function ρ(x):

0 ( ) ,
x

x dx
Ω

ν = ρ∫
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( ) ,     1,2,...,i j i j

i j
x x x

x x dx i j+
+

Ω

ν = ν = ρ + =∫
  

(9)
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i j
x x x

x x x dx i j
Ω
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(10)

 
( ) ( ) ,     1,2,... .i j i

c

i j
x x x

x x x dx i j
Ω
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 (11)

The moments (10), (11) have the following properties:

 
,i j i j i j i j i j

c c c cx x x x x x x x x+ν = ν = ν = ν − ν ν
 

 (12)

,( ) ,iq jq iq
i j j i j i j i
c c c c

B
x x x x x x x

+
+ν = ν = ν − ν ν

where ,iq jq iqB +  is the transpose substitution of the type “forward” [10, A3, 16]. These properties are 
proved by calculation of the formulae (10), (11). The properties (12) allow us to use the following 
notations:

,     ,i j i j i j j i j i j ix x x x x x x x x x+ +µ = ν − ν ν µ = ν − ν ν

,( ) .iq jq iq
i j j i

B
x x x x

+µ = µ

Let us introduce also the mutual moments

 
( ) ( )i j

i j
y x

y x x x dx
Ω

ν = ρ∫
 

 (13)

with the properties

( )( ) ( ) .i j i j i j j i j i j i j
c c c c

i j
y x y x y x x y x y x y x

y x x x dx
Ω

ν = ν = ν = − ν ρ = ν − ν ν = µ∫

The weight function ρ(x) in the case 0 1
x

ν =  represents the probability density function of the some 
random vector ξ.

T h e o r e m  [10]. If the sequences of the mdm polynomials Pr(x) (4) and Qr(x) (2) are completely  
orthonormal in L2(ρ,Ω), i .e. they satisfy by the conditions (3), (5), (6), then the coefficients C(r,k) of the ba-
sic sequence Pr(x) (4) are defined by the following mdm system of the linear algebraic equations

 

1
0,

( , )
0

( ) 0,    0,1,...,   0,1,..., 1,r p k p

r
k

r kx x x x
k

C r p r
−

=

ν + ν = = = −∑
 

 (14)

and the coefficients ( , )r kC∗  of the conjugate sequence Qr(x) (2) are defined by the expression

( )0, 0, 1
( , ) ( , ) ( , )! ,

r r
r k r r r kC r B C∗ −=

where 0, 1
( , )

r
r rB−  is the matrix (0,r)-inverse to the following matrix B(r,r):

 
( )

1 1 1 1
0, 0, 0, 0,

( , ) ( , ) ( , ) ( , ) ( , )
0 0 0 0

( ) ( ) ( ) .r r k r r k k q

r r r r
k k k q

r r r k k r r k q rx x x x x x x x
k k k q

B C C C C
− − − −

= = = =

= ν + ν + ν + ν∑ ∑ ∑∑
 

(15)

The coefficients C(k,r) of the basic sequence Pr(x) (4) are defined by the following mdm system of the 
linear algebraic equations

 

1
0,

( , )
0

( ) 0,   0,1,...,   0,1,..., 1,p r p k

r
k

k rx x x x
k

C r p r
−

=

ν + ν = = = −∑
 

 (16)

and the coefficients ( , )k rC∗  of the conjugate sequence Qr(x) (2) are defined by the expression
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( )0, 0, 1
( , ) ( , ) ( , )! .

r r
k r k r r rC r C B∗ −=

2. The Fourier series on the orthogonal polynomials. The Fourier series for the p-dimension-
al-matrix function y(x) of the vector (one-dimensional-matrix) variable nx R∈Ω⊆  on the conjugate 
orthogonal polynomials Qr(x) (2) has the following form: 

 
( )0,

0

1( ) ~ ( ) ,
!

r
r r

r
y x B Q x

r

∞

=
∑

 
 (17)

where 
1 2 1 2, ,..., , , ,...,( )

p rr j j j i i iB b=  are (p + r)-dimensional matrices of the n-order of the coefficients sym-
metrical when r ≥ 2 with respect to the indices 1 2, ,..., .ri i i  They are defined by the expressions [10]

