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Abstract. In this work, we consider two coupled initial-boundary value problems, which, based on the Saint-Venant
theory, model the longitudinal impact phenomena in a semi-infinite rod. The mathematical formulation of the problem is two
mixed problems for the one-dimensional wave equation with conjugation conditions. The Cauchy conditions are specified
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1 o
Hnuemumym mamemamuxu Hayuonanonou axademuu nayxk benapycu, Munck, Pecnyonruxa beaapyco
2 o o
benopyccxuil eocyoapcmeennuuii ynusepcumem, Munck, Pecnyonuxa benapyco

KJACCHYECKOE PEHIEHUE CMEINTAHHBIX 3AJAY U3 TEOPUHU NTPOAOJBHOI'O YIAPA
o YIPyromMmy nNOJYBECKOHEYHOMY CTEPXKHIO B CJIYYAE OTAEJEHUS YIAPUBIIEI'O
TEJIA TIOCJIE YIAPA

AnnoTtanus. PaccMaTpuBaloTcs JiBe CBI3aHHBIE HAYaJIbHO-KPAEeBbIe 3a/1a41, KOTOPBIE MOACTHPYIOT MPOIECC IIPOT0IIb-
HOT'O yziapa B I10J1yOeCKOHEYHOM CTep)KHE Ha ocHoBe Teopun CeH-Benana. MatemaTnueckas IOCTaHOBKA 3a/1a41 IIPE/ICTaB-
nseT co0O0i Be CMENIaHHbIE 3a/1a4u JUIsI OAHOMEPHOTO BOJHOBOTO YPAaBHEHHUS C YCIOBUSIMHU CONpsDKeHUs. YcmoBust Komm
3aJ]al0TCs Ha IPOCTPAHCTBEHHON nonynpsiMoil. HauanbHOe ycnoBue Ji1st 4acTHONW MPOU3BOIHOM 110 BPEMEHHOM MepeMeHHOM
MMeeT pa3phIB IIEPBOTO Pojia B OHOM Touke. Ha BpeMeHHOH nomynpsMoii 3a1aeTcst TpaHHYHOE YCIOBHE, COJepIKaIlee Hen3-
BECTHYIO (DYHKIIMIO U €€ YaCTHBIE MPOM3BOAHEIE IEPBOTO W BTOPOTO MOPsIAKA. PerreHne CTpoUTCss METOIOM XapaKTEPHCTHK
B SIBHOM aHAJIUTHYECKOM BUAe. Jloka3zaHa eTMHCTBEHHOCTh U yCTAHOBIICHBI YCIOBHS CYIECTBOBAHMS KyCOUYHO-TIIAKOTO pe-
mieHus. PaccMOTpeHo KitaccHuecKoe pelIeHre CMENIaHHON 3a/1a4 C YCIIOBUSIMU COTPSIKEHUS.
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Introduction. Impact mechanics is a subject that deals with the reaction forces that develop during
a collision and the dynamic response of structures to these reaction forces. It has a wide range of en-
gineering applications, from designing sports equipment to improving the crashworthiness of automo-
biles [1]. The longitudinal impact on elastic rods is one of the classical problems of this theory. This
problem has been considered by both old researchers [2—4] and newer ones [5—15].

This paper is devoted to the mathematical study of two coupled mixed problems from the theory
of longitudinal impact using the classical method of characteristics. The method of characteristics, de-
spite its age, is one of the most important in solving problems from the theory of longitudinal impact.
Unlike the method of separation of variables or the contour integral method, it allows the construction
of solutions in an explicit analytical form, good for programming, see, for example, the paper [16] and
the dissertation [17]. The main difficulty of studying mixed problems from the theory of longitudinal
impact is the fact that these mixed problems contain conditions with discontinuous functions. This work
is a continuation of the recent paper [18]. The papers [19-21] are close to the present work.

