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TO THE QUESTIONS OF SHEMETKOV AND AGRAWAL ABOUT THE
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Abstract. A formation F is called a Baer — Shemetkov formation in a class X of groups if in any finite X-group the inter-
section of all F-maximal subgroups coincides with the F-hypercenter. It is proved that for a non-empty hereditary saturated
formation F there exists the greatest by inclusion hereditary saturated formation BSF such that F is a Baer — Shemetkov
formation in BSF. The connection of this result with the solution of Agrawal’s (1976) and Shemetkov’s (1995) questions is
discussed. For the class U of all supersolvable groups the class BSU is described and the algorithm for its recognition is pre-
sented.
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B. . Mypamko

Tomenvcruil cocyoapcmeennwiil yrusepcumem umenu @panyucka Crkopunsl, [ omens, Pecnybnuka Berapyce

K BOITPOCAM HHEMETKOBA U ATPABAJISI Ob OBOBIIEHUAX
I'NMINEPIHEHTPA KOHEUYHBIX I'PYIIII

Annoranus. @opmanus F HaswsiBaetcs ¢popmanmeii bapa — IllemeTroBa B kiacce rpynn X, ecild B 000N KOHEUHON
X-rpynne nepeceyenue F-makcumanbubix noarpynn cosnaaaet ¢ F-runepuentpom. JlokazaHo, 4To JJ1s HEMYCTON HacieI-
CTBEHHOW HachleHHOH dopmarun F cymecTByeT HanbombIIast O BKIIOYEHUIO HACIEACTBEHHAs! HACHIIEHHAs (Gopmanus
BSF, B xotopoii F sBnsercsa popmanuneit bapa — lllemeTkoBa. YcTaHOBIEHa CBA3b JAHHOTO PE3YJIbTaTa C PEIICHUSMU BOIIPO-
coB Arpasains (1976) u lllemerxosa (1995). lns knacca U Beex cBepxpaspeminMbIx rpynn onucal kiaace BSU u npusenen
AJITOPUTM paclo3HaBaHUA IMMPUHAJJICKHOCTHU I'PYNIILI JaHHOMY KJIaccCy.

KiroueBble cjioBa: KoHeuHas TpyIina, cBepxpaspeumas rpymmna, F-runepreHntp, 00001IeHHbIH THIIEPLUEHTP, Hacle -
CTBEHHAas HachlleHHas popmarus, popmanus bapa — [llemerkosa

Just uurupoBanus. Mypamko, B. . K Bonpocam IllemeTkoBa u ArpaBais 00 0000MICHUSIX THIIEPIEHTPAa KOHECUHBIX
rpynn / B. . Mypamiko // Bec. Han. akax. HaByk benapyci. Cep. ¢i3.-maT. HaByk. — 2024. — T. 60, Ne 4. — C. 271-279. https://
doi.org/10.29235/1561-2430-2024-60-4-271-279

Introduction and the Main Results. All considered here groups are finite. The action of a group on
its chief factors encodes the important information about the structure of this group. By restricting the
action of a group on its chief factors, such important classes of groups as the classes of all nilpotent, su-
persolvable and solvable groups are defined. In the studying of the group’s action on its chief factors and
the classes of groups associated with it, the concepts of the hypercenter and its generalizations play an
important role. Note that the formational generalizations of the hypercenter were developed in the works
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of Baer [1], Huppert [2], Shemetkov [3] and appeared in its final form in [4]. Let F be a class of groups.
Recall [4, p. 127-128] that a chief factor H/K of a group G is called F-central if the semidirect product of
H/K and a group G/C;(H/K) corresponding to the action of G/C;(H/K) on H/K by conjugation belongs
to F. The F-hypercenter Zy(G) of a group G is the greatest normal subgroup of G such that all chief fac-
tors of G below it are F-central.

The classical method for studying the hypercenter is to obtain its characterizations using various
systems of subgroups. Thus, Hall [5] and Baer [6] obtained the hypercenter as the intersection of all
normalizers of Sylow subgroups and maximal nilpotent subgroups, respectively. Shemetkov posed the
following question on Gomel Algebraic seminar in 1995: “For what non-empty (normally) hereditary
(solvably) saturated formations F do the intersection of all F-maximal subgroups coincides with the
F-hypercenter in every group?” This question’s solution for hereditary saturated formations was pre-
sented in [7]. For some families of non-saturated formations this question was solved in [8, 9]. The in-
tersection of all F-maximal subgroups of a solvable group was studied in [10] for a hereditary saturated
formation F.