 
( )0,0 ( ) ( ) ( ) .r rB y x P x x dx

Ω

= ρ∫
 

 (18)

Substitution of the polynomial Pr(x) (4) into (18) gives the following expression for the coefficients Br:

( ) ( )
0,0 1

0,0 0,
( , )

0
( ) ( ) ( ) ( ) ( )

r
r k k

r r k r
k

B y x P x x dx y x x x C x dx
−

=Ω Ω

  
= ρ = + ρ =  

  
∑∫ ∫

 

 
 

1 1
0,0 0, 0,0 0,

( , ) ( , )
0 0

( ) ( ) ( ),     0,1,2,... ,
 

 

 
       

 
 r k

r r
r k k k

k r k ryx yx
k k

E yx yx C C r ,
 

 (19)

where E(·) means the mathematical expectation.
The Fourier series on the basic orthogonal polynomials Pr(x) (4) is obtained analogously:

 
( )0,

0

1( ) ~ ( ) ,
!

r
r r

r
y x C P x

r

∞

=
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 (20)

where 

( )0,0 ( ) ( ) ( ) .r rC y x Q x x dx
Ω

= ρ∫

Since

( )0, 0, 1
( , )( ) ! ( ) ,

r r
r r r rQ x r P x B−=

then

( ) ( )( )0,0 0,0,0 0, 1
( , )( ) ( ) ( ) ! ( ) ( ) ( )

r r
r r r r rC y x Q x x dx r y x P x B x dx−

Ω Ω

= ρ = ρ =∫ ∫
 

 
( )( ) ( )

0, 0,0,0 0, 1 0, 1
( , ) ( , )! ( ) ( ) ( ) ! .

r rr r
r r r r r rr y x P x B x dx r B B− −

Ω

= ρ =∫
 

 (21)

The approximation of the scalar (zero-dimensional-matrix) function y(ξ) of the random vector ξ with 
the probability density function ρ(x) by the finite sum of the Fourier series 

( ) ( )0, 0,

0 0

1 1( ) ( ) ( )
! !

m m
r r

m r r r r
r r

s B Q C P
r r= =

ξ = ξ = ξ∑ ∑

provides the minimum of the mean square error (m.s.e.) of the approximation 

( )( ) ( )0,0 2 0,0 22 ( ) ( ) ( ) ( ) ( ) .m m mr E y s y x s x x dx
Ω

= ξ − ξ = − ρ∫

The minimal value 2
minmr  of the m.s.e. is defined by the expression [10]
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 2 2 0,
min

0

1( ) ( ).
!

  
m

r
m r r

r
r E y B C

r

3. The polynomials orthogonal with the discrete weight function. The theory of the polynomials 
orthogonal with the continuous weight function ρ(x) outlined above coincides with the theory of the 
polynomials orthogonal with the discrete weight function (pk,xk), when the l distinct points 1 2, ,..., lx x x  
are given in the region nRΩ⊆  with positive weights 1 2, ,..., lp p p  and the measure μ of the region Ω is 
defined by the formula ( )

k
kx

p
∈Ω

µ Ω =∑  [17]. They say in this case about the polynomials orthogonal on 
the system of the points. The moments (9) is defined in this case by the expression 

1
,     1,2,...,i j i j

l
i j i j

k kx x x
k

x d x p i j+
+ +

=Ω

ν = ν = µ = + =∑∫

and the mutual moments (13) is defined by the expression

1
( ) ,     1,2,...,i j

l
i j i j

k k ky x
k

y x x d y x p i j
=Ω

ν = µ = + =∑∫

where ( ),   1,2,..., .k ky y x k l= =
We will call the discrete weight function with 0 1

x
ν =  as the discrete distribution of some random 

vector ξ. The important discrete distribution is so called empirical, or sample distribution, when xi are 
the sample values of the random vector ξ and 1 / ,ip l=  where l is the length of the sample. If the empir-
ical distribution is used then the approximation is called empirical.

