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Abstract. Using combinatorial approaches we obtain asymptotically exact bounds on isoperimetric numbers and gener-
alized edge-isoperimetric numbers of bubble-sort Cayley graphs. We show that the generalized edge-isoperimetric constants
of the bubble-sort Cayley graph BS, are equal to ®(n) unless this constant is the Cheeger constant, otherwise we obtain
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with arbitrarily small € > 0 for all sufficiently large n.

M. M. BacbkoBcekuii, A. O. 3agopoxxHiok, A. B. l'onumap

benopycckuii eocyoapcmeennwviii ynugepcumem, Munck, Pecnyonuxa beaapyco

N3ONEPUMETPUYECKHU MTPO®NUJIb 1 PESUCTUBHBIE TUAMETPBI TPA®OB K23JIN
HA CHMMETPHYECKOM IT'PYIIIE C TOPOX JAIOIIMMHA MHOXKECTBAMM KOKCETEPA

AnHoTanus. C HCIOIb30BaHUEM KOMOMHATOPHBIX METOAOB IOJYYCHbl ACHMITOTHYECKH TOYHbBIC OLCHKH Ha H30Ie-
pumeTpuyeckue dncia U 0000IeHHbIe pebepHO-u30MepUMeTpHIecKne drciaa rpadoB Kamum my3sIppbKOBOH COPTHPOBKH.
Iloka3zano, uyTo 0600meHHbIE pebepHO-N30MepuMeTprudeckue ynciaa rpada Konm my3eippkoBOi cOpTHPOBKH BS, MMEOT

. 1
aCHMIITOTUKY O(n), 32 HCKIIOYCHUEM ClTydas TOCTOSHHON Yurepa, KOTOpasi, B CBOIO 04epeb, UMEET aCHMITOTUKY @(— .
n

OTH pe3ynbTaThl IPUMEHSIOTCS IS BEIBOAA OOJIee TOYHBIX OIICHOK Ha PE3UCTUBHBIC PACCTOSHHUS B TAKUX rpadax, a UMECHHO
11+5J5+¢
— " s

2
JIOKa3aHO, YTO PE3UCTUBHOE PACCTOSIHUE MEXK Ly JIFOOBIMU JABYyMsI BEPIIMHAMH BS, HaX0IUTCA MEXKAY — H
n n

CKOJIb YTOTHO MaJoro € > 0 I BCeX JOCTATOYHO OOJBIINX 71.

KiroueBble cjioBa: pe3ucTHBHOE paccTosHue, rpad Kanu my3sIpbKoBOi COPTHPOBKH, H30IEPUMETPUIESCKHIE HEPABEH-
CTBa, nocTossHHas Yurepa

Jas uutupoBanus. Bacekosckuii, M. M. M3onepumerpruyecknii mpoduib n pesnucTuBHbIe quaMeTpsl rpados Kann
Ha CHMMETPHYECKOHW TI'pymIe ¢ MOpokJaromMu MHOkecTBaMu Kokcerepa / M. M. BacwkoBckuii, A. O. 3a10p0XHIOK,
A. B. Tonumap // Becui HaupisiHanbHait akagdmii HaByk benapyci. Cepsist ¢i3ika-maTaoMaThI9HbIX HaByK. — 2025. — T. 61,
Ne 2. — C. 106-117. https://doi.org/10.29235/1561-2430-2025-61-2-106-117

Introduction. Discrete isoperimetric inequalities (DII) are widely used in many fields of mathe-
matics and computer science. Such inequalities play crucial role in the analysis of expansion properties,
graph connectivity in terms of resistance distance, percolation on graphs, some geometrical questions
related to graph curvature [1-3]. Although there is a couple of generic DII, such as the Cheeger, Buser-
type inequalities [4, 3], many important classes of graphs including Cayley graphs on symmetric groups
with Coxeter generators are not covered properly by those. Sometimes we need to investigate deeper
combinatorial structure of graphs to get exact isoperimetric bounds.

© Vaskouski M. M., Zadarazhniuk H. A., Hanimar A. U., 2025



Becui Hanpisinanpnait akagomii HaByk benapyci. Cepbist dizika-maramareiaabix HaByk. 2025. T. 61, Ne 2. C. 106-117 107

Bubble-sort Cayley graphs have a lot of applications for building inter-connection networks and ana-
lyzing some sorting algorithms [5—8].

One of the metrics which naturally arise when dealing with networks and signal transmission is
hitting time between two vertices, that is the expected time it takes a random walk to travel from one of
them to the other. The normalized version of this metric is known as a resistance distance. It is a con-
venient tool to encode the cluster structure of a network in many fields of computer science [9, 7], che-
mometrics and bioinformatics [10], mathematical physics [11]. This metric was introduced in paper [12]
based on the Kirchhoff and Ohm laws in the corresponding electrical circuit. As opposed to the geodesic
(shortest path) distance, the resistance distance between two vertices takes into account all paths be-
tween them.

