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FREUD - NAMBU COSMOLOGY WITH THE MASSLESS SCALAR FIELD

Abstract. Within the framework of the generalization of Freund — Nambu scalar-tensor theory of gravity, a massless
scalar field is considered, the source of which is the trace of its own energy-momentum tensor. For the cosmological problem,
numerical solutions of field equations were obtained, with the help of which the dependencies of the Hubble parameter
and the photometric distance to the observed sources on red-shift were constructed. To the consistency of the models with
observational data, contours of confidence intervals for model parameters were constructed.
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N. I'. Ayaxo, FO. I1. Bbioablii

HUnemumym guszuxu umenu b. U. Cmenanosa Hayuonanonou akademuu nayx benapycu, Munck, Pecnybnuxa beaapyco
KOCMOJIOTHU Sl ®POMHIA - HAMBY C BESMACCOBBIM CKAJISIPHBIM IOJIEM

AHHoTanus. B pamMkax 0000meHNs CKaISIPHO-TEH30pHON Teopun rpaButanuu Ppoitiaa — HamOy paccmoTpeno 6e3-
MacCOBOE CKaJIIPHOE I0JIe, HCTOYHUKOM KOTOPOTO SIBJISIETCS ClIe]l €0 COOCTBEHHOTO TEH30pa SHEPrUU-UMITyIbca. J{is koc-
MOJIOTMYECKOH 3aa4H MOJTYUYESHBI YUCICHHBIE PEIICHHS TTOJIEBBIX YPAaBHEHNH, C TOMOIIBIO KOTOPBIX TOCTPOEHBI 3aBUCHMO-
¢ty nmapamerpa Xad6sa 1 GOTOMETPHUECKOr0 PACCTOSHUS 10 HAaOII0JaeMBIX HCTOYHUKOB OT KpacHOro cMmemteHus. /s ko-
JUYECTBEHHON OIIEHKH COTTACOBAHHOCTH MOJENeH ¢ HaONIOAAaTeNbHBIMU JaHHBIMHU MOCTPOCHBI KOHTYPHI JOBEPUTEIBHBIX
MHTEPBAJIOB H3MEHEHUSI TapaMeTPOB MOJIEIIEH.

KuoueBble cii0Ba: CKaJIsipHOE MOJIE, CKAJISPHO-TEH30pHAs TEOPUs IPaBUTAIMU, KOCMOJOTHYECKas 3a/a4a, napameTp
Xab6ia, KpaCHOE CMEIICHHNE, TOBEPUTEIBHEIH HHTEPBAI

Jus uutupoBanus. yaxo, U. I. Kocmonorus ®poiinna — Ham0y ¢ 6e3maccoBeiM ckasipabiM monem / W. T. [lynko,
0. 1. Beioansrii // Bec. Han. akan. naByk bemapyci. Cep. ¢i3.-mar. HaByk. — 2024. — T. 60, Ne 1. — C. 43-51. https://doi.
0rg/10.29235/1561-2430-2024-60-1-43-51

Introduction. Numerous current observations [1-3] lead to the confirmation that the Universe is ex-
panding with the acceleration. As it is well known, the accelerated expansion is successfully described
by the ACDM-model. However, the nature of A-term is unclear [4—7]. For this reason, along with other
approaches scalar fields are often considered as an extension of general relativity to a scalar-tensor the-
ory of gravitation. Also scalar fields are good candidates for the modeling of the dark energy (see, for
example, [8, 9]).

At present, there are a lot of different classes of scalar-tensor models of a dark energy [10]. These
models imply the equation of state parameter values —1 < w, < —1/3 for accelerated expansion of the
Universe provided that the Universe contains only scalar field energy component. Besides, the dark
energy the Universe contains the baryonic, cold dark matter and a negligible small portion of radiation
which tend to slow down expansion of the Universe. This circumstance leaves only the narrow band of
allowable values of the equation of state parameter  that is close to minus one for the models above and
also includes ACDM-model. However, this interval admits also values ® < -1 which lead to some exotic
scalar models with a negative kinetic term called phantom energy.
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Nevertheless, there is a lot of freedom in choosing the scalar field Lagrangian. One of the possible
approaches is a method for reconstructing the potential V(@) of a scalar field using behavior of function
of density perturbations dependence on redshift in dust-like matter component provided that we know
the Hubble constant value or using the luminosity distance as a function of redshift provided that we
know the present density of dust-like matter estimated in the critical density units [11].