Definition ([9, Definition 1]). A formation F is called a Baer — Shemetkov formation in a class X
of groups if in any X-group the intersection of all F-maximal subgroups coincides with the F-hypercenter.
If X coincides with the class of all groups, then we say that F is a Baer — Shemetkov formation.

From [7] it follows that the class of all supersolvable groups U is not a Baer — Shemetkov forma-
tion. Nevertheless, in the symmetric group of degree 4 the intersection of all maximal supersolvable
subgroups coincides with the supersolvable hypercenter. It is well known that U is not a Fitting for-
mation in the general but in the class of all groups with the nilpotent derived subgroup it is. Vasil’ev
and Shemetkov [11, 17.38] asked if there exists the greatest by inclusion hereditary saturated formation
in which U is the Fitting formation. In this paper we will consider the analogous question for Baer —
Shemetkov formations. If X is a class of groups, then we use M(X) to denote the class of groups G ¢ X
all whose proper subgroups belong to X. The main result of the paper is

Theorem 1. Let F be a non-empty hereditary saturated formation. There exists the greatest by
inclusion hereditary saturated formation BSF such that F is a Baer — Shemetkov formation in BSF. If
F is the canonical local definition of ¥, then BSF is locally defined by h where h(p) is the class of all
groups whose EoM(F(p))-subgroups belong to F.

From this theorem the main results of [7] directly follow:

Corollary 1 ([7, Theorems A and B]). Let F be hereditary saturated formation with n(F) = &
and F be its canonical local definition. The following statements hold:

(1) F is a Baer — Shemetkov formation iff M (F(p))gF for every prime p.

(2) F is a Baer — Shemetkov formation in the class of all solvable groups S iff M(F(p)) NS cF for
every prime p.

Using the method of arithmetic graphs developed in [12] we can describe the class BSU. Recall that
a Schmidt group is a non-nilpotent group all whose proper subgroups are nilpotent.

Theorem 2. BSU coincides with the class of groups G such that O,(G) contains a normal
Sylow subgroup of every non-supersolvable subgroup H such that n(H)< TE( p(p —1)) and H/O(H) is
a Schmidt group for every p € n(G).

Recall [13] that the generalized center Z,(G) is a subgroup of G generated by all elements x of
a group G such that (x)P = P(x) for every Sylow subgroup P of G. Let (Z;,),(G) = | and (Z;,),,,(G)
be defined by (Z;,)(G) < (Z4,);11(G) and (Z;,);.(C(Zg)AG) = Z;,(GN(Z;,)(G)) for i > 0. The ter-
minal member of the series 1 = (Z,)y(G) < (Z;,),(G) < ... is denoted by Zg,(G). According to [13,
Theorem 2.10, Proposition 2.3] and [14, Chapter 1, Theorem 7.10] Zy(G) < Z¢,(G)< Inty(G) for eve-

ry group G. Argawal [13, p. 19] (see also [14, Chapter 1, p. 22]) asked if Z5,(G)=Inty(G) for every
group G. The negative answer to this question was obtained in [7, 10]. With the help of Theorem 2 we
can show that BSU is the class of groups for which the answer to Argawal’s question is positive.
Corollary 2. IfGis a BSU-group, then Zg,(G)=Inty(G).
In [15] the class of groups all whose Schmidt subgroups are supersolvable was studied. This class
is a hereditary saturated formation that contains interesting and widely studied subformations wU [16]
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and vU [17] of groups all whose Sylow and cyclic primary subgroups respectively are P-subnormal.
The connection of the class BSU with the above mentioned formations is shown in

Corollary 3. Every BSU-group is solvable. If every Schmidt subgroup of a group is supersolv-
able, then it is a BSU-group.

It is natural to ask: given a group G how fast we can check if it is a BSU-group or not? The methods
of computations in groups depend on how the group is presented (by permutations, by matrices and etc.).
The most developed part of the computational group theory is the computational theory of permutation
groups (see [18]). Using its methods, Theorem 2 and the definition of local formation we can find the
effective algorithm to check if a permutation group is a BSU-group.

