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B. C. Myxa

benopyccxuii eocyoapcmeennulii yHugepcumem ungopmamuxu u paouodnrekmponuxu, Murck, Pecnyonuxa Berapyce
PSJIbl ®YPBHE 1JIsI MHOTOMEPHO-MATPAUYHBIX ®YHKIIU BEKTOPHOM MEPEMEHHOWM

AHnHoTanus. B cratee pa3suBaetcst Teopus pagoB Oypbe Mo OPTOrOHATBHEIM MHOTOMEPHO-MATPHYHBIM TTOJTHHOMAM.
[TpuBoASsITCSA N3BECTHBIE PE3YTBTATHI TEOPUU OPTOTOHANIBHBIX MOIMHOMOB BEKTOPHON MepeMeHHoil u psifnoB Dypwe u npes-
CTaBJICHBI HOBBIE PE3YNbTAaThl. B 4acTHOCTH, U3BECTHBIE PE3YNbTAThl TEOPUH PAI0B Dyphe PaCIPOCTPaHIIOTCA HA ClIydai
MHOTOMEPHO-MAaTPUYHBIX (YHKIHUH, 4TO MO3BOJISET pemars 0ojee oOmine 3aa4qu annpoKCHMalnui. BeinonHeHa nmporpam-
MHasl peaju3anus OOIIero ciydyas anmpoKCMMAalil MHOTOMEPHO-MAaTPUYHOH (GYyHKIMU BEKTOPHOI'O apryMeHTa psaoM
®Oypbe 110 OPTOroHaIBLHBIM MHOTOMEPHO-MAaTPUYHBIM IIOJTMHOMAM U MOATBEPIK/CHa ee paboTocnocoOHocTh. [lomydyeHs! Tak-
)K€ aHAJINTUYECKUE BBIPaXKeHNS KO (QHINEHTOB MOJIMHOMOB ¥ psiioB Dypbe BTOPOI CTENeHHU /Il BO3MOXKHBIX aHAJUTHYE-
CKHX MCCIECJOBaHUM.

Kurouessie cioBa: psaasl @ypbe, MHOTOMEPHO-MAaTPUYHBIE OPTOTOHAIbHBIC TOJUHOMBI, MHOTOMEPHAsI TIOJIMHOMHAJIb-
Has perpeccus

Jas uurupoBanmus. Myxa, B. C. Pagel dypbe 11 MHOTOMEpPHO-MATPUYHBIX (YHKIUH BEKTOPHOI IEpeMEeHHOH /
B. C. Myxa// Bec. Ham. akaz. HaByk benmapyci. Cep. ¢i3.-mat. HaByk. —2024. —T. 60, Ne 1. — C. 15-28. https://doi.org/10.29235/1561-
2430-2024-60-1-15-28

Introduction. The most important tool for research of the real systems and processes is approxima-
tion. The mathematical models of the real systems and processes are their approximate mathematical
images. The various methods of approximation exist, one of which is approximation by Fourier series.
This article is devoted to approximation of the functions of several variables by Fourier series on the
orthogonal polynomials.

The history of the orthogonal polynomials of both one and several arguments dates back to
Hermite [1]. Hermite in [1] and then P. Appel and Kampe de Feriet in [2] studied in details the properties
of the so-called Hermite polynomials of one and two arguments. The general theory of the orthogonal
polynomials of many arguments is developed in the work [3]. As per the works [1-3], this theory is con-
structed as the theory of two bi-orthonormal sequences of the polynomials: basic and conjugate. In the
work [4], it is proposed to choose a polynomial with the unit coefficient at the highest degree as the basic
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polynomial. This theory uses the classical (scalar) mathematical approach and is therefore the classical
theory. The classical theory can be found also in [5, 6]. The classical approach is characterized by bulki-
ness and poor formalization, which entail the practical loss of the theoretical and algorithmic generality.

In the current article, the multidimensional-matrix (mdm) approach is used that is free from these
pointed above disadvantages. The foundations of the theory of the multidimensional matrices were laid
by N. P. Sokolov in the works [7, 8]. This theory was developed later in the works [9, 10]. Sokolov’s
theory has a number of applications today, an overview of which can be found in the work [11]. These
are vector multiconnected Markov chains, parallel factor analysis, multiindex linear programming prob-
lems, educational timetable problem, mdm statistical decisions, finite-dimensional moments of the sta-
tionary random sequences and their estimations, mdm principal components method, mdm data model
in databases and OLAP-systems, mdm regression analysis and other applications.

