УДК 530.12

А. П. РЯБУШКО¹, Т. А. ЖУР², И. П. БОЯРИНА², О. Л. ЗУБКО¹, В. И. ЮРИНОК¹

О СУЩЕСТВОВАНИИ ТРЕУГОЛЬНЫХ ТОЧЕК ЛИБРАЦИИ В ФОТОГРАВИТАЦИОННОМ ПОЛЕ

¹Белорусский национальный технический университет ²Белорусский государственный аграрный технический университет

(Поступила в редакцию 28.03.2014)

Введение. Постановка задачи. В любой звездной системе (в том числе и в Солнечной) движение тел происходит в *фотогравитационном* поле, так как на тела действуют не только силы гравитации, но также силы светового давления, которые могут в определенных случаях даже превосходить силы гравитации (см. напр., [1–6]).

В эпоху интенсивного освоения космического пространства, когда необходимы более точные прогнозы в движении естественных и искусственных тел в космосе, пренебрежение эффектами светового давления не может быть оправдано. Следует пересмотреть решения ряда задач ньютоновской небесной механики о движении тел при учете светового давления (более точно – электромагнитного излучения звезды).

Данная работа посвящена пересмотру лагранжевого решения для треугольных точек либрации L_4 и L_5 в ограниченной круговой задаче трех тел, когда одно из тяжелых тел A_1 массой m_1 является звездой (источник сильного электромагнитного излучения), другое тяжелое тело A_2 массой m_2 – темное (излучение отсутствует), третье тело A_3 массой m_3 – пробное (частица), которое не оказывает влияния на движения тел A_1 и A_2 .

Так как в нашей задаче прямое световое давление оставляет движение тел *плоским*, то без ограничения общности их движение в неподвижной прямоугольной декартовой системе координат *Охуг* можно считать происходящим в плоскости xOy, т. е z = 0, а поэтому имеем уравнения движения (УД) в виде следующей системы [7–10]:

$$\frac{d^{2}\tilde{x}_{1}}{dt^{2}} + \frac{\gamma m_{2}}{\tilde{r}_{12}^{3}} \left(\tilde{x}_{1} - \tilde{x}_{2}\right) = 0, \quad \frac{d^{2}\tilde{y}_{1}}{dt^{2}} + \frac{\gamma m_{2}}{\tilde{r}_{12}^{3}} \left(\tilde{y}_{1} - \tilde{y}_{2}\right) = 0; \quad (1)$$

$$\frac{d^{2}\tilde{x}_{2}}{dt^{2}} + \frac{\gamma m_{1}}{\tilde{r}_{12}^{3}} \left(\tilde{x}_{2} - \tilde{x}_{1}\right) = \frac{\gamma A_{12}}{\tilde{r}_{12}^{3}} \left(\tilde{x}_{2} - \tilde{x}_{1}\right), \ \frac{d^{2}\tilde{y}_{2}}{dt^{2}} + \frac{\gamma m_{1}}{\tilde{r}_{12}^{3}} \left(\tilde{y}_{2} - \tilde{y}_{1}\right) = \frac{\gamma A_{12}}{\tilde{r}_{12}^{3}} \left(\tilde{y}_{2} - \tilde{y}_{1}\right);$$
(2)

$$\frac{d^{2}\tilde{x}_{3}}{dt^{2}} + \frac{\gamma m_{2}}{\tilde{r}_{23}^{3}} \left(\tilde{x}_{3} - \tilde{x}_{2}\right) + \frac{\gamma m_{1}}{\tilde{r}_{13}^{3}} \left(\tilde{x}_{3} - \tilde{x}_{1}\right) = \frac{\gamma A_{13}}{\tilde{r}_{13}^{3}} \left(\tilde{x}_{3} - \tilde{x}_{1}\right), \quad \frac{d^{2}\tilde{y}_{3}}{dt^{2}} + \frac{\gamma m_{2}}{\tilde{r}_{23}^{3}} \left(\tilde{y}_{3} - \tilde{y}_{2}\right) + \frac{\gamma m_{1}}{\tilde{r}_{13}^{3}} \left(\tilde{y}_{3} - \tilde{y}_{1}\right) = \frac{\gamma A_{13}}{\tilde{r}_{13}^{3}} \left(\tilde{y}_{3} - \tilde{y}_{1}\right). \quad (3)$$