To get around the arbitrariness of choosing the Lagrangian of scalar field we use an assumption
about the scalar field equation structure. As known, the Einstein’s equations of the gravitational field
can be obtained if one considers a linear massless tensor field in Minkowski space-time with the source
being the stress-energy tensor of the field itself . We consider a scalar field with a similar property: we
are assuming that the scalar field source is the trace of its own stress-energy tensor.

The task of obtaining such scalar field Lagrangian was considered many years ago by P. Freund and
Y. Nambu in [12]. The boundary condition which they used was the requirement of the free scalar field
Lagrangian when the scalar interaction constant vanishes. We will apply the same technique for the
case of the massless scalar field but without using their assumption. In the frameworks of this approach
we will derive the scalar field Lagrangian which contains two parameters: constant of the scalar inter-
action g and parameter C which relates to the minimum of scalar potential. Further, we will apply both
models to the cosmology task and show that they satisfy the Hubble parameter dependence on red-shift
and SNe la data with the appropriate choice of parameters.

Scalar field equation and the cosmological task. In this paper we will use the gravitational system
of units G = ¢ = 1. As it was mentioned, the Einstein’s equations can be obtained as the equations of a li-
near massless tensor field with the source being the stress-energy tensor of the field itself in Minkowski
space-time. We require that the equation of the scalar field interacting with the gravitational one has the
same structure — the source of the scalar field is the trace of its own stress-energy tensor. For the massive
scalar field we should obtain the equation of the following structure

(O-m*)p=qT", )

where the d’Alembertian' is O= -g"'V,V,, constants m and ¢ mean the mass and the interaction
constant of the scalar field. Note that hereinafter, all covariant quantities will refer to the Riemannian
metric g,,. The generalization of Freund and Nambu model was considered in [13]. The Lagrangian of
this model for massless scalar field has the form

0 eo*
L=%( “(SD (p+ch2J, 2

where C is the constant which relates to the minimum of the scalar field potential, ® = 1 + 2¢g¢. Variation
with respect to scalar field ¢ and to metric tensor g, yields the equation and stress-energy tensor of the
scalar field correspondingly

8 0"
Dq):qz;:—q[ P (P+2CCD2J, 3)
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Thus, the total Lagrangian of the model takes the form
L=L,+L,+L,, ®)

where

L, =RJ-g ©)

'The metric signature (+, —, —, —) was used.
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is the Lagrangian of the gravitational field, ,, is given by (2), L, (g,,,0,,) is the Lagrangian of the
matter fields. Both Lagrangians L, have non-linear kinetic term which can be positive or negative
depending on the scalar field value.

Now let us consider the application of both models to the late-time Universe cosmology. In this work
we will consider the scalar field which does not interact with the matter. The system of equations with
self-interacting massless scalar field (hereinafter — SIML model) takes the form

e e 1 0, 90° @ )
GW =8n| —— L —— gl | e T _Cd®? |+(s+ plu'u’ — pg™ |, 7
n( P 58 [ © (e+pu'u’ - pg (7
0 @o"
D(p——q[ u® (')+2cq>2J, @®)
v, T =0, ©)

where 7" = (e+ p)u'u’ — pg"’ is the stress-energy tensor of the perfect fluid which is the baryonic and
cold dark matter. Here ¢ is the total energy density and p is the pressure which is equal to zero for the
matter components. Further we will not take into account the radiation energy density since it is
negligible at the present time and at those red-shifts that are necessary for the datasets under
consideration.

For the spatially flat Friedman — Lemaitre — Robertson — Walker metric

ds® =dt* —a* (t)(dr® + r’d6* + r* sin® 0d¢*) (10)

the cosmological equations, which include Friedman equation, massless scalar field equation and
covariant law of conservation for stress-energy tensor of matter, are

. \2 .2
ay 3mlet Loge, e, a1
a) 320 2
('PZ
o+ 3H¢—%—2Cq<b2 -0, (12)
€E+3H(e+p)=0. (13)

Here H =a/a is the Hubble parameter. Comparing the stress-energy tensor of the scalar field with
the stress-energy tensor of the perfect fluid in the local-Lorentz coordinates, we can write the following
expressions for the energy density and the scalar field pressure:

)

£ =%(%—C®2j, (14)
1{¢°

P’ :E[E+C(D2]. (15)