The goal of this paper is to find exact asymptotic estimates for isoperimetric numbers of the bub-
ble-sort Cayley graphs. Also we are interested in refine known bounds for the resistance distance in
the bubble-sort Cayley graphs.

The main part of the paper has the following structure. In the third and the fourth sections we obtain
asymptotically exact estimates on isoperimetric and generalized edge-isoperimetric numbers in the bub-
ble-sort Cayley graphs. There are two core ideas which allow us to achieve this result: the first one is that
any bubble-sort Cayley graph is a partial cube (can be isometrically embedded into some hypercube),
the second one is to modify the bubble-sort Cayley graph a bit to make it edge-transitive. In the fifth
section we use a modification of the flow method to connect concepts of generalized edge-isoperimetric
numbers and resistance distance in generic graphs. Finally, with the help of the previous section’s results
we obtain refined estimates on the resistance distance in the bubble-sort Cayley graphs. In the sixth sec-
tion we demonstrate how the established connection between generalized edge-isoperimetric numbers
and resistance distance could give an alternative explanation of major difference between electrical cir-
cuits on two dimensional and higher dimensional grids.

Preliminaries. Let’s remind key objects we will use further.

For a finite group I let 7 be a self-conjugate (VT A ler ) generating set without the identical

element. The Cayley graph of I generated by T'is an undirected graph Cay(I,7), where elements of " are

vertices and two vertices g,, g, are adjacent if and only if gogi leT.
For a finite graph G = (VE) let X be a non-empty subset of V. The set of edges
X ={(u,v)e E:ue X,velV \ X} is called the edge boundary of the set X. Throughout the paper we

will assume that 0 <] X |< % considering edge boundaries.

Recall that graph G = (V,E) is called edge-transitive if for any two edges e, e, € E there exists an
automorphism of G that maps e, to e,. For edge-transitive graphs the estimate below follows directly
from Theorem 3.5 proved in [13].

Proposition 1. Let G = (V,E) be a finite connected edge-transitive graph, X c V and let r be

the harmonic mean of its minimum and maximum degrees. Then the following isoperimetric inequality
holds:

X |, r
| X|  2diam(G)’

Let’s denote by BS, the bubble-sort Cayley graph Cay(S,,T,), where 7, is the Coxeter generating

set of a symmetric group S, (7, ={(i,i+1)|i=1,n—1}). Also we define the modified bubble-sort Cayley
graph BS, = Cay(Snj"n), where T, = T, u{(l,n)}.
Recall that a subgraph G of the graph H is said to be isometric if the distance between every pair of
vertices in G is the same as the respective distance in H.
Proposition 2 [14]. The bubble-sort Cayley graph BS, is an isometric subgraph of the hyper-
cube Qun-1)/2-
Proposition 3 [I5]. Let S be a non-empty vertex subset of a hypercube Q,, (S,E) be the induced
S|-1
subgraph of Q,. Then | Eg |< HZ h(i), where h(i) denotes the number of 1's in the binary representation of i.
i=1
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Definition 1. Let G,=(V,,E,) be a sequence of connected graphs with |V, | > as n — oo,
We shall say that family (G,) admits (o,3)-isoperimetric signature if the following conditions held:

—a=sup{deR|3c; >0:|dX [>c; | X|° VX <V, VneN};

— B=sup{0eR|Icy; >0:|0X [ cy | X |¢ 10ge | X | VX cV, VhneN}.

Remark 1. To compare expansion properties of two infinite families of graphs (G,) and (G,) with
(a,p) and (o,p")-isoperimetric signature respectively, it is convenient to define the order for isoperimet-
ric signature in the following way: (o) = (a’,f) if there a > o’ holds and equality o = o' implies that
B > P In this case we will write (G,) = (G,). Particularly, if (G,) forms a family of edge-expanders [1]
and admits (a,f)-isoperimetric signature, then (a.,f3) >~ (1,0).

Example 1. Let G, be a sequence of connected graphs with |V, | > as n — oo. It’s clear that
the best possible (a,B)-isoperimetric signature is for the family of complete graphs K, : (a,) =(2,0),
the worst case is the family of paths P, : (a.,3) = (0,0).

For the family of hypercubes Q, =(V,,E,) we have |0X || X |VX cV, [16]. Also we can find
subsets X, cV, such that |0X, |=| X, | and | X, | > as n — oo (for example, we can choose X, in
such way that X, induces the hypercube O, ). That is why (a,p) =(1,0).

Let BY = V., E,), n=1, be the sequence of graphs of d-dimensional rectangular grid of a size n in
one dimension. According to the Bollobas and Leader results [17], for any X < V,, there holds

|8X|2min{|X|H/d rnd/H:r=1,2,...,n}. (1)

It follows from (1) that
[ox 2@ x . @)

For any n we consider a subset X, of V/, that induces B[‘i/z]- Itisclearthat | 0X, |= nt, | X, |=n n/2).
Thus, the bound (2) is sharp, and (o,)=(1-1/d,0).