Theorem 3. Given a permutation group G = (S) of degree n with |S| < n* in polynomial time in n
one can check if G is a BSU-group.

Remark 1.If|S| > n? then using Sims algorithm [18, Parts 4.1 and 4.2] in polynomial time in # and
S| one can find S, with |S,| < n* and G = (S)).

Remark 2. The computational theory of formations is not so developed as the computational
group theory. Its main results are presented in [19-21]. Using the methods of these papers with the help
of Theorem 3 and step (b) of its proof one can construct the algorithm for computing the BSU-residual of
a group. In particular, if a permutation group G = (S) of degree n with |S| < n* is solvable, then the BSU-
residual of G can be computed in polynomial time by [20] or [21, Theorem 7].

Remark 3. The described in the proof of this theorem algorithm was implemented in GAP [22].
The timings in the following cases were obtained using GAP 4.11.0 started with 4 GB of RAM on
Intel(R) Core(TM) 15-8250U CPU @ 1.60GHz 1.80 GHz:

— All 176 groups of order 324 were checked for being BSU-groups in 0.85 seconds.

— All 150 groups of order 900 were checked for being BSU-groups in 0.9 seconds.

— All 1040 groups of order 1200 were checked for being BSU-groups in 5.95 seconds.

— The Dark group (see [23, Chapter X, § 5]) has implementation in GAP in [24] of order 2837 5%
x 7 - 31% = 56034173979596338748931884765625000 was checked for being a BSU-group in 0.2 seconds.

Preliminaries. We use the standard notation and terminology of group classes theory. Recall some
of them: a class of groups is a collection X of groups with the property that if G € X and H = G, then
H € X; E¢Xis the class of groups H such that // has a normal subgroup N with N < ®(H) and H/N € X;
a formation is a class of groups F which is closed under taking epimorphic images (i. e. from G € F and
Nis normal in G it follows that G/N € F) and subdirect products (i. e. from G/N, € F and G/N, € F it fol-
lows that G/(N, N N,) € F); a formation F = EgF is called saturated; a formation F is called hereditary
if from G € F and H < G it follows that H € F. The class NpF:(G |G/0,(G)e F) is a formation for
every formation F and prime p. We use n(G) to denote the set of all prime divisors of |G|.

A function f, which assigns to every prime a formation, is called a formation function. Recall
[23, Chapter IV, Definitions 3.1] that a formation F is called local if

F=(G |G/ Cg(H/K) e f(p) for every pe n(H / K) and every chief factor H / K of G)

for some formation function /. In this case f is called a local definition of F. According to Gashiits —
Lubeseder — Schmid theorem [23, Chapter IV, Theorem 4.6] a formation is non-empty saturated iff it is
local. Recall [23, Chapter IV, Theorem 3.7] that if F is a local formation, then there exists a unique local
definition F of F, such that F'is integrated (i. e., F(p) < F for all prime p) and full (i. e., F(p) = N ,F(p) for
all prime p). Such definition F'is called the canonical local definition of F.

Recall that a Schmidt (p, g)-group is a Schmidt {p, ¢}-group with a normal Sylow p-subgroup. The
N-critical graph I',(G) [12, Definition 1.3] of a group G is a directed graph whose vertices are prime
divisors of |G| and (p, g) is an edge of I',(G) iff G contains a Schmidt (p, g)-subgroup. The N-critical
graph of class of groups X [12, Definition 3.1] is defined by I'y (X) = U, . xI'y.(G). For a graph I" we use
E(T) to denote the set of all its edges.

Proofs of the Main Results. The proof of Theorem 1 is based on the following two lemmas.

Lemma 1. Let F be the canonical local definition of a local formation F. Then the class X,, of all
groups whose EgeM (F ( p)) -subgroups belong to ¥ is a hereditary formation and X ,= N X, for every
prime p.
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Proof. Letp be a prime and X be the class of all groups whose E oM (F( p))—subgroups belong to F.

(a) X is closed under taking quotients.