If we identify density €, of the dark energy at the present stage with the energy density of the sca-
lar field and specify the equation of state parameter w,, we can obtain the expressions for initial values

0,(H,,Q,,0,,q9) and ¢,(H,,Q,,0,,q) as the functions of variable parameters
2Q )

- > _e

S‘P(1+W<p)_Sch¢(1+(’)¢)_T(p(l+m¢)_ao’ (16)
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where we choose the present moment of time for the initial values of the scalar field and take this value
as unity £ =1 due to homogeneity of time and ®, =1+ 2q@,. Note that constant C will be excluded later,
so we do not consider it as the variable parameter. From the system of algebraic equations (16)—(17) we
obtain the expression for initial values of the scalar field

1 1 | 3HQ
) - - 4 Y (—w), 18
o 2q 2q\/ 8nC ( 2 (1
R P 1/2
3H;Q 3H;Q
A2 = 4| $707% (14 \/_# 1-o , 19

where the signs before the square roots in (18) and signs inside the brackets in (19) are correlated. As it is
seen from (18)—(19) and the structure of the kinetic term of the Lagrangian, two kinds of initial conditions
correspond to different available regions of the scalar field dynamic. Indeed, let us take into account the
definition of the equation of state parameter

0,

o E—L) — 0)
P f(@)¢"/2+V(9)

It is clear that the positive scalar factor f{¢) > 0 leads to restriction w, > —1 and the quintessence
scalar field dynamics which corresponds to ¢ > —1/2¢g and positive sign before the second term of the ex-
pression (18). The opposite sign, hence, corresponds to case w,, <1 and phantom dark energy dynamics.
Also, it follows from (18) and (19) that we should use only negative values of constant C.

Since A-term in the Einstein’s equations provides the exponential growth of the scalar factor and at
the same time allows the observational data to be satisfied, we should simulate the same dynamics of the
scalar factor by the scalar field. For this reason we will use the slow-roll approximation. This technique
is commonly used in the inflationary scenario for the same purpose. In this case the energy density of
a scalar field is the almost constant function of the scalar field variable at some interval of time which
allows simulation of A-term in the right-hand side of the Friedman equation. This leads to the restric-
tions on the scalar field potential and its first derivative. Also we can neglect the second derivative of
the scalar field variable ¢ in the scalar field equation (12) at the current moment of time to establish the
expression for parameter C as a function of the other parameters.

In the slow-roll mode the scalar field equation at the moment takes the form

3H,¢p, =-V'(0,) =2Cqd,’. 1)

Now we can substitute the initial values of formulas (18) and (19) in the previous equation and derive
the expression for constant C as the function of parameters H,, Q,, ® and ¢

:_27H()2:t(1+03)32. 22)
2Q,q9"(1- o)
Let us note that the application of the slow-roll approximation made it possible to reduce the number
of free parameters of the model. Also it helps us to determine the exact sign of the initial condition (19)
using the equation (21) which was written for the current moment of time.
Thus, for SIML model we have four free parameters H,,, Q(p, o and ¢g. The initial conditions for the
cosmological equation system (11)—(13) have the form (18), (19) for the scalar field and its first deri-
vative and

3HX(1-Q
a,=1, a,=H,, SOZO(T(D)

for the other functions. Here we took advantage of the fact that we can choose any predetermined value
for the scale factor in the spatially flat Universe as well as the fact that the sum of the energy density
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parameters is equal to unity ZQI. =1. Note also that we will consider the initial conditions only for the

quintessence scalar field model.

Observational data and parameter estimation. To obtain best-fit values and confidence intervals
for considered parameters we need to get numerical solutions for scale factor a(f) from the system of
cosmological equations. Then we obtain the Hubble parameter and distance modulus dependence on the
redshift and compare these theoretical values for each fixed set of parameters with the selected sets of
observational data.

Measurements of the Hubble parameter H(z) for different redshifts z with N, = 57 data points are
presented in compact form in [14]. These points were obtained by two methods: the line-of-sight BAO
method and the method based on the cosmic chronometers, this is the estimations from differential ages
At of galaxies using the following relation
1 dz 1 Az

1+z dt —_1+z At

H(z)=~ 23)

For both models, we calculate function %3, assuming that the errors in the data have a Gaussian
distribution

NH[ch(Zi’p)_Hobs(Zi)Jz (24)

A (p)= Z

i

where p=(p,,p,,...p,) is the set of the model parameters.