The author of the current article is aware of the works related to the multidimensional matrices and
appeared in recent time. Primarily, these are the works using the terms “multiway data” or “multiway
arrays” (see, for example, [12, 13]). The authors of these works do not refer to the works of N. P. Sokolov
It is not clear whether they are aware of the Sokolov’s works or not. These works does not use the theory
of N. P. Sokolov and have no own mathematical theory. Graphical (geometrical) representations of the
multiway arrays prevail in these works. Secondly, it is the work [14] the author of which announces his
own “multidimensional matrix mathematics”. This approach also assumes the continuation of the devel-
opment to the mathematical completion.

The current article is devoted to use the mdm theory of the orthogonal polynomials and the Fourier
series of the vector argument [15, 10] in regression analysis. This theory is the combining of the ideas of
the works [3, 4] on the basis of the mdm mathematical approach. It is how the mdm theory of the orthog-
onal polynomials and the Fourier series of the vector argument arose.

The basic definitions of the theory of the multidimensional matrices in English can be found in the
appendix A3 to the current article and in the appendix to the article [16].

1. Orthogonal polynomials of the vector variable. Let Q be some closed region of the space R,
p(x), x € Q, be nonnegative function (weight function) such that the integrals (the moments of the weight
function p(x))

v, = J x'p(x)dx <o, i=0,1,2,..., )
Q

exist, and L,(p,Q) be the space of the functions with integrable square in Q with the weight p(x). Here x’
is the (0,0)-rolled degree of the one-dimensional matrix x: x' = *°(x') = **(x-x---x) [A3, 16]. We will
often avoid the notation (0,0)-rolled degree and will write x’ instead of “°(x").

A mdm r degree polynomial Q,(x) of the vector (one-dimensional) variable x € Q is defined as fol-
lows [15, 10]:

0.0=5 (G ) =5 (¥C) P01z @

k=0 k=0
where C(*r x are the (r + k)-dimensional matrices of the coefficients,

Con = o s) 7=0120 k=027,
symmetrical with respect to the indices of their two multiindices (i,...,i.), (ji,...,j,) and satisfying the
conditions

*

* H, ok * « Biyr i
C(r,k) = (C(k,r)) > C(k,r) :(C(r,k)) .

The notations H,,,, and B, ,, mean the transpose substitutions of the types “back” and “forward”
respectively [10, A3, 16]. Each of the indices of the multiindices (i,...,i.), (j,,...,j,) takes the values
1,2,...,n.
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Definition. The sequence of the mdm polynomials Q,(x) (2) is called orthogonal in L,(p,<2) if the
following conditions are satisfied:

0, k=0,1,...r—1,

- 3
#0, k=r, @

[0.(0)0, (x)p(x)ex {

where QO (x)0, (x) is the (0,0)-rolled product of the matrices Q,(x) and O,(x): O, (x)0, (x) = 0 (Qr (00, (x)).
We will often avoid the notation (0,0)-rolled product and will write 4B instead of 00(4B).

The two sequences of the orthogonal polynomials of many variables are considered: the basic se-
quence P ,(x) and the sequence Q,(x) conjugate of P.(x), r=0,1,2,... .

Definition. The mdm r degree polynomial in L,(p,€2) of the following form

P=3" (Gt )+ = 5 (X Cy,) )+ r=012,., @)

k=0 k=0
is called the basic polynomial, where C, ,, are (r + k)-dimensional matrices of the coefficients,
Con=C_,, ) r=012.. k=012..,r-1

symmetrical with respect to the indices of their two multiindices (i,...,i.), (j;,...,j,) and satisfying the
conditions

_ Hew — (" Brira
C(r,k) - C(k,r) ’ C(k,r) - C(r,k) :

Definition. The mdm polynomial P,(x) (4) is called the basic orthogonal r-degree polynomial in
L,(p,Q) if it is orthogonal to the homogeneous polynomials 1,x,x%,...,x"", x* ="°(x"):