В отличие от ньютоновских УД в системе (1)–(3), учитывающей световое давление на тела, над x_i , y_i , r_{ij} ставим значок «~» (тильда), так как решения системы (1)–(3) отличаются от лагранжевых решений. В УД (1) – (3) \tilde{r}_{12} , \tilde{r}_{13} , \tilde{r}_{23} – расстояния между телами A_1 и A_2 , A_1 и A_3 , A_2 и A_3 соответственно; $\gamma = 6,67 \cdot 10^{-8} \, r^{-1} \cdot cm^3 \cdot c^{-2}$ – ньютоновская постоянная тяготения; t – время; величины

$$A_{12} = \frac{k_2 \sigma_2 W_1 r^2}{\gamma m_2 c} \ \Gamma, \ A_{13} = \frac{k_3 \sigma_3 W_1 r^2}{\gamma m_3 c} \ \Gamma$$
(4)

называются *редуцирующими* массами звезды A_1 , соответствующими телам A_2 и A_3 . Структура величин A_{12} и A_{13} обоснована в ряде работ (см., напр., [3–6, 11]): k_2 , k_3 – коэффициенты отражения

111

света телами A_2 и A_3 , которые заключены в границах $1 \le k_2 \le 2$, $1 \le k_3 \le 2$; σ_1 , σ_2 – площади миделевых сечений тел A_2 и A_3 ; $c = 3 \cdot 10^{10}$ см·с⁻¹ – скорость света в вакууме; W_1 – *звездная постоянная*, являющаяся плотностью энергии электромагнитного (светового) излучения звезды A_1 , приходящего за 1 с на 1 см² площадки, перпендикулярной направлению на звезду и находящейся на расстоянии *r* от нее. В уравнениях (2), (3) справа не учтены силовые добавки, возникающие благодаря эффекту Доплера и аберрации, так как они малы по сравнению с прямым световым давлением [12].

Если не учитываем световое давление, то в УД (2) и (3) члены с A_{12} и A_{13} заменяем нулями, опускаем значок тильда и получаем классические ньютоновские УД, которые (как показал Лагранж в 1772 г. [13]) имеют следующие точные решения [7–10]:

$$x_{i} = x_{i}^{0} \cos \omega_{0} t - y_{i}^{0} \sin \omega_{0} t, \quad y_{i} = x_{i}^{0} \sin \omega_{0} t + y_{i}^{0} \cos \omega_{0} t, \quad i = 1, 2, 3,$$
(5)

где ω_0, x_i^0, y_i^0 – вполне определенные постоянные. Для *треугольного* кругового лагранжевого решения

$$r_{12} = r_{23} = r_{31} = r_0 = \text{const}, \ \omega_0^2 = \gamma (m_1 + m_2 + m_3) / r_0^3$$
 (6)

и выполнены условия барицентричности

$$m_1x_1 + m_2x_2 + m_3x_3 = 0, \ m_1y_1 + m_2y_2 + m_3y_3 = 0.$$
 (7)

Для ограниченного кругового треугольного лагранжевого решения (когда $m_3 \ll m_1, m_3 \ll m_2$ и поэтому в (6) и (7) можно положить $m_3 = 0$) имеем [7–10]:

$$x_1^0 = -\frac{m_2}{m}r_0, \ x_2^0 = \frac{m_1}{m}r_0, \ x_3^0 = \frac{m_1 - m_2}{2m}r_0; \ y_1^0 = y_2^0 = 0, \ y_3^0 = \pm\frac{\sqrt{3}}{2}r_0, \ m = m_1 + m_2.$$
(8)

Здесь y_3^0 имеет двойной знак. Верхний знак «+» определяет (в соответствии с установившейся терминологией) точку либрации L₄, а нижний «-» точку либрации L_5 . Таким образом, пробное тело A_3 может находиться в точке L_4 или в точке L_5 (рис. 1). Система $x^0 O y^0$ вращается около центра масс O тел A_1 и A_2 с угловой скоростью $\vec{\omega}_0$ относительно неподвижной системы координат хОу. Точки A₁, A₂, A₃, L₅ неподвижны во вращающейся системе координат $x^0 O y^0$ и имеют постоянные координаты, заданные равенствами (8). В неподвижной системе координат xOy эти точки описывают окружности, параметрические уравнения которых задаются равенствами (5). Стороны треугольников $A_1A_2A_3$ и $A_1A_2L_5$ равны $r_0 =$ = const, т. е. эти треугольники являются равносторонними. Решения УД (1)-(3), содержащие редуцирующие массы A_{12}, A_{13} , конечно будут отличаться от

лагранжевых решений (5)–(8). Наша задача – выяснение этих отличий путем интегрирования системы (1)–(3) и обсуждения полученных результатов.

