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FREUD – NAMBU COSMOLOGY WITH THE MASSLESS SCALAR FIELD

Abstract. Within the framework of the generalization of Freund – Nambu scalar-tensor theory of gravity, a massless 
scalar field is considered, the source of which is the trace of its own energy-momentum tensor. For the cosmological problem, 
numerical solutions of field equations were obtained, with the help of which the dependencies of the Hubble parameter 
and the photometric distance to the observed sources on red-shift were constructed. To the consistency of the models with 
observational data, contours of confidence intervals for model parameters were constructed.

Keywords: scalar field, scalar-tensor theory of gravity, the cosmological problem, Hubble parameter, red shift, confidence 
interval

For citation. Dudko I. G., Vyblyi Yu. P. Freund – Nambu cosmology with the massless scalar field. Vestsі Natsyyanalʼnai 
akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of 
Belarus. Physics and Mathematics series, 2024, vol. 60, no. 1, pp. 43–51. https://doi.org/10.29235/1561-2430-2024-60-1-43-51

И. Г. Дудко, Ю. П. Выблый

Институт физики имени Б. И. Степанова Национальной академии наук Беларуси, Минск, Республика Беларусь

КОСМОЛОГИЯ ФРОЙНДА – НАМБУ С БЕЗМАССОВЫМ СКАЛЯРНЫМ ПОЛЕМ

Аннотация. В рамках обобщения скалярно-тензорной теории гравитации Фройнда – Намбу рассмотрено без-
массовое скалярное поле, источником которого является след его собственного тензора энергии-импульса. Для кос-
мологической задачи получены численные решения полевых уравнений, с помощью которых построены зависимо-
сти параметра Хаббла и фотометрического расстояния до наблюдаемых источников от красного смещения. Для ко-
личественной оценки согласованности моделей с наблюдательными данными построены контуры доверительных 
интервалов изменения параметров моделей.
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Introduction. Numerous current observations [1–3] lead to the confirmation that the Universe is ex-
panding with the acceleration. As it is well known, the accelerated expansion is successfully described 
by the ΛCDM-model. However, the nature of Λ-term is unclear [4–7]. For this reason, along with other 
approaches scalar fields are often considered as an extension of general relativity to a scalar-tensor the-
ory of gravitation. Also scalar fields are good candidates for the modeling of the dark energy (see, for 
example, [8, 9]).

At present, there are a lot of different classes of scalar-tensor models of a dark energy [10]. These 
models imply the equation of state parameter values –1 < ωφ < –1/3 for accelerated expansion of the 
Universe provided that the Universe contains only scalar field energy component. Besides, the dark 
energy the Universe contains the baryonic, cold dark matter and a negligible small portion of radiation 
which tend to slow down expansion of the Universe. This circumstance leaves only the narrow band of 
allowable values of the equation of state parameter ω that is close to minus one for the models above and 
also includes ΛCDM-model. However, this interval admits also values ω < –1 which lead to some exotic 
scalar models with a negative kinetic term called phantom energy.
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Nevertheless, there is a lot of freedom in choosing the scalar field Lagrangian. One of the possible 
approaches is a method for reconstructing the potential V(φ) of a scalar field using behavior of function 
of density perturbations dependence on redshift in dust-like matter component provided that we know 
the Hubble constant value or using the luminosity distance as a function of redshift provided that we 
know the present density of dust-like matter estimated in the critical density units [11].

To get around the arbitrariness of choosing the Lagrangian of scalar field we use an assumption 
about the scalar field equation structure. As known, the Einstein’s equations of the gravitational field 
can be obtained if one considers a linear massless tensor field in Minkowski space-time with the source 
being the stress-energy tensor of the field itself . We consider a scalar field with a similar property: we 
are assuming that the scalar field source is the trace of its own stress-energy tensor.