=0, k=0,1,.,r-1,

#0, k=r. ©)

[ B(0x"plaax {

Definition. The sequences of the mdm polynomials P,(x) (4) and Q,(x) (2) are called the com-
pletely orthonormal in L,(p,€2) if the conditions (3), (5) are satisfied and the following condition

P p 0, k=0,1,...,r—1, 6
[Q. R @peax=1 )~ T ©)
Q (r,r)

is satisfied too. Here Dy, ,, is the 2r-dimensional order n matrix with the following structure:

Dy =(d, s i s by fis s, = 12,0000 ™)
The elements of this matrix are defined by the expression

_{rl!rz!...rn!, perm(iy,iy,...;i.) = (Jis Jysees J,)s ®)
ot oS dr 0, perm(iyiyy...,i ) # (s Jyeees )

in which perm(i,,i,,...,i.) means any permute of the values of the indices i,,,....i , #, +7, +..+r =7,
and r, is the number of repetitions of the k-value, k=1,2,...,n.

The matrix D, (7), (8) has such a useful property that for any g-dimensional matrix
C=(C sy, jp..y,) With g = r symmetrical with respect to the indices Jjy, /5., J, the following equali-
ty is fulfilled [10]:

*"(CD,,,,)=r!C.

Let us introduce the initial i-th order moments Vv ; and the initial-central and central-initial (i + j)-th
order moments Vi, V., of the weight function p(x):

v, = [p(dx,
Q
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V., =V, = j Xo(x)dx, i+j=12,.., ©)
Q
A =jx (xj —vx,)p(x)dx, i+j=1L2,.., (10)
Q
Vo =I(x -v, )xjp(x)dx, i+j=12,... (11)
Q

The moments (10), (11) have the following properties:
-V,v,, (12)

Bigijgig _
V=V, ) =V TV,

where B i is the transpose substitution of the type “forward” [10, A3, 16]. These properties are
proved by calculation of the formulae (10), (11). The properties (12) allow us to use the following
notations:

“Xixj :VXH/ _invxja ux/'xi :Vx/+i _Vx/vx[’
— (M ) iq+jq.iq .
Let us introduce also the mutual moments
Vo = ¥ X p(x)dx (13)
Q

with the properties

Vvt

Vo=V, =V, = [V @ v )pdr=v -y v =
Q

The weight function p(x) in the case v , =1 represents the probability density function of the some
random vector &. “

Theorem [10]. If the sequences of the mdm polynomials P.(x) (4) and Q.(x) (2) are completely
orthonormal in Ly(p,QY), i .e. they satisfy by the conditions (3), (5), (6), then the coefficients C,, ;, of the ba-
sic sequence P (x) (4) are defined by the following mdm system of the linear algebraic equations

ZO"( Ve )=0, r=01., p=0_..,r-1 (14)

and the coefficients C i Of the conjugate sequence Q,(x) (2) are defined by the expression
* 0,r
C(r,k) ( B(r V)C(r k) )

where O‘VB(;{V) is the matrix (0,r)-inverse to the following matrix B, r).'

r—1 r=1r
B,,=V.,+ Z CornV )+ 2V Cu) Y, ( i Vo C(q,r)))' (15)
k=0

k=0 g=0

The coefficients C,, of the basic sequence P,(x) (4) are defined by the following mdm system of the
linear algebraic equations

r—l1
v+ %, .Ch)=0, r=01.., p=01..,r-1, (16)
k=0

and the coefficients C;,

. Of the conjugate sequence Q,(x) (2) are defined by the expression



Becui Hanpisinanpaait akaaomii HaByk benapyci. Cepsis dizika-maramareraabix HaByk. 2024. T. 60, Ne 1. C. 15-28 19

0,r
A 0.r
C(k,r) ri (C(k " B(r ) )

2. The Fourier series on the orthogonal polynomials. The Fourier series for the p-dimension-
al-matrix function y(x) of the vector (one-dimensional-matrix) variable x € Q < R" on the conjugate
orthogonal polynomials Q,(x) (2) has the following form:

0

() ~ 21 " (B.O.(x)), a7

r=0 T

where B, =(b, , .. ) are (p + r)-dimensional matrices of the n-order of the coefficients sym-

metrical when r> 2 ‘with respect to the indices i,i,,...,i . They are defined by the expressions [10]

B =" (R ) e (18)

Substitution of the polynomial P,(x) (4) into (18) gives the following expression for the coefficients B,:

B, = [" (y)B.()p)dx = | (y(x)[x’ +§°’k(xkc(k,r> )medx:

Q Q

r—1

r—1
_E(O’O(yxr)+ O’k( (yx )C (k r))J_V o +Zo’k(vyxkc(k,r))a r=0,12,.., 19
k=0

k=0

where E£(*) means the mathematical expectation.
The Fourier series on the basic orthogonal polynomials P,(x) (4) is obtained analogously:

Y =35 (CR)) 0)
where
C, = j " (10, (x))p(x)dx.
Since
0.=r"" (B B,
then

¢ =" (yx)0.()pyde=r1[ (40" (P07 BLL, ) ot =

Q

| e ( " (W(x)P.(x)) By, )p(x)dx =" (BB @1)

The approximation of the scalar (zero-dimensional-matrix) function y(&) of the random vector § with
the probability density function p(x) by the finite sum of the Fourier series

5,©)=>L"(80.©)=3>L"(Cr®)

rzOr' r:0r'

provides the minimum of the mean square error (m.s.e.) of the approximation
e =E(" (1©)=5,©) )= [ " (3~ 5,(0) plx)dx.
Q

The minimal value r’, . of the m.s.e. is defined by the expression [10]

mmin
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= E(7 ()= 3~ (5,C).

r=0r'

3. The polynomials orthogonal with the discrete weight function. The theory of the polynomials
orthogonal with the continuous weight function p(x) outlined above coincides with the theory of the
polynomials orthogonal with the discrete weight function (p,.x;), when the / distinct points x,,x,,...,X,
are given in the region Q < R" with positive weights p,, p,,..., p, and the measure p of the region € is
defined by the formula pu(Q)= Z o P [17]. They say in this case about the polynomials orthogonal on
the system of the points. The moments (9) is defined in this case by the expression

x' i = g _J. l+/d“’ Z l+/pk7 i+j:1:27"'7
and the mutual moments (13) is defined by the expression
!
Vi = Iy’ (x)x’dp= Zy,’cx,ﬁpk, i+j=1L2,..,
Q k=1

where y, = y(x,), k=12,...,L

We will call the discrete weight function with v , =1 as the discrete distribution of some random
vector &. The important discrete distribution is so called empirical, or sample distribution, when x; are
the sample values of the random vector § and p, =1/[, where / is the length of the sample. If the empir-
ical distribution is used then the approximation is called empirical.

4. The mdm approximation by the Fourier approximation. It is of interest to obtain the coeffi-
cients ¢, ;, of the approximation of the function y(x) by the mdm m degree polynomial

y(x)~ i "’ (22)

k=0

in the case when the Fourier approximation (20) of this function of the same degree is obtained

Y0~ (GRE). 23)

k=0

The polynomial P,(x) of the fixed degree k provides in the expression (23) the following summand:

1 ok 1 o 5 o ST gifok i
o (GRM)=— (ck[z (o )n 2 (M), (24)

i=0 i=0

The variable x of the degree /, [ <k, appears in the expression (24) in the summand */ ( (C ) )/ k!.
Summation of the coefficients at x' by k from / to m gives the following formula for the desired
coefficients:
LN
Coony = F " Con)s 1=0,1,2,.,m. (25)
k=1

If one takes in account that C, , = £ (0,7) is the symmetrical identity matrix which ensures the equality

“c.c i) = C,, then instead (25) we will have the expression

1 1
S :ﬂcl + 0l Ok(C C(k 1)), 1=0,1,2,..,m. (26)
: k=141

5. Computer simulation. The algorithm of the function approximation by the Fourier series was
realized programmatically in the form of the standard Matlab function for general case of the theorem
and was checked on many functions.
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x2 A1

x1

Real function and its two empirical approximations

We show the empirical approximation (according the p. 3) of the scalar function y of the two argu-
ments x,, x, as the polynomial (22) of the 7 degree (p = 0, m = 7). The scalar values of the coefficients
C(pi Of the polynomial are random integer from —5 to 5. The measurement errors are independent nor-
mal with zero mean and variation 0.2. The approximating polynomial has the degree 7 too.