Let G be an X-group, N be a normal subgroup of G, H/N be an EoM (F ( p))-subgroup of G/N and K
be a minimal supplement to N in H. Then K N N < ®(K) by [23, Chapter A, Theorem 9.2(c)]. Therefore
H/N=KNIN=K/(K " N) € EoM (F(p)). Recall [23, Chapter A, Theorem 9.2(¢)] that (T/R) = O(T)/R
for any group 7T and its normal subgroup R with R < ®(7). It means that K € E¢M (F(p)). From our as-
sumption it follows that K € F. Since F is a formation, H/N = K/(K N N) € F. Thus, G/N € X and hence
X is closed under taking quotients.

(b) X is closed under taking subdirect products.

Let 4 and B be normal subgroups of a group G with 4 N B = 1 such that G/4 and G/B are X-groups
and H be an EqM (F(p)) -subgroup of G. Recall [23, Chapter A, Theorem 9.2(¢)] that ®(T)R/R < ®(T/R)
for any group 7 and its normal subgroup R. Therefore, Q:(H /I (H mA))/ CD(H /I (H mA)) is isomor-
phic to a quotient group of a group from M (F(p))< EeM (F(p)). It means that either O € F(p) c F
or QeM (F ( p)). Since F is a saturated formation, H/(H N A) € F in the first case. In the second
case H/(HNA)e EoM (F(p)). From H(H N A) = HA/A < G/4 € X it follows that H(H N A) € F
by the definition of X. Therefore, H(H m A) € F in both cases. By analogy H/(H m B) € F. Now
H=H/ ((H NAYNH ﬁB))e F. Thus, G € X and, hence, X is closed under taking subdirect products.

(c) X is a hereditary formation.

From (a) and (b) it follows that X is a formation. Let H be a subgroup of an X-group G and K be an
Eq,M(F(p))-subgroup of H. From K < G it follows that K € F. Hence H € X. It means that X is a he-
reditary formation.

@) X=NJX

Assume that X # N X. It means that X < N X. Let G be a minimal order group from N X\ X.
Since X is a hereditary formation, we see that N X is a hereditary formation too. Therefore, all proper
subgroups of G belong to X, G has the unique minimal normal subgroup N, G/N € X and N is a p-group.
Ifall EeM (F ( p))-subgroups of G are proper, then they belong to X and, hence, to F. Therefore, G € X,
the contradiction. It means that G e E¢ M (F ( p)) and G ¢ F.

If N < ®(G), then G/N is either an EpM (F ( p))—group or EqoF(p)-group. In the first case G/N € F
by the definition of X and in the second case G/N € F by E¢F(p) < EgF =F. Since F is saturated, we
see that G € F, the contradiction. Therefore, ®(G) = 1. Hence Ge M (F ( p)). Note that in this case N
has the complement M in G. Now G/N = MN/N = M e F(p). Hence G € N F(p) = F(p) c F, the final
contradiction. Thus, X =N pX. O

Lemma 2. Let H and F be non-empty hereditary saturated formations locally defined by H and F
respectively where F is the canonical local definition of ¥ and H is a full local definition of H such that
H(p) is hereditary for all prime p. The following statements hold:

Oy (F(p))mH(p)g F for every prime p, then F is a Baer — Shemetkov formation in H.

(2) Assume that H is a canonical local definition of H and F is a Baer — Shemetkov formation in H.
Then M (F(p))mH(p)g F for every prime p.

Proof. Note that F(p) is a hereditary formation by [23, Chapter IV, Proposition 3.16] for every
prime p.

(1) Assume that M (F(p))mH(p)g F for every prime p.

Suppose that there exists an H-group G with Intp(G) # Zx(G). Without loss of generality, we may
assume that G is a minimal order group with such property. Note that Zg(H) < Intg(H) for any group H
by [7, Theorem C(h)]. From 1 € F n H it follows that Z (G) < Intg(G) ¢ ().

Let N be a minimal normal subgroup of G with N < Intp(G) and M be an F-maximal subgroup of G. If
N is abelian, then N is a p-group for some prime p. Let | =M, <M, <...<M, = N be a part of chief series
of M. Then M/C,(M/M, ) € F(p). Let C =" C,(M,/M. ,). Now C/C,/(N) is a p-group by [23, Chap-
ter A, Corollary 12.4(a)]. Since F(p) is a formation, M/C € F(p). Thus, M/C\(N) € N F(p) = F(p). If N is
non-abelian, then N is the direct product of minimal normal subgroups M,, i = 1,..., m, of M by [23, Chap-
ter A, Lemma 4.14]. Note that C,,(N) = N2, C,(M,)). Since F(p) is a formation, M/C,,(N) € F(p) for all
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p € ©(N). Hence MC,(N)/Cy(N) = M/C,(N) € F(p) for all p € n(N). Since G € H and H is a local for-
mation, we see that G/C;(N) € H(p) for all p € n(N).