1. Statement of the problem. Suppose that an elastic semi-infinite homogeneous rod of constant
cross-section, whose end x = 0 is elastically fixed, is subjected at the initial moment ¢ = 0 to an impact
on the end x = 0 by a load that sticks to the rod and separates from the rod at the moment ¢t = 7. We also
assume that an external volumetric force acts on the rod and that the displacements of the rod and the
rate of their change at the initial moment ¢# = 0 are not equal to zero. Then, neglecting both the weight of
the rod as a force and its possible vertical displacements, to study the vibrations of the rod, we have to
find solutions to two coupled mixed problems:

1) in the domain @ =(0,%0)x (0,7), we have to find a solution to the equation

(67 —af o} Ju(e.x) = fi(t,), M
with the initial conditions
v, x=0,
u(0,x)=(x), x20, 0w (0,x)=y(x)= (@)
] (X), x < Oa
and the boundary condition
s t= 07
(07 b0, +c? (.0 =1 3)
“1(t)5 0<z< Ta
2) in the domain @O, =(0,0)x(7,»), we have to find a solution to the equation
(67 —a303 Jus (1.3) = f2(t.), @
with the initial conditions
u2(t=T>x)=ul(T>x)> atu2(t=T,x):atul(Tax)a XZO, (5)
and the boundary condition
(h=0. w2 (1,0) =2 (1), 1>T. ©)

The relations (1)—(6) use the following notation: a12 = a% =E/p, b>=SE/ M, ct=k/ M,
h=k/ES, where E > 0 is Young’s modulus of the rod material, p = 0 is the density of the rod material,
S = 0 is the cross-sectional area of the rod, M > 0 is the mass of the impacted load, k > 0 is the stiff-
ness coefficient of the linear elastic element to which the end x = 0 of the rod is attached. The quantity
V; — W,(0+) has a physical meaning of the velocity of the impacting load, p,(¢) has a physical meaning
of the external force acting on the end of the rod, divided by the mass of the impacting load, and p,(7)
has a physical meaning of the external force acting on the end of the rod, divided by ES. The value p,,
is not an arbitrary preset constant [6], but it depends on the functions f, ¢, v and will be determined
later.
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We will assume that @, > 0 and a, > 0 for definiteness. We also note that mathematically, the signs of
h, b*, and ¢ do not affect the correctness of the problem. And despite that z > 0, b* > 0, and ¢* from physi-
cal assumptions, we will consider the problems in a general form, regardless of the signs of A, b2, and ¢*.
Also, without loss of generality, we will assume that the numbers a, and a, are not necessarily equal.

2. Auxiliary problem. To construct a solution to problem (4)—(6), we consider an auxiliary mixed
problem for the function v.

Statement of the problem. In the domain Q=(0,0)x(0,0) of two independent variables

(t,x)eQc R?, we consider the wave equation
(07 —a%a2 w0 = f (1., (M)
with the initial conditions

d1(x),  xe[0,x7), ) .
v(0,x)=d(x)=4d(x"), x=x, alv(o,x)zq,(x):{wl(xx xe[0,x), ®

b2(x), xe(x ), Va(x), xe(x ,o),

and the boundary condition

(h_ax)v(t,()):l':l(t)z{ﬁ'l(t)a t<x /a, (9)

Fl2(t), t>X*/a7

where (I)(x*) = J)l(x* -0)= (T)z(x* +0). Also, for definiteness, we assume a > 0.

Definition of the solution. Due to the discontinuous initial condition for the time derivative, the
problem (7)—(9) has no classical solution defined on the set . However, we can define a classical solu-
tion to the problem (7)—(9) on a smaller set O /T such that it belongs to the class C? (O/T) and satisfies
the equation (7), the initial conditions (8), the boundary condition (9), and additional matching condi-
tions given on the set I.

Definition 1. A continuous function v is called a classical solution to the problem (7)—(9), if
the following conditions are fulfilled: 1) the function v is twice continuously differentiable and satis-
fies Eq. (7) everywhere, except the characteristics x —at = 0, x — at = +x and x + at = x ; 2) the first
initial condition v(0,x)= (T)(x) is satisfied on the entire half-line x > 0; 3) the second initial condition
0v(0,x) =\(x) is satisfied on the set [O,x*) v, (x*,oo); 4) the boundary condition (9) holds on the set
[O,a_lx*) U (a_lx*,oo); 5) the function v satisfies the following conjugation conditions:

() =) Itat+x7)=[()" =) 1(t,x" —at) =0, (10)
()" = ()" 1(t,at) =0, (11)
[\ =) 1(tat—x")=0 (12)

on the characteristics x—at =0, x—at = +x" and x+at=x".