We will call the approximation by the algorithm developed in this article as the Fourier mdm ap-
proximation (Fmdm-approximation) in opposite to the mdm approximation (mdm-approximation) of the
work [18].

Figure shows three surfaces: real polynomial and its mdm-approximation and Fmdm-approximation.
These surfaces are visually indistinguishable in Figure. The design of the experiment is random, the va-
lues of the variables x;, x, are chosen from the uniform distribution U(-1,1). The number of runs is 255.
Both of the methods have the high accuracy of the approximation. However, the program of the Fmdm-
approximation turned out to be faster-acting compared to the program of the mdm-approximation. Other
benefits are to be found out.

It should be noted that the classical approximation for the considered case is impossible because of
its bulkiness and undeveloped.

The considered approximations have the undoubted advantages compared to the classical approach:
algorithmical generality and extensive possibilities. However, they have the certain hardware limitations:
out of memory and unacceptably long calculation time for the personal computer in the case of big data.

6. The orthogonal 0-2 degrees polynomials. In the work [10], the expressions of zero and first de-
gree orthonormal polynomials and the particular cases of the second degree polynomials are obtained.
These results are completed in this article by the general expressions of the second degree polynomials
and Fourier series. The complete expressions are presented in the table for the case v , =1. The neces-
sary proofs are given in the appendix.

Orthogonal polynomials and Fourier series up to second degree inclusive

Polynomials P(x) Polynomials Q(x)
Pyx) = 1. Oy =1.
0.1 B

B()=Co+% Cup=Ve 0(0)="("B\R(), By =ty =V, =V,
Py(x)=Cpy + "(Cpopy0) + 57, 0,(x)=2" ("B, B (x)),

_ 0.1 0,1 -1 0,1
Con= (HXZ" “”)’ By =pop =" ( (“sz Oylu;x])”xxz )’
C(Z,O) :_O’I(C(z,l)vx)_vxzy Las=V,—V,V,,
B =V, —V,V. Mo =V, —=V,V,.
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End of table
Fourier series on the polynomials P(x) Fourier series on the polynomials O(x)
0,0 12 ! X 1o
Y0 =" (CRE)+ T (GR®)+ T (GRE), @)~ (B0, () + " (BO W)+ T (BQ(), By =V,
0,0 —
C = ( OOB(OO)) y’ Bl_uyxa
o O ron -1
C = ( ;N 1)) (uyx ot u;,‘), By=p .~ (uyx ( [T uxzx)).

c,=2" ( “B(“))

Conclusion. The known results of the Fourier series on the orthogonal polynomial are extended
to the case of the mdm functions, what allows us to solve the new problems such as approximation of
parametric curves and surfaces. The analytical expressions for the orthogonal polynomials and Fourier
series of the second degree useful for the potential analytical studies are obtained. The theoretical re-
sults are realized as the single function of the programming language with many possibilities. Such a
property we call the algorithmic generality. The efficiency of the program function is confirmed on the
instance, performing of which is impossible by the classical approach.

Appendix. Al. Calculation of the polynomials of the small degrees. Let us obtain the orthonor-
mal polynomials of the small degrees by solving the system of the equations (14).

We get the zero degree polynomials by definition:

R(x)=1,
Qp(x)=1.

The one degree polynomials are obtained when m = 1 in the expressions (14). The system of the
equations (14) consists of one equation:

0 (C(l,O)on) =V,
If Vo =1, then

C

(1,0) =G

on = Vi

0,0
R(x)=x+ (C

0) _
00X ) =X-V,.