The task of obtaining such scalar field Lagrangian was considered many years ago by P. Freund and 
Y. Nambu in [12]. The boundary condition which they used was the requirement of the free scalar field 
Lagrangian when the scalar interaction constant vanishes. We will apply the same technique for the 
case of the massless scalar field but without using their assumption. In the frameworks of this approach 
we will derive the scalar field Lagrangian which contains two parameters: constant of the scalar inter-
action q and parameter C which relates to the minimum of scalar potential. Further, we will apply both 
models to the cosmology task and show that they satisfy the Hubble parameter dependence on red-shift 
and SNe Ia data with the appropriate choice of parameters.

Scalar field equation and the cosmological task. In this paper we will use the gravitational system 
of units G = c = 1. As it was mentioned, the Einstein’s equations can be obtained as the equations of a li-
near massless tensor field with the source being the stress-energy tensor of the field itself in Minkowski 
space-time. We require that the equation of the scalar field interacting with the gravitational one has the 
same structure – the source of the scalar field is the trace of its own stress-energy tensor. For the massive 
scalar field we should obtain the equation of the following structure 

 
2( ) = ,m qT ϕ− ϕ  (1)

where the d’Alembertian1 is ,gµν
µ ν≡ − ∇ ∇

 constants m and q mean the mass and the interaction 
constant of the scalar field. Note that hereinafter, all covariant quantities will refer to the Riemannian 
metric gμν. The generalization of Freund and Nambu model was considered in [13]. The Lagrangian of 
this model for massless scalar field has the form 

 

21= ,
2

L C
µ

µ ∂ ϕ∂ ϕ
+ Φ  Φ   

(2)

where C is the constant which relates to the minimum of the scalar field potential, Φ = 1 + 2qφ. Variation 
with respect to scalar field φ and to metric tensor gμν yields the equation and stress-energy tensor of the 
scalar field correspondingly 

 

2= = 2 ,qT q C
µ

µ
ϕ

 ∂ ϕ∂ ϕ
ϕ − + Φ  Φ 



 
(3)

 

21= .
2

T g C
αµ ν

µν µν α
ϕ

 ∂ ϕ∂ ϕ∂ ϕ∂ ϕ
− + Φ Φ Φ   

(4)

Thus, the total Lagrangian of the model takes the form 

 = ,g ML L L Lϕ+ +  (5)

where 

 =gL R g−  (6)

1 The metric signature (+, –, –, –) was used.
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is the Lagrangian of the gravitational field, Lφ is given by (2), ( , )M ML g Qµν  is the Lagrangian of the 
matter fields. Both Lagrangians Lφ have non-linear kinetic term which can be positive or negative 
depending on the scalar field value.

Now let us consider the application of both models to the late-time Universe cosmology. In this work 
we will consider the scalar field which does not interact with the matter. The system of equations with 
self-interacting massless scalar field (hereinafter – SIML model) takes the form 

 

21= 8 ( ) ,
2

µ ν α
µν µν µ ν µνα

  ∂ ϕ∂ ϕ ∂ ϕ∂ ϕ
π − − Φ + ε + −  Φ Φ  

G g C p u u pg
 

(7)

 

2= 2 ,q C
µ

µ ∂ ϕ∂ ϕ
ϕ − + Φ  Φ 



 
(8)

 = 0,T µν
µ∇   (9)

where = ( )µν µ ν µνε + −T p u u pg  is the stress-energy tensor of the perfect fluid which is the baryonic and 
cold dark matter. Here ε is the total energy density and p is the pressure which is equal to zero for the 
matter components. Further we will not take into account the radiation energy density since it is 
negligible at the present time and at those red-shifts that are necessary for the datasets under 
consideration.

For the spatially flat Friedman – Lemaitre – Robertson – Walker metric 

  
2 2 2 2 2 2 2 2 2( )( sin )= − + θ + θ ϕds dt a t dr r d r d  (10)

the cosmological equations, which include Friedman equation, massless scalar field equation and 
covariant law of conservation for stress-energy tensor of matter, are 

 

2 2
28 1 1= ,

3 2 2
a C
a

 π ϕ  − Φ + ε   Φ   



 
(11)

 

2
23 2 = 0,qH Cqϕ

ϕ+ ϕ− − Φ
Φ


 

 
(12)

 3 ( ) = 0.ε + ε + H p  (13)

Here /H a a≡   is the Hubble parameter. Comparing the stress-energy tensor of the scalar field with 
the stress-energy tensor of the perfect fluid in the local-Lorentz coordinates, we can write the following 
expressions for the energy density and the scalar field pressure: 

 

2
21= ,

2
Cϕ  ϕ

ε − Φ Φ 



 
(14)

 

2
21= .