Remark 1. The system of conditions imposed on the function v in Definition 1 is overdetermined.
For example, we can delete the word “continuous” at the beginning of Definition 1 because the continu-
ity of the function v in this case follows from the facts that the function v is twice continuously differ-
entiable everywhere, except the characteristics x — az = 0, x —atf = +x" and x + at = x', and satisfies the
conjugation conditions (10)—(12). Or vice versa, we can remove the requirement “the function v satisfies
the conjugation conditions (10)—(12) on the characteristics x —at =0, x — at =+x and x + at = x”, since
the conjugation conditions follow from the continuity of the function v. The disadvantage of the second
approach is that the main point in definitions solutions to problems with discontinuous data is the speci-
fication of the correct matching conditions, and, therefore, we should write out them explicitly.
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Construction of the solution. Here, in contrast to [21], we will formally find a solution using the
method of characteristics. It is known that the general solution of an inhomogeneous linear equation is
the sum of the general solution of a homogeneous linear equation and a particular solution of the inho-
mogeneous one [22]. Let w:Q — R be a particular solution of the inhomogeneous wave equation (7)
that satisfies the homogeneous Cauchy conditions w(0,x)=0,w(0,x)=0 and étzw(O,x) = f(0,x). Such
a solution w exists, and it has the form [23]

t x+a(t-1)

w(t,x) =ij'dr j f(’l?,

0  x—a(t-1)

)dE. (13)
If feCY0), then we C*(0).
Thus, we can write the general solution of Eq. (7) in the form
v(t,x) =w(t,x)+ GV (x—at) + G (x + ar). (14)

Satisfying the Cauchy conditions in the subdomains O and O, we obtain the formulas

GO (x) = “"2") 1T¢(¢)da+cb xe(0,0),

<|>()

(15)

G?(x)= J (&)de—Cy, xe(0,00),

where C| is an arbitrary real constant.

Due to the representation (14), it is necessary to determine the function G\ for all real numbers to
solve the auxiliary problem (7)—(9). We have already done this for non-negative numbers according to
the formula (15). To find the value of the function G'” for negative values of the argument, we substitute
the relation (14) into the boundary condition (9) and get

h( e (—at)+ g (at) + w*(o,t)) — Dg (—at) - Dg®? (at) - 8, w(0,0) =1 (¢), t€(0,x" /a).
From the previous equality we have an ordinary differential equation for the function G
H(GV(2)+ G 2)+w(0.-2/ a)) —D[G(l)}(z) -
D[G@)](—z) —ow(0,~2/ )=, (1), ze(-x",0). (16)

We consider Eq. (16) as a differential equation with respect to the function G on the half-line
z € (—0,0]. Let the condition

GM0.)=6Y0,)= cl+‘|’§0) (17)

also be satisfied. We consider Eq. (4.17) with respect to G with the condition (17) as the Cauchy problem
for the first-order differential equation. Solving this problem, we get

¢1( )

GY(z)= exp(hz)[ + j exp(— hn)M(n)dnJ z<0,

where

M(z) = g(—gj - h(G(z) (-2)+ w(—é,oD +D[G? |2)+ axw(—g,o}

After simple transformations, taking into account the obvious equality
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[ exp(-mnidn = T%exp(—hnm(n)dn 0,
0 0

—hz
ech(—Z),

we can write the expression G"(z), where z < 0, in the following form

G0 ()=, 1 ¥E2) | hexp(hz)
1 2 2

fexp(—im)d(-mdn + 2202,
0 2a

z -n ~
x| eXp(—hn)[h [W(&)de +ah(2w[—g,oj+ <|>(—n)j -
0 0

—(=m) —2a(a(—ﬂ) +8xw(—n,0Jﬂdn, z<0. (18)
a a

Substituting (15) and (18) into (14), we find out

~ T _ x+at
¢(X+af)42r¢(x af)+2ij\p(§)d§, t>20, x>0, x-at>0,
a

x—at

v(t,x)=w(t,x)+

O(x+at)+(x—at) 1

v(t,x) = 5 + 2 I Y(E)dE+
0
s (héx =) X_Im exp(—hm)d(—n)dn + — - 1) (her=an)
0 a

—a

X
< ]
0

t -n ~
eXp(—hn){h Jw(E)de +ah(2W(—g,0j + ¢(—n)J -
0

—\TJ(—T])—2a(ﬁ(—n)+8xw(—ﬂ,0)ﬂdn, 120, x>0, x—ar<0. (19)
a a

Thus, we have constructed a formal piecewise smooth solution to the problem (7)—(9) determined
by the formulas (13) and (19). By direct verification, we establish that if the following smoothness con-
ditions are satisfied