The expression for the matrix By, ;, from the expression (15) will look like this:
0,0
B(l,l) V. + (Ca 0V« )+ (V 01))+ ( a 0)(V 01)))
Taking into account the expressions for C, ;, and C; o) when v , =1 we get
B(l,l) = Vxx - vax = “xx'
Then
Ql(x)_ (013(11) 1(x)) (01“;(35_\’)())'

The calculation of the first degree polynomials is completed.
The second degree polynomials are obtained when m = 2 in the expressions (14). We have now the
following system, which consists of two equations (when v , =1):

0,1 _
C(2,0) + (C(Z,l)vx) ="Vio

0,0 0,1
(ConV)+ (CopVu) ==V .
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We will solve this system by the Gauss elimination method. For this purpose, we subtract the first
equation multiplied on the right by v, in the sense of the (0,0)-rolled product from the second equation.
We will get the following system:

0,1 _
C(Z,O) + (C(Z,I)Vx) =V,

x 2

0,1
(C(Z,l) (Vxx - vax )) = _(szx - Vxxvx )’
or in other notation

0,1 .
C(2,0) + (C(2,1)Vx) =-V

xx 2

O’I(C@,Uum) =—U...
We get the expression for the coefficient C, ), from the second equation:
C(Z,]) =" (“xzx o “; )
Substituting this expression into first equation we get the expression for the coefficient C, ):
C(Z,O) ="V~ O’I(C(Z,l)vx): Vot " ( O’I(szx o H; WV, )
The coefficients C, 5 and C , are obtained from the following system of the equations

0.1 _
C(0,2) + (cha,z)) =—v

0 (V,xc(o,z))+ o (VxxC(],Z)) ==V o2
which follows from (16) when m = 2. Solving this system by Gauss elimination method we get

0,1
o Olgr
C(I,Z) == ( | )a

0,1 B
C(o,z) ="V, o (VxC(I,Z))Z Vot (Vx O’I(O’luxiuxxz ))

The second degree polynomial P,(x) of the basic sequence of the orthogonal polynomials has the form
P (x)= x*+ O’I(C(z,l)x) + C(2,0) =x"+ O’l(xc(l,z)) + C(o,z)-

The second degree polynomial O,(x) of the conjugate sequence of the orthogonal polynomials is defined
by the formula

0,(x)=2" ("B, B (),

where, from (15),

1 1 1 1
0,k 0,k 0,k 0,
By =Vast Z (CaopyV ) + Z (V2 Cliy) +ZZ (C(z,k) TV C(q,Z)))'
=0 =0 =0 =0

Let us find the matrix B, 5, for the case v , =1:

0,0 0,1 0,0 0,1
B(z,z) =Vt (C(Z,O)Vxx) + (C(Z,I)Vxxl )+ (VxxC(O,Z)) + (szxc(l,z)) +

0,0 0,0 0,1
+ (C(Z,O)C(O,Z))+ (C(Z,O) (ch(l,z)))+

+0’0( o (C(Z,l)vx )C(o,z) ) + (C(z,no’l (VMC(I,Z) ))
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Combining the similar terms highlighted in the previous expression we get
By =V +"’ (C<2,0> (v +" (chu,z)))) 0 ((Vxx +4(Cov)) Cony ) *
+(CoayClon) + (CopV )+ (V2 Cua)) + (Con (v Ciray)) =
=el+(e2+e3)+ed+(eS+eb)+e7.

. . . 01 _ 0,1 .
Taking into account the expressions C, ,, =" (Cp,,)V,) =V, Cqo =-V,.—  (v,C,,) gives

xx?

0,1 0.0 o1 0,1 0,0 0.0 0,1
( (C(Z,l)vx)vxx)_ ( (C(Z,I)Vx) (ch(l,z)))_ (VoVe)— (Vxx (ch(l,z)))a

0,0

e2=

3=—" (vxx o (vxC(l,z))) . ( (Copyvi) ™ (VxCa,z))) - (Vv ) — " ( “(CopVi)Va ),

01
ed= (C(Z,l) o ((vax)c(1,2))) < (Canave))+ "((Vav)Cao) + 0 (Varv),

0,
e5="(CpV_.)s

0,1
e6="(v. Cyy),

el = O’I(C(2,I)0’1(Vxxc(l,2)))‘
Summation of the terms el—e7 and combining the highlighted similar terms leads to the expression