4. The mdm approximation by the Fourier approximation. It is of interest to obtain the coeffi-
cients c(m,k) of the approximation of the function y(x) by the mdm m degree polynomial

 
( )0,

( , )
0

( ) ~
m

k k
p k

k
y x c x

=
∑

 
 (22)

in the case when the Fourier approximation (20) of this function of the same degree is obtained 

 
( )0,

0

1( ) ~ ( ) .
!

m
k

k k
k

y x C P x
k=

∑
 

 (23)

The polynomial Pk(x) of the fixed degree k provides in the expression (23) the following summand:

 
( ) ( ) ( )

0,
0, 0, 0, 0,

( , ) ( , )
0 0

1 1 1( ) ( ) .
! ! !

k k k
k i i i k i

k k k k i k k i
i i

C P x C C x C C x
k k k= =

  
= =  

  
∑ ∑

 
 (24)

The variable x of the degree l, l ≤ k, appears in the expression (24) in the summand ( )0, 0,
( , )( ) / !.l k l

k k lC C x k  
Summation of the coefficients at xl by k from l to m gives the following formula for the desired 
coefficients:

 
0,

( , ) ( , )
1 ( ),    0,1,2,.., .
!

m
k

p l k k l
k l

c C C l m
k=

= =∑
 

 (25)

If one takes in account that ( , ) (0, )i i sC E i=  is the symmetrical identity matrix which ensures the equality 
0,

( , )( ) ,=i
i i i iC C C  then instead (25) we will have the expression

 
0,

( , ) ( , )
1

1 1 ( ),     0,1,2,.., .
! !

m
k

p l l k k l
k l

c C C C l m
l k= +

= + =∑
 

 (26)

5. Computer simulation. The algorithm of the function approximation by the Fourier series was 
realized programmatically in the form of the standard Matlab function for general case of the theorem 
and was checked on many functions. 
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Real function and its two empirical approximations

We show the empirical approximation (according the p. 3) of the scalar function y of the two argu-
ments x1, x2 as the polynomial (22) of the 7 degree (p = 0, m = 7). The scalar values of the coefficients 
c(p,k) of the polynomial are random integer from –5 to 5. The measurement errors are independent nor-
mal with zero mean and variation 0.2. The approximating polynomial has the degree 7 too. 

We will call the approximation by the algorithm developed in this article as the Fourier mdm ap-
proximation (Fmdm-approximation) in opposite to the mdm approximation (mdm-approximation) of the 
work [18]. 

Figure shows three surfaces: real polynomial and its mdm-approximation and Fmdm-approximation. 
These surfaces are visually indistinguishable in Figure. The design of the experiment is random, the va-
lues of the variables x1, x2 are chosen from the uniform distribution U(–1,1). The number of runs is 255. 
Both of the methods have the high accuracy of the approximation. However, the program of the Fmdm-
approximation turned out to be faster-acting compared to the program of the mdm-approximation. Other 
benefits are to be found out.

It should be noted that the classical approximation for the considered case is impossible because of 
its bulkiness and undeveloped. 

The considered approximations have the undoubted advantages compared to the classical approach: 
algorithmical generality and extensive possibilities. However, they have the certain hardware limitations: 
out of memory and unacceptably long calculation time for the personal computer in the case of big data.

6. The orthogonal 0–2 degrees polynomials. In the work [10], the expressions of zero and first de-
gree orthonormal polynomials and the particular cases of the second degree polynomials are obtained. 
These results are completed in this article by the general expressions of the second degree polynomials 
and Fourier series. The complete expressions are presented in the table for the case 0 1.

x
ν =  The neces-

sary proofs are given in the appendix. 

Orthogonal polynomials and Fourier series up to second degree inclusive

Polynomials P(x) Polynomials Q(x) 
P0(x) = 1. Q0(x) = 1.