2
p Cϕ  ϕ

+ Φ Φ 



 
(15)

If we identify density Ωφ of the dark energy at the present stage with the energy density of the sca-
lar field and specify the equation of state parameter wφ, we can obtain the expressions for initial values 

0 0( , , , )H qϕ ϕϕ Ω ω  and 0 0( , , , )H qϕ ϕϕ Ω ω  as the functions of variable parameters 

 

2 2
0 0

0

3
(1 ) = (1 ) = (1 ) = ,

8cr

H
w ϕϕ
ϕ ϕ ϕ ϕ

Ω ϕ
ε + ε Ω +ω +ω

π Φ


 
(16)

 

2
0 2

0

3
(1 ) = (1 ) = (1 ) = ,

8cr

H
w Cϕϕ
ϕ ϕ ϕ ϕ

Ω
ε − ε Ω −ω −ω − Φ

π   
(17)
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where we choose the present moment of time for the initial values of the scalar field and take this value 
as unity t = 1 due to homogeneity of time and 0 01 2 .qΦ = + ϕ  Note that constant C will be excluded later, 
so we do not consider it as the variable parameter. From the system of algebraic equations (16)–(17) we 
obtain the expression for initial values of the scalar field 

 

2
0(1,2)

0

31 1= (1 ),
2 2 8

H
q q C

ϕ
ϕ

Ω
ϕ − ± − −ω

π  
(18)

 

1/2
2 2
0 0(1,2)

0

3 3
= (1 ) (1 ) ,

8 8
H H

C
ϕ ϕ

ϕ ϕ

 Ω Ω
 ϕ ± ± + ω − −ω
 π π 



 
 (19)

where the signs before the square roots in (18) and signs inside the brackets in (19) are correlated. As it is 
seen from (18)–(19) and the structure of the kinetic term of the Lagrangian, two kinds of initial conditions 
correspond to different available regions of the scalar field dynamic. Indeed, let us take into account the 
definition of the equation of state parameter 

 
2

2 ( )= = 1 .
( ) / 2 ( )

p V
f Vϕ

ϕ
ω −

ρ ϕ ϕ + ϕ  
(20)

It is clear that the positive scalar factor f(φ) > 0 leads to restriction wφ > –1 and the quintessence 
scalar field dynamics which corresponds to φ > –1/2q and positive sign before the second term of the ex-
pression (18). The opposite sign, hence, corresponds to case wφ < –1 and phantom dark energy dynamics. 
Also, it follows from (18) and (19) that we should use only negative values of constant C.

Since Λ-term in the Einstein’s equations provides the exponential growth of the scalar factor and at 
the same time allows the observational data to be satisfied, we should simulate the same dynamics of the 
scalar factor by the scalar field. For this reason we will use the slow-roll approximation. This technique 
is commonly used in the inflationary scenario for the same purpose. In this case the energy density of 
a scalar field is the almost constant function of the scalar field variable at some interval of time which 
allows simulation of Λ-term in the right-hand side of the Friedman equation. This leads to the restric-
tions on the scalar field potential and its first derivative. Also we can neglect the second derivative of 
the scalar field variable ϕ  in the scalar field equation (12) at the current moment of time to establish the 
expression for parameter C as a function of the other parameters.