Further we use the Pantheon dataset compilation of SNe Ia which contains 1048 data points of the
redshift and corresponding luminosity distance modulus and error bars in the interval 0.01 <z <2.3. To
obtain a theoretical value of distance modulus p,, at the required redshift we should calculate the lumi-
nosity distance which in the spatially flat Universe has the form

_c(l+z)p d
0=, ! H(z',p) 2

D

L

for each fixed set of model parameters. Using the required values of the red shift z, from datasets we can
get the theoretical value of distance modulus p,,

W, (z,p)=51gD,(z,p)+25=5lgd, (z, p) + 1, (26)

where p, =42.38-51gh, d, =H, D, /c and h=H /100. Further, again assuming that the errors in

the data have Gaussian distribution, it wold be possible to construct the standard Xiw function, however
there will be nuisance parameter p,, or, which is the same, 4. We minimize the contribution of this

parameter, following [14]. In the explicit form ¥, function will take the form

N )-5lgd, (z,, p)— 1, )
- (p):Z(HObS(Z,) gd,(z,,0) 1) o)

= ’
where nuisance parameter p, does not depend on the data points in the set. After opening the brackets
we obtain the next expression 3, (p)= 4 —2u,B +p’C, where

N )=5lgd, (z,,p))
A(p)EZ(Mohs(Zz) 2g L(Zz p)) , (28)

N )-5lgd, (z,
B(p)Ez(“obs(Z,) ?g L(Zz P)), (29)
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C

iiz 30)

i=1 O

which has the minimum at the point p, = B/C. Substituting the resulting value in the original equality we
get a new estimator

LA} G

Yov(P) = A(p) - c

Note that with such approach, the minimums of both functions will coincide o =N

Calculations and results. The set of our cosmological parameters is (H, Q,,, ®, ). For the numeri-
cal solution of the cosmological equations it is necessary to make it dimensionless. This procedure was
performed with the help of the Hubble constant numerically equal to H, = 100 s

Free model parameters the vary in the following ranges

h€[0.5;0.9], (32)
Q,, €[0.1;0.7], (33)
o €[-0.999;-0.35], (34)
g €[0.01;1]. (35)

The interval for the Hubble parameter (32) is taken that one essentially to cover values ranges from
67.37+0.54km/(s-Mpc) to H=73.3"7 km/(s-Mpc) and 74.03+1.42km/(s-Mpc), which were
obtained by Planck, HOLiCOW and SHOES collaborations. Note that this divergence in values of the
Hubble constant, obtained by different methods is the so-called H -tension problem. In the interval (33)
for Q,, any values close to zero are excluded, so as not to consider the Universe practically without a
matter. In the interval (34) for equation state parameter the right boundary is chosen so that it satisfies
the condition @ < —1/3. In (35) we assumed that the value of constant ¢ should not exceed the value of
gravitational constant G = 1. However, as it will be shown below, the function y* practically don’t de-
pend on the parameter g. The last circumstance is connected, apparently, with the fact that we doesn’t
consider in this work the interact between a scalar field and a matter.

Further, for the sets of parameters from intervals (32)—(35) the systems of cosmological equations
were solved. We used the initial conditions (18), (19) and energy density of matter. From the obtained
solutions dependence of the Hubble parameter on the red shift /,(z,p) was constructed. Further, with
the help of this dependence and the theoretical functions for distance modulus p,,(z,p) were constructed.
Using observational data for H ,(z;) from [14], Pantheon dataset [15] of p,(z,) and corresponding theo-
retical values H,(z,p), W,,(z,p), the total function %, was obtained.

For MLSI model the results of calculations are shown in Fig. 1. All graphs were obtained by the
method of minimization of function %7, =%s. Fig. 1 contains 1o, 26 and 3o confidence regions on
the parameters planes and one-dimensional parameters distributions of xi. As it was noted above,
the confidence regions in plains H — o, H — Q and Q — o correspond to areas y2,, +2.30, yi, +6.17
and 2. +11.8, where x> is the optimal value of functions ¥( pl, p,), which are obtained with the

help of minimization of function Y: on remaining parameters — v (H,Q)= msza x (H,w)= mmxz
and x*(Q,w)= mlan accordingly. One-dimensional parameters dlstrlbutlons of ¥*(p,) are obtamed

in a similar way — the minimization by three parameters, for example % *(H)= rman