1 (1,0) (1,0)( ) ,   .xP x C x C= + = −ν ( )0,1 0,1 1
1 (1,1) 1 (1,1)( ) ( ) ,   .xx xx x xQ x B P x B−= = µ = ν − ν ν

0,1 2
2 (2,0) (2,1)( ) ( ) ,  P x C С x x

( )2

0,1 0,1 1
(2,1) ,xxx x

C −=− µ µ

2
0,1

(2,0) (2,1)( ) ,x x
C C= − ν − ν

2 3 2 .xx x x x
µ = ν − ν ν

( )0.2 0,2 1
2 (2,2) 2( ) 2! ( ) ,Q x B P x−=

( )( )2 2 2 2

0,10,1 0,1 1
(2,2) ,xxx x x x xx

B −= µ − µ µ µ

2 2 4 2 2 ,
x x x x x

µ = ν − ν ν

2 3 2 .xx x x x
µ = ν − ν ν
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Fourier series on the polynomials P(x) Fourier series on the polynomials Q(x)

( ) ( ) ( )0,0 0,1 0,2
0 0 1 1 2 2

1( ) ~ ( ) ( ) ( ) ,
2

y x C P x C P x C P x+ +

( )0,0 0,0 1
0 0 (0,0) ,yC B B−= = ν

( ) ( )0,1 0,10,1 1 0,1 1
1 1 (1,1) ,yx xxC B B− −= = µ µ

( )0,2 0,2 1
2 2 (2,2)2 .C B B−=

( ) ( ) ( )0,0 0,1 0,2
0 0 1 1 2 2 0

1( ) ~ ( ) ( ) ( ) ,  ,
2

+ + = ν yy x B Q x B Q x B Q x B

1 ,yxB = µ

( )( )2 2

0,1 0,1 0,1 1
2 .yx xxyx x x

B −= µ − µ µ µ

Conclusion. The known results of the Fourier series on the orthogonal polynomial are extended 
to the case of the mdm functions, what allows us to solve the new problems such as approximation of 
parametric curves and surfaces. The analytical expressions for the orthogonal polynomials and Fourier 
series of the second degree useful for the potential analytical studies are obtained. The theoretical re-
sults are realized as the single function of the programming language with many possibilities. Such a 
property we call the algorithmic generality. The efficiency of the program function is confirmed on the 
instance, performing of which is impossible by the classical approach. 

Appendix. A1. Calculation of the polynomials of the small degrees. Let us obtain the orthonor-
mal polynomials of the small degrees by solving the system of the equations (14). 

We get the zero degree polynomials by definition:

0 ( ) 1,P x =

0 ( ) 1.Q x =

The one degree polynomials are obtained when m = 1 in the expressions (14). The system of the 
equations (14) consists of one equation:

0
0,0

(1,0)( ) .  xx
С

If 0 1,ν =
x

 then

(1,0) (0,1) ,  xС С

( )0,0 0
1 (1,0)( ) .xP x x C x x= + = −ν

The expression for the matrix B(1,1) from the expression (15) will look like this:

( )0

0,00,0 0,0
(1,1) (1,0) (0,1) (1,0) (0,1)( ) ( ) ( ) .xx x x x

B C C C C= ν + ν + ν + ν

Taking into account the expressions for C(0,1) and C(1,0) when 0 1
x

ν =  we get

(1,1) .xx x x xxB = ν −ν ν = µ

Then

( ) ( )0,1 0,10,1 1 0,1 1
1 (1,1) 1( ) ( ) ( ) .xx xQ x B P x x− −= = µ − ν

The calculation of the first degree polynomials is completed.
The second degree polynomials are obtained when m = 2 in the expressions (14). We have now the 

following system, which consists of two equations (when 0 1
x

ν = ):

0,1
(2,0) (2,1)( ) ,   x xxС C

2
0,0 0,1

(2,0) (2,1)( ) ( ) .    x xx x x
С C

End of table
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We will solve this system by the Gauss elimination method. For this purpose, we subtract the first 
equation multiplied on the right by νx in the sense of the (0,0)-rolled product from the second equation. 
We will get the following system: 

0,1
(2,0) (2,1)( ) ,   x xxС C

( ) 2

0,1

(2,1) ( ) ( ),xx x x xx xx x
C ν − ν ν = − ν − ν ν

or in other notation
0,1

(2,0) (2,1)( ) ,   x xxС C

2
0,1

(2,1)( ) .xx x x
C µ = −µ

We get the expression for the coefficient C(2,1) from the second equation:

( )2

0,1 0,1 1
(2,1) .xxx x

C −=− µ µ

Substituting this expression into first equation we get the expression for the coefficient C(2,0):

 2

0,10,1 0,1 0,1 1
(2,0) (2,1)( ) ( ) .         xx x xx xx xx x
С C

The coefficients C(1,2) and C(0,2) are obtained from the following system of the equations 
0,1

(0,2) (1,2)( ) ,   x xxС C

2
0,0 0,1

(0,2) (1,2)( ) ( ) ,    x xx xx
С C

which follows from (16) when m = 2. Solving this system by Gauss elimination method we get

( )2

0,1 0,1 1
(1,2) ,xx xx

C −=− µ µ

 2

0,10,1 0,1 0,1 1
(0,2) (1,2)( ) ( ) .         xx x xx x xx xx
С C

The second degree polynomial P2(x) of the basic sequence of the orthogonal polynomials has the form
2 0,1 2 0,1

2 (2,1) (2,0) (1,2) (0,2)( ) ( ) ( ) .     P x x С x C x xС C

The second degree polynomial Q2(x) of the conjugate sequence of the orthogonal polynomials is defined 
by the formula

( )0,2 0,2 1
2 (2,2) 2( ) 2! ( ) ,Q x B P x−=

where, from (15), 

( )2 2 2 2

1 1 1 1
0, 0, 0, 0,

(2,2) (2, ) ( ,2) (2, ) ( ,2)
0 0 0 0

( ) ( ) ( ) .k k k q
k k k q

k k k qx x x x x
k k k q

B C C C C+ + +

= = = =

= ν + ν + ν + ν∑ ∑ ∑∑

Let us find the matrix B(2,2) for the case 0 1: 
x

2 2 2 2
0,0 0,1 0,0 0,1

(2,2) (2,0) (2,1) (0,2) (1,2)( ) ( ) ( ) ( )xx xxx x xx x x
B C C C C= ν + ν + ν + ν + ν +

 
( )0,0 0,0 0,1

(2,0) (0,2) (2,0) (1,2)( ) ( )xC C C C+ + ν +
 

( ) ( )0,0 0,1 0,1 0,1
(2,1) (0,2) (2,1) (1,2)( ) ( ) .x xxC C C C+ ν + ν
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Combining the similar terms highlighted in the previous expression we get 

( )( ) ( )( )4
0,0 0,1 0,0 0,1

(2,2) (2,0) (1,2) (2,1) (0,2)( ) ( )xx x xx xx
B C C C C= ν + ν + ν + ν + ν +

 
( )2 2

0,0 0,1 0,1 0,1 0,1
(2,0) (0,2) (2,1) (1,2) (2,1) (1,2)( ) ( ) ( ) ( )xxxx x x

C C C C C C+ + ν + ν + ν =
 

1 ( 2 3) 4 ( 5 6) 7e e e e e e e= + + + + + + .

Taking into account the expressions 0,1 0,1
(2,0) (2,1) (0,2) (1,2)( ) ,   ( )        x xx xx xC C С C  gives

( ) ( ) ( )0,0 0,0 0,00,1 0,1 0,1 0,0 0,1
(2,1) (2,1) (1,2) (1,2)2 ( ) ( ) ( ) ( ) ( ) ,x xx x x xx xx xx xe C C C C= − ν ν − ν ν − ν ν − ν ν

( ) ( ) ( ) ( )0,0 0,0 0,00,00,1 0,1 0,1 0,1
(1,2) (2,1) (1,2) (2,1)3 ( ) ( ) ( ) ( ) ,xx x x x xx xx x xxe C C C C= − ν ν − ν ν − ν ν − ν ν

      
0,1 0,1 0,1 0,1 0,0

(2,1) (1,2) (2,1) (1,2)4 ( ) ( ) ( ) ( ),           x x x xx xx x xx xxe C C C C

2
0,1

(2,1)5 ( ),
xx

e C= ν

2
0,1

(1,2)6 ( ),
x x

e C= ν

( )0,1 0,1
(2,1) (1,2)7 ( ) .xxe C C= ν

Summation of the terms е1–е7 and combining the highlighted similar terms leads to the expression