In the slow-roll mode the scalar field equation at the moment takes the form

 
2

0 0 0 03 = ( ) = 2 .H V Cq′ϕ − ϕ Φ  (21)

Now we can substitute the initial values of formulas (18) and (19) in the previous equation and derive 
the expression for constant C as the function of parameters H0, Ωφ, ω and q

 

2 2
0

4 3

27 (1 )= .
2 (1 )

HC
qϕ

π + ω
−

Ω −ω  
(22)

Let us note that the application of the slow-roll approximation made it possible to reduce the number 
of free parameters of the model. Also it helps us to determine the exact sign of the initial condition (19) 
using the equation (21) which was written for the current moment of time.

Thus, for SIML model we have four free parameters H0, Ωφ, ω and q. The initial conditions for the 
cosmological equation system (11)–(13) have the form (18), (19) for the scalar field and its first deri-
vative and 

2
0

0 0 0 0

3 (1 )
= 1, = , =

8
H

a a H ϕ−Ω
ε

π


for the other functions. Here we took advantage of the fact that we can choose any predetermined value 
for the scale factor in the spatially flat Universe as well as the fact that the sum of the energy density 
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parameters is equal to unity = 1.i
i
Ω∑  Note also that we will consider the initial conditions only for the 

quintessence scalar field model.
Observational data and parameter estimation. To obtain best-fit values and confidence intervals 

for considered parameters we need to get numerical solutions for scale factor a(t) from the system of 
cosmological equations. Then we obtain the Hubble parameter and distance modulus dependence on the 
redshift and compare these theoretical values for each fixed set of parameters with the selected sets of 
observational data.

Measurements of the Hubble parameter H(z) for different redshifts z with NH = 57 data points are 
presented in compact form in [14]. These points were obtained by two methods: the line-of-sight BAO 
method and the method based on the cosmic chronometers, this is the estimations from differential ages 
Δt of galaxies using the following relation 

 
1 1( ) = .

1 1
dz zH z

z dt z t
∆

− −
+ + ∆



 
(23)

For both models, we calculate function 2 ,Hχ  assuming that the errors in the data have a Gaussian 
distribution 

 

2
2

=1

( , ) ( )( ) = ,
NH

th i obs i
H

i i

H z p H zp
 −

χ  σ 
∑

 
(24)

where 1 2( , ,... )kp p p p≡  is the set of the model parameters.
Further we use the Pantheon dataset compilation of SNe Ia which contains 1048 data points of the 

redshift and corresponding luminosity distance modulus and error bars in the interval 0.01 < z < 2.3. To 
obtain a theoretical value of distance modulus μth at the required redshift we should calculate the lumi-
nosity distance which in the spatially flat Universe has the form 

 0 0

(1 )( , ) =
( , )

z

L
c z dzD z p

H H z p
′+
′∫

 
(25)

for each fixed set of model parameters. Using the required values of the red shift zi from datasets we can 
get the theoretical value of distance modulus μth 

 0( , ) = 5lg ( , ) 25 = 5lg ( , ) ,th L Lz p D z p d z pµ + + µ  (26)

where 0 0= 42.38 5lg ,   /L Lh d H D cµ − ≡  and 0 / 100.h H≡  Further, again assuming that the errors in 
the data have Gaussian distribution, it wold be possible to construct the standard 2

SNχ  function, however 
there will be nuisance parameter μ0 or, which is the same, h. We minimize the contribution of this 
parameter, following [14]. In the explicit form 2

SNχ  function will take the form 

 

( )2
02

2
=1

( ) 5lg ( , )
( ) = ,

N
obs i L i

SN
i i

z d z p
p

µ − −µ
χ

σ∑
 

(27)

where nuisance parameter μ0 does not depend on the data points in the set. After opening the brackets 
we obtain the next expression 2 2

0( ) = 2 ,SN p A B Cχ − µ + µ  where 

 

( )2

2
=1

( ) 5lg ( , )
( ) ,

N
obs i L i

i i

z d z p
A p

µ −
≡

σ∑
 

(28)

 

( )
2

=1

( ) 5lg ( , )
( ) ,

N
obs i L i

i i

z d z p
B p

µ −
≡

σ∑
 

(29)
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2

=1

1 ,
N

i i

C ≡
σ∑

 
(30)

which has the minimum at the point μ0 = B/C. Substituting the resulting value in the original equality we 
get a new estimator 

 

2
2 ( )( ) = ( ) .SN

B pp A p
C

χ −

 
(31)

Note that with such approach, the minimums of both functions will coincide 2 2= .min minχ χ
Calculations and results. The set of our cosmological parameters is (H, ΩM, ω, q). For the numeri-

cal solution of the cosmological equations it is necessary to make it dimensionless. This procedure was 
performed with the help of the Hubble constant numerically equal to H0 = 100 s–1. 