Assume that G/C;(N) ¢ F(p) for some p € n(N). Therefore, G/C;(N) contains a minimal non-F(p)-
subgroup A/C;(N). Note that 4/C4(N) € H(p). By our initial assumption A/C;(N) € F. Hence A/C;(N)
is contained in some F-maximal subgroup B/C;(N) of G/C;(N). From [25, Chapter 1, Lemma 5.7(ii)] it
follows that there exists an F-maximal subgroup C of G such that CC;(N)/C;(N) = B/C;(N). Therefore,
CC,(N)/C;(N) € F(p). Now A/C;(N) € F(p), the contradiction.

Thus, G/C;(N) € F(p) forall p € n(N). It means that N < Z(G) by [25, Chapter 1, Proposition 1.15(1)].
Note that Zg(G)/N = Zg(G/N) by [25, Chapter 1, Theorem 2.6(f)] and Intg(G)/N = Intg(G/N) by [7,
Theorem C(e)]. From the choice of G it follows that Inty(G/N) = Z¢(G/N). Therefore,

Intp(G)/N = Int(G/N) = Z(G/N) = Zz(G)/N.

Thus, Intg(G) = Zg(G), the final contradiction. Hence F is a Baer — Shemetkov formation in H.

(2) Assume that H is the canonical local definition of H and F is a Baer — Shemetkov formation in H.

Note that H(p) is a hereditary formation by [23, Chapter IV, Proposition 3.16] for every prime p and
hence we have no contradiction with the initial assumption of lemma.

Suppose that for some prime p there exists an H(p)-group G ¢ F such that all its proper subgroups
are F(p)-groups. Without loss of generality, we may assume that G is a minimal order group with such
property.

Let N be a minimal normal subgroup of G. Note that G/N € H(p) and all its proper subgroups be-
long to F(p). Hence G/N € F. Since F is a saturated formation, we see that G has the unique minimal
normal subgroup and ®(G) = 1. Hence there exists a maximal subgroup M of G with MN = G. Note that
M € F(p). Therefore, G/IN = MN/N = M/(M " N) € F(p).

Assume that N is a p-group. Then G € N F(p) = F(p) < F, the contradiction. It means that O,(G) = 1.

From [23, Chapter B, Theorem 10.3] it follows that G has a faithful irreducible module V over GF(p).
Let T be the semidirect product of /" and G corresponding to the action of G on V" as a G-module over
GF(p). Now T € N, H(p) = H(p) < H.

Let L be an F-maximal subgroup of 7 From G ¢ F it follows that LV < T If R is a maximal subgroup
of T with V<R, then R/V is isomorphic to a proper subgroup of G. It means that R/V € F(p). Therefore,
R € N,F(p) = F(p) c F. Thus, the sets of all F-maximal subgroup of 7 and of all maximal subgroups
M of T with V< M coincide. Now V < Int(7) = Zg(T). Hence T/C(V) = G € F(p) < F by [25, Chapter
1, Proposition 1.15(1)], the final contradiction. It means that every minimal non-F(p)-group from H(p)
belongs to F for every prime p. O

Proof of Theorem 1. For a prime p let 4(p) be the class of all groups whose EoM (F(p))-
subgroups belong to F. From Lemma 1 it follows that 4(p) = N, (p) is a hereditary formation. Let BSF
be a local formation locally defined by 4. Hence / is a full local definition of BSF. Note that BSF is a he-
reditary saturated formation by [23, Chapter 1V, Proposition 3.14 and Theorem 4.6]. Now F is a Baer —
Shemetkov formation in BSF by (1) of Lemma 2. Assume that K is a non-empty hereditary saturated
formation such that F is a Baer — Shemetkov formation in K. Let K be the canonical local definition
of K. Then every minimal non-F{(p)-group from K(p) belongs to F for every prime p by (2) of Lemma 2.
Since K(p) is a formation and F is saturated, every E oM (F (p))-group from K(p) belongs to F for every
prime p. Note that K(p) is a hereditary formation for all prime p. Hence every EgpM (F ( p))-subgroup
from a K(p)-group belongs to F. It means that K(p) < 4(p) for all prime p. Thus, K < BSF. It means that
BSF is the greatest by inclusion hereditary saturated formation such that F is a Baer — Shemetkov for-
mation in BSF. O