0.1 0.1 0,1 0.1
Boyy =V +"(Coyv ) - (c(z,l)(vxvﬂ))Jr (cm) (VMC(LZ)))_

0.1 Cc. o C 0,1 C 0,1 C 0,0
- ( @0 (v,v, (1,2)))"‘ (szx (1,2))_ ((Vxxvx) (1,2)))_ VeV

or
B,y =V, - v v, )+ (C(ZJ)(VM2 —vxvm)) +7! ((szx —vmvx)C(l’z))vL
40 (C(z,l)o'l ((vxx -v.v)C, )),
or
By =t +7 (Copht o)+ (M Cipy) + (C<2,1)071(“mc<1,2)))'
o : 01 . 0l .
Taking into account the expressions C,,, =— (pxzx O’luxi), Cuz =— ( RTI },Lxxz) we get
By =ppp =" (0’1 (e, " Hm, ) - (“xzx R QTSR )) +
(M T ).
or finally
By =, (O'l (T TR TR )

A2. Calculation of the Fourier series of the small degrees. The Fourier series (17) with three
terms on the conjugate polynomials Q,(x) for the scalar function of the vector variable y(x) has the form

Y~ " (B,Q, (1)) + °“(BlQl(x))+% "2 (B,0,(x).
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Let us find the coefficients B, of this series by the formula (19).

B, =" (YR )p(x)dx = [ y()p()dx =v,,

B = [ (y@P@®)p)dx = [ (@) x—v,))p(x)dr = p,,.

Q Q

B, =[" (Y@E®)pdr= [ () (¥ + 1 (xC,0) + Gy ) ) =

Q Q

=V 2+ " (vuC2) +v,Co2) =

0,1 0.1
=Vyx2 - (Vyx (Oluxxu )J_OJ ((Vyvx)c(l,z))_vyvxx =

0,1 0,1
_ R 0L o1 —1 B
_Vyx2 - Voyx Hae U 2 |+ (Vyvy) Rox b 2 ) |7 VyVax =

_ Myxz ~ 0,1 (uyx 0,1 (o,lu;:um2 ) )

The Fourier series (17) with three terms on the basic polynomials P,(x) for the scalar function of the
vector variable y(x) has the form

1 o2

y(@)~ " (CBx))+" (CP(x))+— (C,B(x)).

We get in accordance with the formula C, =r! v (B “B, r)) (21):

¢, =" (8, "By )=V

y’

C = " (B OlB(l 1)) (“‘}x OIH;)
c,=2""(8,"°B7,).

The coefficients of the approximation of the function y(x) by the series (22) on the degrees of the
variable x up to second degree inclusive (m = 2) are defined by the following expressions defined by the
formula (26):

oo =

1 1
C+z Ok(C o) = C+°1(CC]0))+5°’2(C2C(2,0)),

1 2
Com :1—!C1 +; *(c, Cun)=C + 02(C Con)s

1
C(p’Z) = 5 C2 .

A3. The main definitions of the multidimensional matrices [8, 10].

The definition of a mullidimensional matrix. A multidimensional (p-dimensional) matrix is a system
of numbers or variables @, , ., i, =12,.,n,, a=12,.,p, located at the points of the p-dimensional
space defined by the coordinatés 11,12, ,zp

The p-dimensional matrix is denoted as

A=(a,, ) iy=l2..n,. o=12..p,

or A=(a,), where i=(i,i,,...,i,) is a multi-index, i, =1,2,.. a=12,.,p

q)
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Thus, a zero-dimensional matrix is a scalar, a one-dimensional matrix is a vector and a two-dimen-
sional matrix is an ordinary matrix in traditional notation.
Addition of multidimensional matrices If 4=(a,, ., ), B=(b,,. ., ), then C=A+B=(c; )

where ¢, . =a,, . +b i, =120, a=12,.
15025 15125 1512 5005l P ‘1 0‘

Multzplzcatzon of multzdzmenszonal matrzx by a scalar If t is some scalar number or a variable
and 4 is a p-dimensional matrix, then C=t4=(c, , i ), where Ciriyoiy =iy ip> T =1,2,..,n,,
a=L2,...,p

Multiplication of two multidimensional matrices. If a p-dimensional matrix 4 is represented in the
form of A=(a,, ,)=(a,,), where I=(},,...1), $=(5,8,..8,), ¢=(¢,...,c,) are multi-indi-
ces, K+A+u=p, and a g-dimensional matrix B is represented in the form of B = (b ) (D sm)s
where m =(m,,...,m,) is a multi-index, A +p+v =g, then the matrix D=(d, ) is called a (A, w)-fold-
ed product of the matrices 4 and B, if its elements are defined by the expression

lsm Za]sc c,s,m ZZ Zalsc c,s,m*

a G

The (\,u)-folded product of the matrices 4 and B is denoted **(AB). Thus
D = o (AB): (zal,s,cbc,s,m j = (dl,s,m )

In the case of the (0,0)-folded product we often omit the left upper indices and write AB instead of
0,0
“(4B).