Free model parameters the vary in the following ranges 
[0.5;0.9],h∈  (32)

[0.1;0.7],MΩ ∈  (33)

[ 0.999; 0.35],ω∈ − −  (34)

[0.01;1].q∈  (35)

The interval for the Hubble parameter (32) is taken that one essentially to cover values ranges from 
67.37 0.54 km / (s Mpc)± ⋅  to 1.7

1.8= 73.3 km / (s Mpc)H +
− ⋅  and 74.03 1.42 km / (s Mpc),± ⋅  which were 

obtained by Planck, H0LiCOW and SH0ES collaborations. Note that this divergence in values of the 
Hubble constant, obtained by different methods is the so-called H0-tension problem. In the interval (33) 
for ΩM any values close to zero are excluded, so as not to consider the Universe practically without a 
matter. In the interval (34) for equation state parameter the right boundary is chosen so that it satisfies 
the condition ω < –1/3. In (35) we assumed that the value of constant q should not exceed the value of 
gravitational constant G = 1. However, as it will be shown below, the function χ2 practically don’t de-
pend on the parameter q. The last circumstance is connected, apparently, with the fact that we doesn’t 
consider in this work the interact between a scalar field and a matter.

Further, for the sets of parameters from intervals (32)–(35) the systems of cosmological equations 
were solved. We used the initial conditions (18), (19) and energy density of matter. From the obtained 
solutions dependence of the Hubble parameter on the red shift Hth(z,p) was constructed. Further, with 
the help of this dependence and the theoretical functions for distance modulus μth(z,p) were constructed. 
Using observational data for Hobs(zi) from [14], Pantheon dataset [15] of μobs(zi) and corresponding theo-
retical values Hth(z,p), μth(z,p), the total function 2

H SN+χ  was obtained.
For MLSI model the results of calculations are shown in Fig. 1. All graphs were obtained by the 

method of minimization of function 2 2 .H SN+ Σχ ≡ χ  Fig. 1 contains 1σ, 2σ and 3σ confidence regions on 
the parameters planes and one-dimensional parameters distributions of 2 .Σχ  As it was noted above, 
the confidence regions in plains H – ω, H – Ω and Ω – ω correspond to areas 2 2

min min2.30,   6.17χ + χ +  
and 2

min 11.8,χ +  where 2
minχ  is the optimal value of functions 2

1 2( , ),p pχ  which are obtained with the 
help of minimization of function 2

Σχ  on remaining parameters – 2 2 2 2

, ,
( , ) = ,   ( , ) =min min

q q
H HΣ Σ

ω Ω
χ Ω χ χ ω χ  

and 2 2

,
( , ) = min

H q
Σχ Ω ω χ  accordingly. One-dimensional parameters distributions of χ2(p1) are obtained 

in a similar way – the minimization by three parameters, for example 2 2

, ,
( ) = .min

q
H Σ

Ω ω
χ χ

The best-fit value of the Hubble parameter with 1σ confidence interval is = 68.88 0.69 km / (s Mpc).± ⋅H  
1σ error bar is completely within the range of = 69.80 1.90 km / (s Mpc),H ± ⋅  which was obtained by 
CCHP. But the error bars of the results from Planck, H0LiCOW and SH0ES collaborations do not include 
the error bar of the Hubble parameter which yields the MLSI model. Value = 68.88 0.69 km / (s Mpc)H ± ⋅  
is in 1.7σ tension with Planck H0 value. The differences between H0LiCOW and SH0ES are in 2.3σ 
and 3.3σ tension correspondingly. Note that the best-fit Hubble parameter value as a whole is closer to
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Fig. 1. The graphs show 1σ, 2σ and 3σ confidence regions on the parameters planes and one-parameter distributions  
which were obtained from the cumulative distribution 2