Proof of Theorem 2. Recall that A(rn) denotes the class of all abelian groups of exponent,
dividing n, and the canonical local definition of U is F where F(p) = N, A(p — 1). Let p be a prime and
GeM (N pA(p —1)). Since U is a saturated formation, if G € U, then E¢(G) < U. From Theorem 1 it
follows that BSU is locally defined by /, where A(p) is the class of all groups whose EgoM (F ( p))-sub-
groups belong to U. Therefore, to describe the local definition of BSU we need only to consider non-su-
persolvable G.

Let p € n(G). Assume that G is not a Schmidt group. Then I',.(G) is the join of I'y,(//) where H runs
through all proper subgroups of G. From H € N,A(p — 1) it follows that any edge of T'y.(/) can start
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only from p. It means that I',(G) has no cycles. From [12, Theorem 6.2(b) and its proof] it follows that
G is a Sylow tower group and has a normal Sylow p-subgroup P. By Schur — Zassenhaus theorem P has
a complement 7'in G. From 7'< G it follows that 7€ A(p — 1). Therefore, G € N,A(p — 1), a contradiction.

Thus, if non-supersolvable Ge M (N pA(p —1)) and p € n(G), then G is a Schmidt {p, ¢}-group.
Note that in this case Z, € N,A(p — 1). Hence ¢ € n(p — 1). If G has a normal Sylow p-subgroup, then
G is supersolvable, a contradiction. Thus, G is a Schmidt (g, p)-group for some g € n(p — 1). From the
other hand a Schmidt (g, p)-group with ¢ € n(p — 1) and the trivial Frattini subgroup does not belong to
N,A(p — 1) but all its proper subgroups (abelian groups of exponent 1, p or g) belong to N, A(p — 1).

Let p ¢ n(G). Then Ge M (A( p —1)). If the exponent of G does not divide p — 1, then G is a cyclic
primary group and, hence, supersolvable, a contradiction. Thus, G is a Miller — Moreno group. Then G
is either a primary group or a Schmidt group. Since G is not supersolvable, we see that G is a Schmidt
(7, ¢)-group for some r,q € n(p — 1) with ¢ ¢ n(r— 1).

Therefore, every non-supersolvable group from M ( N,A(p 71)) is a Schmidt group. From the other
hand for every r,ge n(p(p —1)) with ¢ ¢ n(r — 1) a Schmidt (, g)-group with the trivial Frattini sub-
group belongs to M (N PA(p —1)), Thus, EeM (N »A(p —1)) contains all non-supersolvable Schmidt
n(p(p —1))-groups.

Let g(p)=(G | (r,q)2 E(T nc(G)) for every r,gen(p(p -1)) with g¢ n(r -1)) and h(p) be the
class of all groups whose EqoM (N »A(p 71))—subgr0ups belong to U. According to [12, Theorem 3.5(2)]
g(p) is a hereditary formation and every minimal non-g(p)-group is a Schmidt (r, g)-group for some
(r.9)2 E(T . (g(p))).

Assume that g(p) \ h(p) # . Let G be a minimal order group from g(p) \ A(p). Since A(p) and g(p)
are hereditary formations, Ge M (h( p)). From the definition of 4(p) it follows that G is a non-super-
solvable group from EqgM (N »A(p —1)). It means that G/®(G) is a Schmidt (r, g)-group for some r,
ge n( p(p-1)) with ¢ & n(r — 1). Thus, G ¢ g(p) by the definition of g(p), a contradiction. Thus,
g(p) < h(p) for every prime p.