1. Интегрирование системы УД (1)–(3). Будем искать решение системы (1)–(3) в следующем виде:

$$\tilde{x}_{i} = (x_{i}^{0} + \overline{x}_{i})\cos\omega_{0}t - (y_{i}^{0} + \overline{y}_{i})\sin\omega_{0}t, \quad \tilde{y}_{i} = (x_{i}^{0} + \overline{x}_{i})\sin\omega_{0}t + (y_{i}^{0} + \overline{y}_{i})\cos\omega_{0}t, \quad i = 1, 2, 3, \quad (9)$$

где \overline{x}_i , \overline{y}_i – искомые «световые» поправки к лагранжевым решениям x_i^0 , y_i^0 из (8). Суммы $x_i^0 + \overline{x}_i$ и $y_i^0 + \overline{y}_i$ являются координатами тел A_i во вращающейся системе координат $x^0 O y^0$, а \tilde{x}_i , \tilde{y}_i – координатами тел A_i в неподвижной системе координат x O y. Подстановка \tilde{x}_i , \tilde{y}_i из (9) в систему (1)–(3) равносильна записи этой системы во вращающейся системе координат $x^0 O y^0$. Найдя с помощью (9) \ddot{x}_i , \ddot{y}_i , $\tilde{r}_{ij} = \left[\left(\tilde{x}_j - \tilde{x}_i\right)^2 + \left(\tilde{y}_j - \tilde{y}_i\right)^2\right]^{1/2}$, частично воспользовавшись лагранжевым решением (5), (8) и подставив найденные \ddot{x}_i , \ddot{y}_i \tilde{r}_{ij} в УД (1)–(3), получим после достаточно громоздких преобразований систему линейных дифференциальных уравнений относительно световых поправок \overline{x}_i , \overline{y}_i (точки над буквами означают производные по *t*):

$$\begin{cases} \ddot{x}_{1} - 2\omega_{0}\dot{y}_{1} - \omega_{0}^{2}\overline{x}_{1} - \frac{\gamma m_{2}}{(r_{12}^{0})^{3}} \bigg[\overline{x}_{2} - \overline{x}_{1} + \frac{3}{2}\alpha_{12}(x_{1}^{0} - x_{2}^{0}) \bigg] = 0, \\ \ddot{y}_{1} + 2\omega_{0}\dot{x}_{1} - \omega_{0}^{2}\overline{y}_{1} - \frac{\gamma m_{2}}{(r_{12}^{0})^{3}} \bigg[\overline{y}_{2} - \overline{y}_{1} + \frac{3}{2}\alpha_{12}(y_{1}^{0} - y_{2}^{0}) \bigg] = 0, \\ \ddot{x}_{2} - 2\omega_{0}\dot{y}_{2} - \omega_{0}^{2}\overline{x}_{2} + \frac{\gamma m_{1}}{(r_{12}^{0})^{3}} \bigg[\overline{x}_{2} - \overline{x}_{1} + \frac{3}{2}\alpha_{12}(x_{1}^{0} - x_{2}^{0}) \bigg] + \frac{\gamma A_{12}}{(r_{12}^{0})^{3}} (x_{1}^{0} - x_{2}^{0}) = 0, \\ \ddot{y}_{2} + 2\omega_{0}\dot{x}_{2} - \omega_{0}^{2}\overline{y}_{2} + \frac{\gamma m_{1}}{(r_{12}^{0})^{3}} \bigg[\overline{y}_{2} - \overline{y}_{1} + \frac{3}{2}\alpha_{12}(y_{1}^{0} - y_{2}^{0}) \bigg] + \frac{\gamma A_{12}}{(r_{12}^{0})^{3}} (y_{1}^{0} - y_{2}^{0}) = 0; \\ \ddot{x}_{3} - 2\omega_{0}\dot{y}_{3} - \omega_{0}^{2}\overline{x}_{3} + \frac{\gamma m_{1}}{(r_{13}^{0})^{3}} \bigg[\overline{x}_{3} - \overline{x}_{1} + \frac{3}{2}\alpha_{13}(x_{1}^{0} - x_{3}^{0}) \bigg] + \frac{\gamma m_{2}}{(r_{12}^{0})^{3}} \bigg[\overline{x}_{3} - \overline{x}_{2} + \frac{3}{2}\alpha_{23}(x_{2}^{0} - x_{3}^{0}) \bigg] + \\ + \frac{\gamma A_{13}}{(r_{12}^{0})^{3}} (x_{1}^{0} - x_{3}^{0}) - \frac{\gamma A_{13}}{(r_{12}^{0})^{3}} \bigg[\overline{x}_{3} - \overline{x}_{1} + \frac{3}{2}\alpha_{13}(x_{1}^{0} - x_{3}^{0}) \bigg] = 0, \\ \dot{z}_{3} + 2\omega_{0}\dot{x}_{3} - \omega_{0}^{2}\overline{y}_{3} - \frac{\gamma m_{1}}{(r_{13}^{0})^{3}} \bigg[\overline{y}_{3} - \overline{y}_{1} + \frac{3}{2}\alpha_{13}(y_{1}^{0} - y_{3}^{0}) \bigg] + \frac{\gamma m_{2}}{(r_{2}^{0})^{3}} \bigg[\overline{y}_{3} - \overline{y}_{2} + \frac{3}{2}\alpha_{23}(y_{2}^{0} - y_{3}^{0}) \bigg] + \\ + \frac{\gamma A_{13}}{(r_{13}^{0})^{3}} \bigg[\overline{y}_{3} - \overline{y}_{1} + \frac{3}{2}\alpha_{13}(y_{1}^{0} - y_{3}^{0}) \bigg] + \frac{\gamma m_{2}}{(r_{2}^{0})^{3}} \bigg[\overline{y}_{3} - \overline{y}_{2} + \frac{3}{2}\alpha_{23}(y_{2}^{0} - y_{3}^{0}) \bigg] + \\ + \frac{\gamma A_{13}}{(r_{13}^{0})^{3}} \bigg[\overline{y}_{3} - \overline{y}_{1} + \frac{3}{2}\alpha_{13}(y_{1}^{0} - y_{3}^{0}) \bigg] + \frac{\gamma m_{2}}{(r_{2}^{0})^{3}} \bigg[\overline{y}_{3} - \overline{y}_{2} + \frac{3}{2}\alpha_{23}(y_{2}^{0} - y_{3}^{0}) \bigg] + \\ + \frac{\gamma A_{13}}{(r_{13}^{0})^{3}} \bigg[\overline{y}_{3} - \overline{y}_{1} + \frac{3}{2}\alpha_{13}(y_{1}^{0} - y_{3}^{0}) \bigg] = 0, \end{cases}$$