( ) ( )2 2 2

0,10,1 0,1 0,1
(2,2) (2,1) (2,1) (2,1) (1,2)( ) ( ) ( )x xx xxx x xx

B C C C C= ν + ν − ν ν + ν −
 

( ) ( )2

0,1 0,1 0,1 0,1 0,0
(2,1) (1,2) (1,2) (1,2)( ) ( ) ( ) ) ( ),x x xx x xx xxx x

C C C C− ν ν + ν − ν ν − ν ν

or

( ) ( )2 2 2 2
0,0 0,1 0,1

(2,2) (2,1) (1,2)( ) ( ) ( )xx xx x xx xx xx x xx x x
B C C= ν − ν ν + ν − ν ν + ν − ν ν +

 
( )( )0,1 0,1

(2,1) (1,2)( ) ,xx x xC C+ ν − ν ν

or

( )2 2 2 2
0,1 0,1 0,1 0,1

(2,2) (2,1) (1,2) (2,1) (1,2)( ) ( ) ( ) .xxx x xx x x
B C C C C= µ + µ + µ + µ

Taking into account the expressions ( ) ( )2 2

0,1 0,10,1 1 0,1 1
(2,1) (1,2),   xx xxx x xx

C C− −=− µ µ =− µ µ  we get

( ) ( )2 2 2 2 2 2
0,1 0,1 0,1 1 0,1 0,1 0,1 1

(2,2) ( ) ( )xx xxx x x x xx x x xx
B − −= µ − µ µ µ − µ µ µ +

 

( )2 2

0,1 0,1 0,1 1( ) ,xxx x xx
−+ µ µ µ

or finally

( )2 2 2 2
0,1 0,1 0,1 1

(2,2) ( ) .xxx x x x xx
B −= µ − µ µ µ

A2. Calculation of the Fourier series of the small degrees. The Fourier series (17) with three 
terms on the conjugate polynomials Qr(x) for the scalar function of the vector variable y(x) has the form

( ) ( ) ( )0,0 0,1 0,2
0 0 1 1 2 2

1( ) ~ ( ) ( ) ( ) .
2

y x B Q x B Q x B Q x+ +
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Let us find the coefficients Bi of this series by the formula (19).

( )0,0
0 0( ) ( ) ( ) ( ) ( ) ,yB y x P x x dx y x x dx

Ω Ω

= ρ = ρ = ν∫ ∫

( ) ( )0,0 0,0
1 1( ) ( ) ( ) ( )( ) ( ) ,x yxB y x P x x dx y x x x dx

Ω Ω

= ρ = − ν ρ = µ∫ ∫

    0,00,0 2 0,1
2 2 (1,2) (0,2)( ) ( ) ( ) ( ) ( ) ( )

 

       B y x P x x dx y x x xС C x dx
 

   

   

2

2 2

2 2 2

0,1
(1,2) (0,2)

0,1 0,1 0,10,1 1
(1,2)

0,1 0,10,1 0,10,1 1 0,1 1

( )

( )

( )



 

      

              
 

                    
   

yx yyx

yx xx y x y xxyx xx

yx xx y x xx y xxyx xx xx

С C

C

 

( )( )2 2

0,1 0,1 0,1 1 .yx xxyx xx
−= µ − µ µ µ

The Fourier series (17) with three terms on the basic polynomials Pr(x) for the scalar function of the 
vector variable y(x) has the form

( ) ( ) ( )0,0 0,1 0,2
0 0 1 1 2 2

1( ) ~ ( ) ( ) ( ) .
2

y x C P x C P x C P x+ +

We get in accordance with the formula ( )0, 0, 1
( , )!

r r
r r r rC r B B−=  (21):

( )0,0 0,0 1
0 0 (0,0) ,yC B B−= = ν

( ) ( )0,1 0,10,1 1 0,1 1
1 1 (1,1) ,yx xxC B B− −= = µ µ

( )0,2 0,2 1
2 2 (2,2)2 .C B B−=

The coefficients of the approximation of the function y(x) by the series (22) on the degrees of the 
variable x up to second degree inclusive (m = 2) are defined by the following expressions defined by the 
formula (26):