H SN+χ

the result Planck collaboration and in the interval 2σ captures it too. The optimal value and 1σ error bar 
of the matter energy density and equation of the state parameter of scalar field are Ωm = 0.285 ± 0.011 
and ω = –0.999+0.028. Parameter Ωm has 2.3σ discrepancy compared to its Planck value Ωm = 0.315 ± 0.007. 
Here and henceforth we will not make any comparison with parameter Ωm, obtained by H0LiCOW 
collaboration for ΛCDM-model because of its error bar for time-delay cosmography only is an order of 
magnitude more than we obtained for our models and always includes them. As it was mentioned above, 
the equation of state parameter cannot equal to minus one, however as the best-fit value shows, it tends 
to this value in the slow-role approximation. Also parameter ω has no lower bound 1σ, because it is at the 
left border of the range of values that is allowed for models with a positive kinetic term in the Lagrangian. 
The optimal value of these parameters is achieved with the value of function 2 = 1090.05Σχ  or, in terms 
of reduced chi square, 2

reduced = 0.99.χ  From graphs in Fig. 1 it’s clear that confidence regions are stretched 
in the direction of increasing values of the parameter of the equation of state and in the direction of 
decreasing values of matter density parameter. This is due to the influence of competition between two 
minima – global and local – for function 2

Hχ  to the procedure of minimizing of total function 2 .H SN+χ  
Global minimum 2

Hχ  is achieved at parameter values, = 63.41,   = 0.288MH Ω  and = 0.615ω −  while 
the local one at = 70.02,   = 0.264MH Ω  and ω = –0.999. The addition of 2

SNχ  function partially 
eliminates this problem and function 2

H SN+χ  already has one global minimum. However it is not possible 
to completely avoid the influence of competition, which is reflected both on two-dimensional distributions 
in the form of extrusion of “tails”, and on one-dimensional distributions of parameters Ω and ω. 
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Fig. 2. The graph shows the values of the Hubble parameter with error bars for the considered  
model and those measured by different collaborations

Conclusion. In this article, we considered the scalar-tensor theory of gravity with self-acting sca-
lar field. By analogy with Freund and Nambu model, who considered the massive scalar field with the 
source in the form of own energy-momentum trace, we have obtained the Lagrangian and the equation 
of such massless scalar field with the additional term. Further, in application to the cosmological prob-
lem, the initial values for scalar field, its first derivative, scale factor and matter energy density were 
defined. Due to the alternating sign of the kinetic terms the scalar field can model both the quintessence 
dynamics with the parameters of the equation of state ωDE > –1, and phantom dynamics,where the pa-
rameter of the equation state takes values ω < –1. It is shown that the initial values of the scalar field 
are divided into two classes – values corresponding to the phantom area φ < –1/2q and the values of 
φ > –1/2q corresponding to the quintessence. The use of the slow roll approximation for the initial time 
moment for a scalar field allows expressing one parameter in terms of the others.

Further, using the data from cosmic chronometers measurements of the Hubble parameter the func-
tion 2 ( )H SN p+χ  was built. Using the procedure of minimization by two and three parameter two- and 
one-parameter distributions of 2 ( , )i jp pχ  and 2 ( )ipχ  were obtained. Using these distributions, we have 
constructed the confidence regions for the parameters pair under consideration and obtained the 1σ error 
bar for each parameter separately. Summarizing, one can say that considered model is in good agree-
ment with the observable data for the Hubble constant. The optimal values and error bars of all model lie 
within the 1σ confidence of CCHP result and have 1.7σ difference with respect to Planck H0 value. In the 
context of H0-tension problem it is worth noting that the best-fit values of H0 parameter lies in the region 
of lower observational values of the Hubble parameter.
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