где

$$\alpha_{ij} = \frac{2}{(r_{ij}^0)^2} \Big[(x_j^0 - x_i^0) (\overline{x}_j - \overline{x}_i) + (y_j^0 - y_i^0) (\overline{y}_j - \overline{y}_i) \Big], \ i \neq j, \ i, j = 1, 2, 3,$$
(12)

$$r_{ij}^{0} = \left[(x_{j}^{0} - x_{i}^{0})^{2} + (y_{j}^{0} - y_{i}^{0})^{2} \right]^{1/2}, \ i \neq j, i, j = 1, 2, 3; \ r_{ij}^{0} = r_{0}.$$
(13)

Заметим, что преобразуя систему (1)–(3) в систему (10), (11), мы удерживали только первые степени поправочных функций $\overline{x}_i(t)$, $\overline{y}_i(t)$, считая, что

$$\left|\alpha_{ij}\right| < 1. \tag{14}$$

Следовательно, исследование системы (1)–(3) мы проводим в линейном приближении по поправкам \bar{x}_i , \bar{y}_i . Опираясь на данные астрономии и астрофизики [2, 5] и формулу для A_{12} из (4), находим, что величина A_{12} для тяжелого темного тела A_2 чрезвычайно мала (образно говоря, у тела A_2 «парусность» ничтожно малая). Поэтому задачу интегрирования системы (10), (11) можно несколько упростить, положив $A_{12} = 0$. Величина же A_{13} , как мы увидим ниже, для некоторых пробных тел может достигать больших значений, сравнимых с массами тяжелых тел, и пренебрегать величиной A_{13} нельзя. Сразу же отметим, что при $A_{12} = 0$ общее решение системы (10) давно найдено (см. [10, § 30]). Но мы решаем задачу Коши при следующих начальных условиях: если t = 0, то $\bar{x}_1 = \bar{x}_2 = \bar{y}_1 = \bar{y}_2 = 0$, $\dot{\bar{x}}_1 = \dot{\bar{x}}_2 = \dot{\bar{y}}_1 = \dot{\bar{y}}_2 = 0$. Это приводит к тому, что решение системы (10) при $A_{12} = 0$ и оговоренных начальных условиях будет тривиальным:

$$\overline{x}_1 = 0, \, \overline{x}_2 = 0, \, \overline{y}_1 = 0, \, \overline{y}_2 = 0.$$
 (15)