2
0, 0,1 0,2

( ,0) 0 ( ,0) 0 1 (1,0) 2 (2,0)
1

1 1 1( ) ( ) ( ),
0! ! 2!

k
p k k

k
c C C C C C C C C

k=

= + = + +∑
2

0, 0,2
( ,1) 1 ( ,1) 1 2 (2,1)

2

1 1 1( ) ( ),
1! ! 2!

k
p k k

k
c C C C C C C

k=

= + = +∑

( ,2) 2
1 .
2!pc C=

A3. The main definitions of the multidimensional matrices [8, 10].
The definition of a multidimensional matrix. A multidimensional (p-dimensional) matrix is a system 

of numbers or variables 
1 2, ,..., ,   1,2,..., ,   1,2,..., ,

pi i ia i n pα α= α =  located at the points of the p-dimensional 
space defined by the coordinates 1 2, ,..., .pi i i  

The p-dimensional matrix is denoted as

1 2, ,...,( ),     1,2,..., ,     1,2,..., ,
pi i iA a i n pα α= = α =

or ( ),iA a=  where 1 2( , ,..., )pi i i i=  is a multi-index, 1,2,..., ,   1,2,..., .i n pα α= α =
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Thus, a zero-dimensional matrix is a scalar, a one-dimensional matrix is a vector and a two-dimen-
sional matrix is an ordinary matrix in traditional notation.

Addition of multidimensional matrices. If 
1 2 1 2, ,..., , ,...,( ),  ( ),

p pi i i i i iA a B b= =  then 
1 2, ,...,( ),

pi i iC A B c= + =  
where 

1 2 1 2 1 2, ,..., , ,..., , ,..., ,   1,2,..., ,   1,2,..., .
p pi i i i i i i i i pc a b i n pα α= + = α =

Multiplication of multidimensional matrix by a scalar. If t is some scalar number or a variable 
and A is a p-dimensional matrix, then 

1 2, ,...,( ),
pi i iC tA c= =  where 

1 2 1 2, ,..., , ,..., ,   1,2,..., ,
pi i i i i i pc ta i nα α= =  

1,2,..., .pα =
Multiplication of two multidimensional matrices. If a p-dimensional matrix A is represented in the 

form of 
1 2, ,..., , ,( ) ( ),

pi i i l s cA a a= =  where 1 2 1 2 1( , ,..., ),   ( , ,..., ),   ( ,..., )l l l l s s s s c c cκ λ µ= = =  are multi-indi-
ces, ,pκ + λ + µ =  and a q-dimensional matrix B is represented in the form of 

1 2, ,..., , ,( ) ( ),
qj j j c s mB b b= =  

where 1( ,..., )m m mν=  is a multi-index, ,qλ + µ + ν =  then the matrix , ,( )l s mD d=  is called a (λ,μ)-fold-
ed product of the matrices A and B, if its elements are defined by the expression

1 2

, , , , , , , , , , .l s m l s c c s m l s c c s m
c c c c

d a b a b
µ

= =∑ ∑∑ ∑

The (λ,μ)-folded product of the matrices A and B is denoted , ( ).ABλ µ  Thus

,
, , , , , ,( ) ( ).l s c c s m l s m

c
D AB a b dλ µ  
= = = 

 
∑

In the case of the (0,0)-folded product we often omit the left upper indices and write AB instead of 
0,0(AB). 

The degree of multidimensional matrix. The matrix , , 2( )D AA Aλ µ λ µ= =  is called a (λ,μ)-folded 

square of the matrix A, and the matrix ( )( ), , , ,( ) kD A A AA A
λ µ λ µ λ µ λ µ= =  is called a (λ,μ)-folded k-th 

degree of the matrix A. If it is (0,0)-folded k-th degree of the matrix A, then we omit the left upper indices 
and write Ak instead of 0,0Ak. 