The degree of multidimensional matrix. The matrix D =""(A44)=""4> is called a (\,p)-folded

T
square of the matrix 4, and the matrix D = (A e (A o (AA))) =""4" is called a (A,p)-folded k-th

degree of the matrix 4. If it is (0,0)-folded k-th degree of the matrix A, then we omit the left upper indices
and write 4" instead of *°4".

A multidimensional identity matrix. The matrix E(A,p) is called a (A,p)-identity matrix if for any
multidimensional matrix 4 the equality

M (AEGL W) =" (E(Lp)4) =

is fulfilled. E(A,p) is (A + 2p)-dimensional matrix whose elements are defined by the formula

1, if c=m,
0, if cem)

c= (c],...,cp), S =(8),8y5008,), M= (m],...,mp).

EQ,w)=(e. )

A multidimensional inverse matrix. The matrix A~/ (A,p) (or **47") is called a (A,p)-inverse to the
matrix 4, if the equalities

P ad” (o) =" (47 0w ) = O

are satisfied.
o ) the elements a;, , of

Uolyseesly J 707 T TR Tl ey »

The transpose of a multidimensional matrix. The matrix A" =(a

which are connected with the elements a, , of the matrix A=(q, , , ) by the equalities

12,“‘,[‘0
al =a (A.3.1)
ity Py sy i ? e
where i, ,i, ,. -l 13 sOme permutation of the indices i,i,,...,i, is called the transposed according to

i 0 .
the substitution 7 = [.1 7’ j matrix A.
i

el
o2ttt
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In the work [10] some standard substitutions are introduced that allow us to form various substitu-
tions, two of which of the types ‘forward’, ‘back’.

The substitution on the p indices the lower string of which is formed from the upper string by the
transfer of the r left indices to the right (forward) is called substitution of the type ‘forward’:

I ] i i 1
12 29 ceey p-r? —r+19 sy
Bp,~=[. : o .’”J, pzr.
’ 1

SITTRS SPUR |

The substitution on the p indices the lower string of which is formed from the upper string by the
transfer of the 7 right indices to the left (back) is called substitution of the type ‘back’:

i i iy i i
_ 12 29 ceey ro r+l19 ceey P
Hp,,_(l_ S . J p=zr.
7

p-r+l2 lpfr+2’ R lp’ 115 ] lp—~

The Matlab’s function ipermute.m performs a transpose of a multidimensional array in accordance with
the definition (A.3.1).

Matrices associated with multidimensional matrices. Let the p-dimensional matrix 4 = (ail’l.w,ip) of
the order 7 be represented in the form of 4 = (a; ), where I =(,,1,..., 1), s =(8,,8,,--,5,), ¢ =(€}5.--,C,)
are multi-indices, k+A+p = p. In this case we say that the matrix 4 have the (k,A,p)-structure and
is denoted 4 ; - The multi-indices /, s, ¢ of this matrix have n*, n* and n* values respectively. Let us
arrange the values of /, s, ¢ in some way: [ =/D, 1?1 §=5U §@ s c=cV @, . ",
The block-diagonal matrix

4 —di ) ) (")
A _dlag{ Ao Ao K,o,m}’
consisting of elements of the matrix A4, where the diagonal blocks A((lil,)O,u)’ h=1,2,..,n", are two-
dimensional (n* x n")-matrices
h 7 (2 n* ~ 1 2 nt
A((K,)O,H) :(ai,s(h),f)’ [=1D0P 1" ¢=cM,c?,..c"),
is called (k,A,p)-associated with the matrix 4 ; .

The associated matrix ,ZI(K‘M)
because it contains all its elements.

represented completely the initial multidimensional matrix 4 ;
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