113

Систему (11) при учете решения (15) и лагранжевого решения (8) можно переписать в виде:

$$\begin{cases} \ddot{\overline{x}}_{3} - 2\omega_{0}\dot{\overline{y}}_{3} - \frac{\gamma}{4r_{0}^{3}}(3m + A_{13})\overline{\overline{x}}_{3} \mp \frac{3\sqrt{3}\gamma}{4r_{0}^{3}}(m_{1} - m_{2} - A_{13})\overline{\overline{y}}_{3} = \frac{\gamma A_{13}}{2r_{0}^{2}}, \\ \\ \ddot{\overline{y}}_{3} + 2\omega_{0}\dot{\overline{x}}_{3} \mp \frac{3\sqrt{3}\gamma}{4r_{0}^{3}}(m_{1} - m_{2} - A_{13})\overline{\overline{x}}_{3} - \frac{9\gamma}{4r_{0}^{3}}(m - \frac{5}{9}A_{13})\overline{\overline{y}}_{3} = \pm \frac{\sqrt{3}\gamma A_{13}}{2r_{0}^{2}}, \end{cases}$$
(16)

где в случае двойного знака верхний знак относится к точке либрации L_4 , а нижний – к точке либрации L_5

Система (16) является неоднородной линейной системой дифференциальных уравнений с постоянными коэффициентами, интегрирование которой не представляет принципиальных трудностей. Используя стандартную процедуру (см., напр., [14–16]), можем найти общее решение системы (16), которое имеет очень громоздкий вид, поэтому не будем его здесь выписывать. Не будем делать этого и по той причине, что нас интересует решение задачи Коши системы (16) при нулевых начальных условиях: $\bar{x}_3 = \bar{y}_3 = 0$, $\dot{\bar{x}}_3 = \dot{\bar{y}}_3 = 0$ при t = 0. Это означает, что нас интересует, как поведет себя пробное тело, помещенное в точку либрации с нулевой скоростью во вращающейся системе $x^0 O y^0$. Другими словами, существуют ли для пробного тела точки либрации

 L_4 и L_5 при учете светового давления? Ниже мы покажем, интегрируя систему (16), что L_4 и L_5 не существуют, т. е. в любом физически допустимом случае пробное тело уходит из точки L_4 или L_5 (см. ниже п. 3).

2. Точки фотолибрации. В связи со сказанным выше возникает новый вопрос: если не существуют в фотогравитационном поле лагранжевы треугольные точки либрации, образующие с телами A_1 и A_2 равносторонние треугольники, то возможно существуют другие точки L_4^*, L_5^* , образующие с телами A_1 и A_2 неизменные треугольники, но с разными длинами сторон?

Если такие точки L_4^* и L_5^* существуют (их тогда назовем *треугольными точками фотолибрации*), то система (16) должна иметь решения вида: $\overline{x}_3 = \text{const}, \ \overline{y}_3 = \text{const}$. Такое предположение систему дифференциальных уравнений (16) превращает в систему двух алгебраических уравнений с неизвестными $\overline{x}_3, \ \overline{y}_3$, определитель которой

$$\Delta = 108m_1m_2 + 48A_{13}m_1 - 60A_{13}m_2 - 32A_{13}^2.$$
⁽¹⁷⁾

Если $\Delta \neq 0$, то решением алгебраической системы являются числа

$$\overline{x}_3 = -4A_{13}r_0(2A_{13} + 9m_2)/\Delta, \quad \overline{y}_3 = \mp 4\sqrt{3}A_{13}r_0(2A_{13} + 3m_2)/\Delta.$$
(18)

Каждому пробному телу соответствует свое значение A_{13} и, следовательно, своя пара симметричных относительно оси Ox^0 треугольных точек фотолибрации L_4^* , L_5^* . Рассматривая A_{13} как параметр, получаем параметрические уравнения (18) двух симметричных линий, заполненных точками фотолибрации, которые будем называть *линиями фотолибрации*. Эти точки образуют с телами A_1 и A_2 разносторонние треугольники с постоянными сторонами и в неподвижной системе координат xOy описывают с угловой скоростью ω_0 окружности с центром в точке O.