Assume that (p) \ g(p) # . Let G be a minimal order group from 4(p) \ g(p). Since h(p) and g(p) are
hereditary formations, Ge M ( g( p)). Hence G is a Schmidt (r, ¢)-group for some (r,q)¢ E (F Ne ( g( p))).
It means that /4(p) contains a Schmidt (7, ¢)-group with r, g€ Tt( p(p —1)), q ¢ n(r — 1) and the trivial
Frattini subgroup. Note that this group is non-supersolvable and belongs to M (N »A(p —1)), a con-
tradiction with the definition of 4(p). Hence h(p) < g(p) for every prime p. Thus, g(p) = h(p) for every
prime p.

Since BSU is locally defined by its full definition g, a group G € BSU iff G/O,(G) € g(p) for all
p € n(G). Let N be a normal subgroup of G, H/N be a Schmidt group of G/N and K be a minimal sup-
plement to N in H. Then K N N < ®(K) by [23, Chapter A, Theorem 9.2(c)]. From H/N = KAK N N)
it follows that there exists a subgroup K of G such that K/®(K) is a Schmidt group and KN/N = H/N.
Therefore, G/N does not contain Schmidt (r, ¢)-subgroups iff N contains the nilpotent residual of every
subgroup K such that K/®(K) is a Schmidt (7, ¢)-group. Since the class of all -closed groups is satura-
ted, such subgroups K are r-closed. Note that the nilpotent residual of K/®(K) is its unique minimal nor-
mal r-subgroup R/®(K). Hence from [23, Chapter A, Theorem 9.13] it follows that every K-composition
series of the Sylow r-subgroup of K (starting from 1) must have as the final factor a factor K-isomorphic
to R/®(K). Thus, the nilpotent residual of K coincides with its normal Sylow r-subgroup. Therefore,
G/0,(G) € g(p) iff O,(G) contains a normal Sylow subgroup of every non-supersolvable subgroup H of
G such that n(H)c TE( p(p —1)) and H/®(H) is a Schmidt subgroup. O

Proof of Corollary 3. Assume that BSU contains a non-solvable group. Since BSU is a he-
reditary formation, we see that it contains a simple non-abelian group G. If the lengths of every cycle
of I',.(G) which contains 2 is greater than 3, then G is solvable by [12, Theorem 6.2(a)], the contradic-
tion. Hence some cycle of I'y.(G) contains 2, i. e. (2,q9)e E (F Ne (G)). It means that ¢ € n(G) and G =
= G/0,(G) € h(g) = g(g) (see the proof of Theorem 2). Note that 2,g € n(g(g —1)) and a Schmidt (2, ¢)-
group is non-supersolvable. Thus, (2,9)¢ E (F Ne (G)), the contradiction. It means that every BSU-group
is solvable.
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If every Schmidt subgroup of G is supersolvable, then from Theorem 2 it directly follows that G is
a BSU-group. O

We need the following results in the proof of Theorem 3.

Lemma 3. Let G = PQ where P is a Sylow p-subgroup and Q is a Sylow g-subgroup of G and F be
a formation of all p-closed groups. Then G* is a normal closure in G of a Sylow g-subgroup of [P, Q).

Proof. Let N be a normal subgroup of G such that G/N is p-closed. Then PN/N is a normal Sylow
p-subgroup of G/N. Hence [P, Q]N/N < PN/N. Therefore, N contains a Sylow g-subgroup of [P, O] and,
hence, its normal closure in G.

Assume now that N is a normal closure in G of a Sylow g-subgroup of [P, Q]. Hence N — G*. Note
that P[P, Q] is a normal subgroup of G by [23, Chapter A, Lemma 7.4(h)], N < P[P, Q] and P[P, Q]/N
is a Sylow p-subgroup of G/N. Hence P[P, Q]/N is a normal Sylow p-subgroup of G/N. Thus, N= G*. O

Lemma 4. Given a group G =(S) < S, with |S| < n* each of the following constructions can be
carried out in polynomial time:

(1) [26, Main Theorem] given p € n(G), find a Sylow p-subgroup P of G;

(2) [18, p. 49, (g)(1)] given T < G, find the normal closure (1%;

(3) [26, Theorem A.2] if G is solvable, given 1 < n(G), find a Hall n-subgroup H of G;

4) [18, p. 49, (g)(ii1)] test G for solvability;

(5) [18, p. 49, (k)(i1)] find a chief series for G;

(6) [18, p. 49, (¢)] find |G|.