The best-fit value of the Hubble parameter with 16 confidence interval is H = 68.88 +0.69 km/ (s-Mpc).
lo error bar is completely within the range of H =69.80+1.90 km/ (s-Mpc), which was obtained by
CCHP. But the error bars of the results from Planck, HOLiCOW and SHOES collaborations do not include
the error bar of the Hubble parameter which yields the MLSI model. Value H = 68.88 £ 0.69 km / (s - Mpc)
is in 1.7 tension with Planck /|, value. The differences between HOLiCOW and SHOES are in 2.3c
and 3.3c tension correspondingly. Note that the best-fit Hubble parameter value as a whole is closer to
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Fig. 1. The graphs show 1o, 20 and 36 confidence regions on the parameters planes and one-parameter distributions
which were obtained from the cumulative distribution ¥2, ¢

the result Planck collaboration and in the interval 2c captures it too. The optimal value and lo error bar
of the matter energy density and equation of the state parameter of scalar field are Q,, = 0.285 + 0.011
and © =-0.999 "% Parameter Q,, has 2.3c discrepancy compared to its Planck value Q,, = 0.315 £ 0.007.
Here and henceforth we will not make any comparison with parameter Q,, obtained by HOLiCOW
collaboration for ACDM-model because of its error bar for time-delay cosmography only is an order of
magnitude more than we obtained for our models and always includes them. As it was mentioned above,
the equation of state parameter cannot equal to minus one, however as the best-fit value shows, it tends
to this value in the slow-role approximation. Also parameter ® has no lower bound 1o, because it is at the
left border of the range of values that is allowed for models with a positive kinetic term in the Lagrangian.
The optimal value of these parameters is achieved with the value of function y; =1090.05 or, in terms
of reduced chi square, y2, . =0.99. From graphs in Fig. 1 it’s clear that confidence regions are stretched
in the direction of increasing values of the parameter of the equation of state and in the direction of
decreasing values of matter density parameter. This is due to the influence of competition between two
minima — global and local — for function %, to the procedure of minimizing of total function ¥, -
Global minimum 7y}, is achieved at parameter values, H =63.41, Q,, =0.288 and w=-0.615 while
the local one at H =70.02, Q, =0.264 and ® = —0.999. The addition of Asy function partially
eliminates this problem and function y3,,, already has one global minimum. However it is not possible
to completely avoid the influence of competition, which is reflected both on two-dimensional distributions
in the form of extrusion of “tails”, and on one-dimensional distributions of parameters Q and .



50 Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2024, vol. 60, no. 1, pp. 43-51

SHOES
[ ———
HOLICOW
CCHP
Planck
ey
MLS!
- -— —t — - " T — y -
68 70 72 74

Fig. 2. The graph shows the values of the Hubble parameter with error bars for the considered
model and those measured by different collaborations

Conclusion. In this article, we considered the scalar-tensor theory of gravity with self-acting sca-
lar field. By analogy with Freund and Nambu model, who considered the massive scalar field with the
source in the form of own energy-momentum trace, we have obtained the Lagrangian and the equation
of such massless scalar field with the additional term. Further, in application to the cosmological prob-
lem, the initial values for scalar field, its first derivative, scale factor and matter energy density were
defined. Due to the alternating sign of the kinetic terms the scalar field can model both the quintessence
dynamics with the parameters of the equation of state ®,, > —1, and phantom dynamics,where the pa-
rameter of the equation state takes values @ < —1. It is shown that the initial values of the scalar field
are divided into two classes — values corresponding to the phantom area ¢ < —1/2¢ and the values of
¢ > —1/2¢q corresponding to the quintessence. The use of the slow roll approximation for the initial time
moment for a scalar field allows expressing one parameter in terms of the others.

Further, using the data from cosmic chronometers measurements of the Hubble parameter the func-
tion ¥}, () was built. Using the procedure of minimization by two and three parameter two- and
one-parameter distributions of %*(p,, p;) and %’ (p,) were obtained. Using these distributions, we have
constructed the confidence regions for the parameters pair under consideration and obtained the 1o error
bar for each parameter separately. Summarizing, one can say that considered model is in good agree-
ment with the observable data for the Hubble constant. The optimal values and error bars of all model lie
within the 1o confidence of CCHP result and have 1.7c difference with respect to Planck /1, value. In the
context of H-tension problem it is worth noting that the best-fit values of H, parameter lies in the region
of lower observational values of the Hubble parameter.
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