Знаменатель (17) в решении (18) в области гипотетически допустимых значений для $A_{13} \in [0, +\infty)$ один раз обращается в нуль при значении

$$A_{13}^{0} = \frac{1}{16} \left[12m_1 - 15m_2 + \sqrt{(12m_1 - 15m_2)^2 + 864m_1m_2} \right].$$
(19)

Это значение A_{13}^0 разделяет область $[0, +\infty)$ на две области: $0 \le A_{13} \le A_{13}^0$ и $[A_{13}^0, +\infty)$. Так как при $A_{13} \rightarrow A_{13}^0$ значения \overline{x}_3 , \overline{y}_3 стремятся к бесконечности, то следует выбросить B – окрестность точки A_{13}^0 , так как в области $A_{13}^0 - B \le A_{13} \le A_{13}^0 + B$ условия (14) нарушаются. Значение B определяется поэтому из условий (14). Таким образом, остается заведомо допустимая область для значений $A_{13} \in [0, A_{13}^0 - B]$ и, возможно, область $A_{13} \in [A_{13}^0 + B, +\infty]$. Но оказывается, что в последней условия (14) также нарушаются и, следовательно, она запрещена используемой математической процедурой (линейным приближением). Действительно, из (12), (17), (18) следует, что в указанной области

$$\alpha_{13} = \frac{1}{r_0} (\overline{x}_3 \pm \sqrt{3} \overline{y}_3) > 0, \lim_{A_{13} \to \infty} \alpha_{13} = 1.$$
(20)

Далее, как функция параметра A_{13} , величина α_{13} – монотонно убывающая (что нетрудно показать с помощью ее производной по A_{13} , которая отрицательна). Следовательно, согласно (20), в области $A_{13}^0 + B \le A_{13} < +\infty$ имеем $\alpha_{13} > 1$, т. е. (14) нарушено.

Итак, редуцирующая масса А13 для пробного тела А3 может находиться только в области

$$0 \le A_{13} \le A_{13}^0 - B, \tag{21}$$

где A_{13}^0 определяется формулой (19), а B > 0 и находится из требования выполнимости неравенства (14). Так как в области (21) $\Delta > 0$, то для L_4^* : $\overline{x}_3 < 0$, $\overline{y}_3 < 0$, а для L_5^* : $\overline{x}_3 < 0$, $\overline{y}_3 > 0$.

Заметим, что

$$\frac{\overline{y}_3}{\overline{x}_3} = \pm \sqrt{3} \frac{2A_{13} + 3m_2}{2A_{13} + 9m_2}.$$
(22)

Из (22) следует, что линии фотолибрации (18) при малых A_{13} образуют с осью Ox^0 угол $\approx \pm 30^\circ$, а при A_{13} значительно больших m_2 , образуют угол $\approx \pm 60^\circ$.

3. Численные оценки для решений системы (16). Как уже отмечалось в п. 2, нас интересуют решения задачи Коши для системы (16) при нулевых начальных условиях:

$$\overline{x}_{3}(0) = \overline{y}_{3}(0) = 0, \ \dot{\overline{x}}_{3}(0) = \dot{\overline{y}}_{3}(0) = 0$$

Для получения численных оценок конкретизируем систему тел: A_1 – Солнце, $m_1 = 2 \cdot 10^{33}$ г; A_2 – Юпитер, $m_2 = 2 \cdot 10^{30}$ г; $A_1 A_2 = r_0 = 7,78 \cdot 10^{13}$ см; $\omega_0 = \sqrt{\gamma m / r_0^3} = 1,68 \cdot 10^{-8} \text{ c}^{-1}$, так как $\gamma = 6,67 \cdot 10^{-8} \text{ г}^{-1} \cdot \text{см}^3 \cdot \text{с}^{-2}$. Остается выбрать пробное тело A_3 , которому соответствует редуцирующая масса Солнца A_{13} . В Солнечной системе в изобилии существуют частички, для которых A_{13} имеют большие значения. Например, частные варианты: 1) $A_{13} = 0,1m_1$; 2) $A_{13} = 0,2m_1$ (см. [1, 4, 5]). Тогда легко находим с помощью компьютерной программы Mathematica или Mathcad решения задачи Коши для системы (16).