Proof of Theorem 3. In this section we will write all algorithms in the notation of computer
algebra system GAP [22]. The correctness of these algorithms does not depend on the group’s presenta-
tion. Nevertheless, for at least permutation groups (of degree #) they work in polynomial time in 7.

(a) The p-closed residual of a {p, q}-group G < S, can be computed in polynomial time.

According to Lemma 4(1) a Sylow p-subgroup P = (X) and a Sylow g-subgroup Q = (¥) of G can
be computed in polynomial time. Note that [P, O] = ([x, y] | x € X, y € V)" By Lemma 4(2) we can
compute [P, O] in polynomial time. Hence its Sylow g-subgroup R can be computed in polynomial time
by Lemma 4(1). Thus, R can be computed in polynomial time by Lemma 4(2). According to Lemma 3
it is the required residual.

ResPclosed:=function(G, p, q)

return NormalClosure(G, SylowSubgroup(CommutatorSubgroup(SylowSubgroup(G, p), SylowSub-
group(G, q)), q));

end;;

(b) Given a solvable group G < S, and a set of primes n < n(G) the residual for a class of groups all
whose Schmidt m-subgroups are supersolvable can be computed in polynomial time.

Note that a Schmidt (p, g)-group is supersolvable iff ¢ € n(p — 1). If every Schmidt (p, ¢g)-subgroup
with g ¢ n(p — 1) of a solvable group is supersolvable (i. e. there no such subgroups), then (g, p) is the
only possible edge of the N-critical graph of every Hall {p, ¢}-subgroup. It means that every Hall {p, ¢}-
subgroup of a group is g-closed by [12, Theorem 6.2(2)]. From the other hand, if every Hall {p, ¢}-
subgroup of a solvable group with g ¢ n(p — 1) is g-closed, then it has no Schmidt (p, g)-subgroups,
1. e. every its Schmidt (p, g)-subgroup is supersolvable. It means that the required residual is the normal
closure of g-closed residuals of every Hall {p, g}-subgroup with {p, ¢} c wand g ¢ n(p — 1).

Since G is a permutation group of degree n, p < n for every prime divisor p of |G|. Note that a Hall
{p, q}-subgroup of G and its p-closed residual can be found in polynomial time for every {p, ¢} < n(G)
by Lemma 4(3) and (a). Thus, for every {p, g} < © we can compute p-closed or/and g-closed residuals of
a Hall {p, q}-subgroup of G in polynomial time. Note that the normal closure of computed residuals can
be found in polynomial time by Lemma 4(2).

ResSupSchPi:=function(G, pi)

local a, b, S;

S=(1;

for a in pi do

for b in pi do
if (a<>b) and (not a in PrimeDivisors(b-1)) then
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Append(S,GeneratorsOfGroup(ResPclosed(HallSubgroup(G, [a, b]),a,b)));
fi;
od;
od;

return NormalClosure(G, Subgroup(G, S));

end;;

(c) Given G < S, in polynomial time one can check if G is a BSU-group.

According to Corollary 2.2, if G is not solvable, then it is not a BSU-group. The check for solvabil-
ity can be done in polynomial time by Lemma 4(4). Now we can compute chief series of G in poly-
nomial time by Lemma 4(5). According to (b) we can compute G5’ in polynomial time. Note that
G/C(HIK) € g(p) iff [H, G*P] c K iff |([H, G*"], K)| = |K|. Hence by analogy with (a) we can check
this condition in polynomial time by Lemma 4(6). Now (c) follows from the fact that every chain of sub-
groups in S, (and hence in G) has at most 2z terms [27].

IsBSU:=function(G)

local a.l, S, p, p0, pl;

if not IsSolvable(G) then return false; fi;

S:=ChiefSeries(G); ##S[1] = G

l:=Length(S);

p0:=PrimeDivisors(Order(G));

for ain [1..(I-1)] do

p:=PrimeDivisors(Order(S[a])/Order(S[a+1]))[1];

pl:=[1; Append(pl, PrimeDivisors(p-1)); Add(pl, p); pl:=Set(pl); IntersectSet(pl,p0);

if not IsSubgroup(S[a+1], CommutatorSubgroup(S[a], ResSupSchPi (G, pl))) then
return false;

fi;
od;
return true;
end;; O
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