A multidimensional identity matrix. The matrix E(λ,μ) is called a (λ,μ)-identity matrix if for any 
multidimensional matrix A the equality

( ) ( ), ,( , ) ( , )AE E A Aλ µ λ µλ µ = λ µ =

is fulfilled. E(λ,μ) is (λ + 2μ)-dimensional matrix whose elements are defined by the formula

, ,

1, ,
( , ) ( ) ,

0,c s m

if c m
E e

if c m
 =

λ µ = =  ≠ 

1 1 2 1( ,..., ),     ( , ,..., ),     ( ,..., ).c c c s s s s m m mµ λ µ= = =

A multidimensional inverse matrix. The matrix A–1(λ,μ) (or λ,μA–1) is called a (λ,μ)-inverse to the 
matrix A, if the equalities

( ) ( ), ,1 1( , ) ( , ) ( , )AA A A E
λ µ λ µ− −λ µ = λ µ = λ µ

are satisfied.
The transpose of a multidimensional matrix. The matrix ( )1 2, ,..., p

T T
i i iA a=  the elements 

1 2, ,..., p

T
i i ia  of 

which are connected with the elements 
1 2, ,..., pi i ia  of the matrix 

1 2, ,...,( )
pi i iA a=  by the equalities

 1 2 1 2, ,..., , ,..., ,
p p

T
i i i i i ia a

α α α
=

 
 (A.3.1)

where 
1 2
, ,...,

p
i i iα α α  is some permutation of the indices 1 2, ,..., pi i i  is called the transposed according to 

the substitution 
1

1,...,
,...,

p

pii
T ii αα

 
=   
 

 matrix A.
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In the work [10] some standard substitutions are introduced that allow us to form various substitu-
tions, two of which of the types ‘forward’, ‘back’. 

The substitution on the p indices the lower string of which is formed from the upper string by the 
transfer of the r left indices to the right (forward) is called substitution of the type ‘forward’: 

1 2 1
,

1 2 1

,, , ,..., ...,
,     .

,, , ,..., ...,
p r p r p

p r
pr r r

ii i i i
B p r

ii i i i
− − +

+ +

 
= ≥ 
 

The substitution on the p indices the lower string of which is formed from the upper string by the 
transfer of the r right indices to the left (back) is called substitution of the type ‘back’: 

1 2 1
,

1 2 1

, , , ,..., ...,
,     .

, , , ,..., ...,
r pr

p r
p r p r p p r

i i i ii
H p r

i i i ii
+

− + − + −

 
= ≥ 
 

The Matlab’s function ipermute.m performs a transpose of a multidimensional array in accordance with 
the definition (A.3.1).

Matrices associated with multidimensional matrices. Let the p-dimensional matrix 
1 2, ,...,( )

pi i iA a=  of 
the order n be represented in the form of A = (al,s,c), where 1 2 1 2( , ,..., ),   ( , ,..., ),l l l l s s s sκ λ= =  1( ,..., )c c cµ=  
are multi-indices, .pκ + λ + µ =  In this case we say that the matrix A have the (κ,λ,μ)-structure and 
is denoted A(κ,λ,μ). The multi-indices l, s, c of this matrix have nκ, nλ and nμ values respectively. Let us 
arrange the values of l, s, c in some way: (1) (2) ( ) (1) (2) ( ), ,..., ,   , ,..., ,n nl l l l s s s s

κ λ

= =

  (1) (2) ( ), ,..., .nc c c c
µ

=  
The block-diagonal matrix

{ }(1) (2) ( )
( , , ) ( ,0, ) ( ,0, ) ( ,0, )diag , ,..., ,nA A A A

λ

κ λ µ κ µ κ µ κ µ=

consisting of elements of the matrix А, where the diagonal blocks ( )
( ,0, ) , 1,2,..., ,  hA h n  are two-

dimensional (nκ × nμ)-matrices

( )
( ) (1) (2) ( ) (1) (2) ( )
( ,0, ) , ,

( ),   , ,... ,   , ,..., ,h
h n n

l s c
A a l l l l c c c c

κ µ

κ µ = = =








is called (κ,λ,μ)-associated with the matrix A(κ,λ,μ).
The associated matrix ( , , )A κ λ µ

  represented completely the initial multidimensional matrix A(κ,λ,μ), 
because it contains all its elements. 
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