Для варианта 1):

$$\overline{x}_{3} = 10^{13} \left[-0.14 + 1.86 \cos(1.10 \cdot 10^{-8} t) + 7.98 \sin(1.10 \cdot 10^{-8} t) - -1.72 \cos(1.39 \cdot 10^{-8} t) - 6.32 \sin(1.39 \cdot 10^{-8} t) \right],$$

$$\overline{y}_{3} = 10^{13} \left[-0.24 + 3.24 \cos(1.10 \cdot 10^{-8} t) - 4.60 \sin(1.10 \cdot 10^{-8} t) - -3.01 \cos(1.39 \cdot 10^{-8} t) + 3.64 \sin(1.39 \cdot 10^{-8} t) \right].$$
(23)

Для варианта 2):

$$\overline{x}_{3} = 10^{13} \bigg[-0.29 + e^{-4.23 \cdot 10^{-9}t} \Big(3.79 \cos(1.37 \cdot 10^{-8}t) - 0.05 \sin(1.37 \cdot 10^{-8}t) \Big) + e^{4.23 \cdot 10^{-9}t} \Big(-3.50 \cos(1.37 \cdot 10^{-8}t) + 2.28 \sin(1.37 \cdot 10^{-8}t) \Big) \bigg],$$

$$\overline{y}_{3} = 10^{13} \bigg[-0.52 + e^{-4.23 \cdot 10^{-9}t} \Big(-1.82 \cos(1.37 \cdot 10^{-8}t) - 2.60 \sin(1.37 \cdot 10^{-8}t) \Big) + e^{4.23 \cdot 10^{-9}t} \Big(2.37 \cos(1.37 \cdot 10^{-8}t) + 1.33 \sin(1.37 \cdot 10^{-8}t) \Big) \bigg].$$
(24)

115

Траектория движения частицы за 70 лет во вращающейся системе координат для варианта 1) согласно уравнениям (23) представлена на рис. 2, а для варианта 2) – на рис. 3.

Поступательная скорость v_3 частицы на траектории (23) колеблется в пределах (0–20) км·с⁻¹, а на траектории (24) – в пределах (0–500) км·с⁻¹. В первом случае имеем финитную траекторию (23), во втором – инфинитную траекторию (24).

Существуют такие частички, для которых $0,1m_1 < A_{13} < 0,2m_1$, и их траектории являются сепаратрисами, отделяющими финитные траектории от инфинитных.

Следует также помнить, что в силу линейного приближения траектории (23) и (24) (и любые другие) нельзя рассматривать при достаточно больших временах t, так как может нарушиться условие (14), которое можно переписать, используя (8) и (15), в виде:

$$\left|\alpha_{13}\right| = \frac{\left|\overline{x}_{3} \pm \sqrt{3}\overline{y}_{3}\right|}{r_{0}} < 1, \left|\alpha_{23}\right| = \frac{\left|-\overline{x}_{3} \pm \sqrt{3}\overline{y}_{3}\right|}{r_{0}} < 1, \left|\alpha_{12}\right| = 0 < 1.$$
(25)

Вычисление \overline{x}_3 , \overline{y}_3 по формулам (23), (24) показывает, что (25) будет выполняться только при t < 70 лет.

4. Численные оценки для точек и линий фотолибрации (18). Учитывая ограничения (14) и (20), (21), налагаемые на параметр A_{13} , проведем численные оценки в системе Солнце–Юпитер. Тогда A_{13}^{0} , входящее в (21) и вычисленное по формуле (19), имеет величину $A_{13}^{0} \approx 3.10^{33} \text{ cm} = 1.5 m_1$. Следовательно, параметр A_{13} в параметрических уравнениях линий фотолибрации (18) согласно (21) заключен в пределах $0 \le A_{13} \le 3.10^{33} - B$.

Требуя, далее, выполнимости неравенств (14), которые представлены в форме (25), находим, вычисляя \overline{x}_3 , \overline{y}_3 согласно (18), что выполнимость неравенств (25) обеспечивается при $A_{13} \approx 1,5 \cdot 10^{33}$ г. Таким образом, определились $B = 1,5 \cdot 10^{33}$ г и область допустимых значений (21) для A_{13} :

$$0 \le A_{13} \le 1,5 \cdot 10^{33} \,\mathrm{r.} \tag{26}$$

Вычислим координаты точек фотолибрации L_4^* , L_5^* , определяемых тремя значениями редуцирующих масс A_{13} : 1) $A_{13}^{(1)} = 0.5 \cdot 10^{33}$ г; 2) $A_{13}^{(2)} = 1.0 \cdot 10^{33}$ г; 3) $A_{13}^{(3)} = 1.5 \cdot 10^{33}$ г, которые принадлежат допустимой области (26). Имеем согласно (18):