SeC' @, $1eC?((0.x7), d2eCP(xT0)), FieC!((0.x71),
el (i), frec!([0a7x7]). freC!([ax"m)).

then the function v determined by the expressions (13) and (19) is continuous, satisfies the wave
equation (7) everywhere, except the characteristics x —at =0, x —at = +x" and x + ar = x, the first initial
condition v(0,x)= (I)(x) on the half-line x > 0, the second initial condition ,v(0,x)=\y(x) on the set
[O,x*)u(x*,oo) and the boundary condition (9) on the set [O,a_lx*)u(a_lx*,oo). It means that we
have constructed the solution to the mixed problem (7)—(9) in the sense of Definition 1.

Uniqueness of the solution. The following theorem holds.

Theorem 1. Let the smoothness conditions

£eC' @, hieC?([0x7), §2eC?(x"@), 1ec!((0.x7),
J2eC!([x"), e ([0,a7x), freC!([ax",0)

be satisfied. The third mixed problem (7)—(9) has a unique solution v in the sense of Definition 1. This
solution is determined by formulas (13) and (19).
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Proof 1. The existence of the solution, which satisfies Definition 1 and is determined by formu-
las (13) and (19), is proved earlier. 2. Let us prove the uniqueness by contradiction. Let there exist two
solutions v, and v, to the third mixed problem (7)—(9) in the sense of Definition 1. Then we can show that
their difference ¥ = v, — v, belongs to the class C*(Q) and satisfies the following mixed problem

(6;2 —azai)V(t,x)zo, 0<t<oo, 0<x<oo,

V(0,x)=0,/(0,x)=0, 0<x<o0,
(h=0,)V(t,0)=0, 0<t<o0.

In turn, the solution ¥ =0 of this problem is unique [24, 25] in the class C 2(Q). It implies v, — v, = 0.

We note that to construct a solution, we could use the fact that the solution to the mixed prob-
lem (7)—(9) can be represented as solutions to the coupled Cauchy, Goursat, and Picard problems. In this
approach, the uniqueness follows by design since the solution to these coupled problems is determined
in a unique way, e. g., see [22] for the Cauchy problem, [26, 27] for the Goursat problem, and [25] for the
Picard problem.

Remark 2. We can easily show that the solution to the problem (7)—(9) in the sense of Definition 1
is a mild solution to the problem (7)—(9) in the sense similar to [28, Definition 1].

3. Main problem. Now we return to the problems (1)—(3) and (4)—(6). The definition of the solution
to the (1)—(3) problem was given in the paper [18]. For the convenience of the reader, we present it here
in a slightly modified form.

Definition 2. Let the matching condition

£1(0,0)— o +c*9(0) + ai D*p(0) + b>Dep(0) = 0 (20)
be satisfied. Then a function u, belonging to the class C(@) N Cz(Q_) N CZ(Q+), where
O-={(t,x)|0<t<T,x>0,x—at >0},
0. ={(t,x) |0<1<T,x>0,x—a;t <0},

is called a classical solution to the problem (1)—(3) if it satisfies Eq. (1) on the sets Q_and Q., the initial
conditions (2) and the boundary condition (3) on the open half-line (0,:0), and the conjugation conditions

[(u1)" = (u1)"1(t,ait) =0,

[(@atty) " = (@ atn) 1ty art) =~ , Q1)

where C\V is an arbitrary real preset constant.