1)
$$\overline{x}_3 = -0.39 \cdot 10^{13} \text{ cm}, \ \overline{y}_3 = \mp 0.67 \cdot 10^{13} \text{ cm}; \ 2) \overline{x}_3 = -0.98 \cdot 10^{13} \text{ cm}, \ \overline{y}_3 = \mp 1.68 \cdot 10^{13} \text{ cm}; \ 3) \overline{x}_3 = -1.95 \cdot 10^{13} \text{ cm}, \ \overline{y}_3 = \mp 3.36 \cdot 10^{13}.$$
(27)

Точки (27), обозначенные соответственно буквами $L_4^{*(1)}, L_4^{*(2)}, L_4^{*(3)}$, и симметричные им точки $L_5^{*(1)}, L_5^{*(2)}, L_5^{*(3)}$, нанесены на рис. 4, и через них проходят линии фотолибрации (пунктирные

Рис. 4

линии, близкие к прямым SL_4 и SL_5). Так как система $x^0 Oy^0$ вращается вокруг начала координат O с угловой скоростью ω_0 , то все точки линии фотолибрации описывают окружности с центром в точке O, как и Солнце S, и Юпитер J в неподвижной системе координат xOy. На рис. 4 для системы Солнце–Юпитер расстояние $SO = 10^{-3}SJ = 10^{-3}r_0$, но в целях наглядности мы его значительно увеличили.

Заключение. Проведенное исследование показало, что при учете светового давления лагранжевы треугольные точки либрации L_4 и L_5 не существуют, но существуют треугольные точки фотолибрации L_4^* и L_5^* , положение которых зависит от параметра A_{13} , пропорционального «парусности» пробного тела. Треугольники SJL_4^* и SJL_5^* не являются равносторонними, но длины сторон постоянны. При увеличении A_{13} точки фотолибрации приближаются к звезде S. Имеем линии, точки которых являются точками фотолибрации для пробных тел с разной парусностью.

Подчеркнем, что исследование проведено в линейном приближении (11)–(16) и поэтому законы движения пробного тела A₃ можно рассматривать только на конечном и достаточно малом с точки зрения космологии (космогонии) отрезке времени.

В последующих работах планируется рассмотреть проблему пяти точек фотолибрации в *точ*ной постановке и полученные результаты использовать в вопросах космогонии планетарных систем.

Литература

- 1. Фесенков В. Г. Солнце и Солнечная система: избр. тр. М., 1976. С. 353-366.
- 2. Кононович Э. В., Мороз В. И. Общий курс астрономии. М., 2004.
- 3. Аксенов Е. П. Теория движения искусственных спутников Земли. М., 1977.
- 4. Поляхова Е. Н. Космический полет с солнечным парусом. М., 2011.
- 5. Мартынов Д. Я. Курс общей астрофизики. М., 1971.
- 6. Рябушко А. П., Жур Т. А., Боярина И. П. // Весці НАН Беларусі. Сер. фіз-мат. навук. 2011. № 3. С. 80-89.
- 7. Дубошин Г. Н. Небесная механика. Аналитические и качественные методы. М., 1964.
- 8. Маркеев А. П. Точки либрации в небесной механике и космодинамике. М., 1978.

9. Себехей В. Теория орбит: ограниченная задача трех тел. М., 1978.

10. Рябушко А. П. Движение тел в общей теории относительности. Минск, 1979. Гл. 4.

11. Эльясберг П. Е. Введение в теорию полета искусственных спутников Земли. М., 1965.

- 12. Рябушко А. П., Жур Т. А., Боярина И. П. // Весці НАН Беларусі. Сер. фіз-мат. навук. 2012. № 3. С. 77–83.
- 13. Lagrange J. Essais sur le probleme des trois corps. Paris, 1772.
- 14. Смирнов В. И. Курс высшей математики. М., 1961.
- 15. Понтрягин Л. С. Обыкновенные дифференциальные уравнения. М., 1965.

16. Матвеев Н. М. Методы интегрирования обыкновенных дифференциальных уравнений. М., 1963.

A. P. RYABUSHKO, T. A. ZHUR, I. P. BOYARINA, O. L. ZUBKO, V. I. YURINOK

EXISTENCE OF TRIANGLE POINTS OF LIBRATION IN THE PHOTOGRAVITATION FIELD

Summary

We see that taking into account direct solar pressure lagrangian triangular points of libration L_4 and L_5 do not exist, but for each of the trial body there exist two points of *photolibration* L_4^* and L_5^* which, together with the heavy bodies are the vertices of *scalene* triangles with constant sides. The existence of trial bodies with different «windage» leads to the existence of photolibration lines.