We derive the necessary and sufficient conditions (20) and (21) by passing to the limit. The paper [18]
proves that condition (20) is necessary and sufficient, i. e., the quantity p, is uniquely determined, and,
otherwise, it is not possible to introduce a definition of the solution. We have already constructed a solu-
tion satisfying Definition 2 in the paper [18], and it can be written out in the explicit analytical form

_ x+ajt
u(tx) = w0+ 2EFA0rQL=at) | LV ey ge  0<i<T, 120, x—ai20,
2 2611 x—ajt
2 —
x+ait exp(b (; 2a1t)J
() =y (1) + A0 L LT ey I/
2 2a; 2Jb* —4aic?
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4_
R
ai
b4—4 2.2 _ t ,
\/Tcz(x at) (2a1(a1(p(0)+2C(1)_\pl)—bZ(p(O)) +
2ai

+sinh

2
exp[b (x—ait—)
x—ait

2af ] . \/b4—4a1202(a1t+n—x)
+ sinh . x
ai

0 a1\/b4 4aic?

ai

x(cz_jn\v(&)di—bzw(—n) +2aic?wy (—ﬂ,oj +aic’e(-n) -
0

—2alu(—a1j—a1b2<p'(—n)+afw'2(—n>+a%cp"(—n)—za1bzaxwl[—al,o}
1 1

+2a,02w, [—ﬂ,onczn, [>T, x>0, x—ait <0, 22)
a

where

t  x+ai(t-1)

wl(tx)zz—jdr j f(r,

aro  x- a1 (t-7)

)dE, 120, x=0.

Theorem 2. Let the smoothness conditions
f1€C'([0,T1x[0,)), @eC*([0,)), w,eC'([0,:0)), wieC'([0,T])

be satisfied. The mixed problem (1)—(3) has a unique solution u, in the sense of Definition 2. This solution
is determined by the formula (22).

The proof of Theorem 2 is presented in the paper [18].

To solve the problem (4)—(6), we can make a change of the variable t = ¢ — T, i. e. look for a solution
in the form u;(¢,x) =v(t + T, x). In this case, the function v satisfies the problem

(6;2—azzﬁ)zc)v(t,x)zfz(t—T,x), O0<t<oo, 0<x<oo,

V(O,X)ZMI(T,X), 8tv(0,x)=8tu1(T,x), OSX<OO, (23)
(=0 WL0)=pa(t=T), 0<t<co.

Note that the following conditions are met: 1) the function ¢, :x — u(7,x) is continuous on the
set [0,00), twice continuously differentiable set [0,a;7) U (a1T,), and the quantities D[¢y], Di[d«],
i =1,2, where D’ is the operator of the i order left derivative and D’ is the operator of the i order
right derivative, exist and take finite values everywhere; 2) the function w, :x — d,u;(7,x) is con-
tinuous on the set [0,00), continuously differentiable on the set [0,a;T)U (a;T,®), and the quantities
D_[y,] and D,[y,] exist and take finite values everywhere; 3) the function t - p,(¢—T7T) is once
continuously differentiable on the set [0,00) if py € C ! ([T ,00)) ; 4) the function ¢ — f5(¢—T,x) is once
continuously differentiable on the set [0,00)x[0,00) if f>€C ! ([T ,00)x[0, OO)). In this case, we can con-
sider the problem (23) as solved, and, consequently, the problem (4)—(6) too.

Let us formulate two equivalent definitions of the solution to the problem (4.4)—(4.6).
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Definition 3. A4 function u, :[T,0)x[0,0)— R is called a classical solution to the problem
(4)—(6) if the following conditions are fulfilled: 1) the function u, is twice continuously differentiable and
satisfies the equation (4) everywhere, except the characteristics x —at = arT, x —art =+a\T —a,T and
x+ast=aiT +a,T; 2) the first initial condition u,(t =T,x)=u(T,x) is satisfied on the entire half-line
x>0, 3) the second initial condition 0u,(t =T,x)=0.u(T,x) is satisfied on the set [0,a;T) U (a\T,),
4) the boundary condition (5) holds on the set [T,ailT(al + az)) u(ailT(al + az),oo); 5) the function
u, satisfies the following conjugation conditions:

[(2)" = (u2) N(t,ast £a\T —asT) =0,
[(u2)" = (u2)"1(t,a2(t+T)) =0,
[(2)" = (u2) Wt aiT +axT —art)=0

on the characteristics x —ast =aT, x—art=xa\T —a>T and x+art=a\T +a,T.
Definition 4. A4 function u, is called a classical solution to the problem (4)—(6) if the function

v:i(t,x) 2[0,0)x[0,0) > uy (¢t —T,x) e R

is a solution to the problem (23) in the sense of Definition 1.
Let us formulate the existence and uniqueness theorem for the problem (4)—(6).
Theorem 3. Let the smoothness conditions

f1eCH[0,T1x[0,0)), f2eC'([T,0)x[0,0)), ¢eC*([0,:)),

y2€C'([0,0)), w1 eC'([0,T]), preC'([T,2))

be satisfied. The third mixed problem (4)—(6) has a unique solution u, in the sense of Definition 3 (or
Definition 4). This solution is determined by an expression u,(t,x)=v(t —T,x), where the function v is
determined by the formula (22), in which the number a, = a, and functions (T):x - u(T,x),
Vix—>u(T,x), p:t—>u@-=T1).

Thus, according to Theorems 2 and 3, we have constructed the solutions to the problems (1)—(3)
and (4)—(6).

4. Duration of the collision. Earlier in the present paper, we assumed that the duration of the col-
lision 7T is a known quantity. However, we can find it within the Saint-Venant’s (vibrational) impact
theory. To demonstrate this, consider the simplest case of the problems (1)—(3) and (4)—(6): 1) we assume
that at the initial moment of time ¢ = 0, the rod is at rest, i. . @ =y, =0; 2) we assume that the external
forces are absent, i. e. f1 = f> =0 and p, =p; =0; 3) a = q, = a,, since the properties of the material of
the rod do not change upon impact, and, from physical considerations, * > 0, ¢* < 0. The quantity U, is
calculated as pg = £1(0,0) + cz(p(O) + alzDz(p(O) + sz(p(O) =0. In this case, the solution u, to the prob-
lem (1)—(3), which satisfies the physically correct matching condition [29, § 2.10]

[(0)" = (o) 1(t.x =at) =vpcy,

where o= E0,u is the stress, p is the density of the rod material, ¢, = \/p_lE is the propagation speed
of deformations along the rod, £ is Young’s modulus, v is the speed of the body colliding with the rod, is
found by the formula

5 bz(x—at)
ayiexpl —— 5~
24 x) . (at—x)\/b4—4a202
u(t,x)= 0| t —— |sinh . (24)
4 22 2
b" —4a“c a 2a

In this case, the contact duration 7'is determined as the minimum non-negative root of the equation [30, p. 49]
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0.1 (T,0)=0. 25)
In the case ¢ # 0 and b* —4a’c? %0, Eq. (25) has the root

T a In b —2a%c? +b*\b* —4a°c?
\/b4 —4a%c? 2a%? ’

which is a positive real number. If ¢ # 0 and b* —4a°¢? =0, then d,u; =0, and therefore 7=0, i. e. in
this model, the impacting body separates from the rod immediately. If ¢ = 0, then there is no linear
elastic element at the end x = 0 of the rod, i. e. the end x = 0 of the rod is free, and Eq. (25) takes the form

b* b’T

—exp| — |=0

a a

and has no real roots.

Thus, we have demonstrated a qualitative difference in the impact process in a rod with an end with
a linear elastic element and in a rod with a free end.

Of course, within the framework of this longitudinal impact model, we can also pose optimal bound-
ary control problems, where for the given initial state ¢ and v, it is necessary to determine the external
force p, so that the load separates from the rod at the given moment of time. However, these problems
are beyond the scope of this paper. For similar optimal boundary control problems, we refer the reader
to [31-33].

Conclusions. In the present paper, we have studied two coupled mixed problems for the wave equa-
tion in a quarter plane from the theory of longitudinal impact. We have formulated the matching condi-
tions under which there is a classical solution to the problems in the case of sufficient smoothness of the
given functions. We have constructed a classical solution to two coupled mixed problems and showed
the dependence of its smoothness on the given functions. We have proved the uniqueness of the classical
solutions. We have analyzed the qualitative difference between the free and the elastically fixed end of
the rod. We have obtained an estimate of the duration of a collision.
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