Definition 2.Let G = (V,E) be a finite graph and 6 € (0,1]. We call the generalized edge-isope-
rimetric number the following value

e (5)=in 55

Vi

where minimum is taken over all subsets X cV with 0< X< - Constant /(1) is known as

isoperimetric number (or Cheeger constant) and will be denoted by /.

Bounds on the Cheeger constant in bubble-sort Cayley graphs.

Remark 2. It is possible to obtain estimates of the isoperimetric number from the following
Cheeger inequality

(e}
EShE < 2dG,

where d is the degree of a graph (assuming its regularity), ¢ is the spectral gap (the smallest positive
eigenvalue of the Laplacian matrix of a graph).

For some graphs (hypercubes, for example) this approach gives fine results. But for the bubble-sort
Cayley graphs BS, we obtain really poor estimates with this approach:

(

—<hg< 3
for some positive constants ¢, c,.
Unfortunately, the bubble-sort Cayley graphs have negative Ricci curvature unless » < 3 [18]. This
does not allow to use a discrete Buser-type inequality [3] to derive better estimates for /1 comparing to (3).
Now we will obtain much better estimates on / in the bubble-sort Cayley graphs by using a combi-
natorial approach instead of spectral arguments.
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Theorem 1. For any n > 3 the isoperimetric number hy of the bubble-sort Cayley graph BS, sa-
tisfies the inequalities

2l

3n n
Proof. To prove the upper estimate on % it is enough to provide an example of the set X =S,

. 2 . . o .
with |0X |/| X |=— (here and further we consider subsets of vertices X satisfying normal constraints

n
coming from definition of isoperimetric number, i.e. 0 < X < S, |/2). Let X be the set of all permutations
c €S8}, such that 071(1) < 071(2). It’s obvious that | X |=n!/ 2. Now let’s see what edges between X and
S, VX are possible. To go out of X, an edge (o,r) should make 1 occur after 2:67"! (1)<G_1(2) and

T71(1)>’571(2). And since in the generating set we only have transpositions swapping consecutive
elements, these 1 and 2 should be neighbors swapped by a transposition. There are (n — 1)! such vertices
in X, and for each of them only one edge swapping 1 and 2 is possible, so we have |0X |=(n—1)!. Then
(n-1)! 2
EST
Let’s prove the lower bound on /. The bubble-sort graph is not edge-transitive. However, if we
add the transposition (1,7) to the generating set, the resulting Cayley graph which is the modified bub-

ble-sort Cayley graph BS, will be edge-transitive. It contains BS, as a subgraph and their vertex sets
are the same. We are going to prove the following lemma which states that the sizes of the edge-bound-
aries of the same vertex subset in BS), and in BS » differ no more than by a constant factor.

Lemma. Let X © S, be a subset of vertices of BS, (as well as ES”) and let 0X and 0'X denote its
edge-boundary in BS, and BS, respectively. Then | 0X [ 0'X | /3.

Proof. Denote s; =(i,i+1), ie{l,...,n—1}, and s, =(L,n). Any edge (o,s;0), oS, will be
called an s,-type edge.

To obtain 0X from 0'X, we must delete from it all s,-type edges.

Both BS, and BS,, are connected graphs, so for any pair of vertices u, v, connected by an s,-type
edge there must exist a path between them containing no such edges. There may even exist several such
paths which do not intersect, but for our proof it will be enough to consider the path of edges of types s,

83y wees S5 Sp_i> Sy_as - 52, 81, Which we will denote by p(u,v). Since 0'X is a cut-set in the graph BS,, any
path in BS, between ue X and veS,\X contains an edge from 0'X. So, if these vertices are con-
nected by an s,-type edge belonging to 0'X, there must also exist an edge from p(u,v) that belongs to 0'X.

It may be possible that for several pairs of vertices u;,v; = s,u; their respective paths p(u,,v,) all share
a common edge, and this is the edge that belongs to 0'X. Let us show that three paths p(u;,v)), i = 1,2,3,
corresponding to different pairs (u,,v;) cannot have a common edge.

Let’s suppose that several paths p(u;,v,) have a common edge e of an s-type. Then if 1 <j <n -1
the other edges from these paths which can be incident to this one can be of just two types: s; | and s;,;.
Note that all edges from one vertex are of different types, so there can be no more than two such edges
incident to each endpoint of e, and thus, just no more than two different paths. If e is of an s,-type, one
of its endpoints has to be u; or v,. But, because there’s only one edge of the s ,-type from each vertex, this
would mean that the edges of the s,-type connecting vertices u; to vertices v, are in fact the same edge,
and all those pairs of vertices are the same pair. Finally, if e is of an s, |-type, only edges of an s, ,-type
can be incident to it, and so there can be no more than one path p(u,,v,) containing e.

Thus, in 0'X one edge of the type different from s, corresponds to at most two edges of the s,-type,
meaning | 0X [>|0'X |/3. The lemma is proved.

Now we can complete the proof of the theorem.
2
n

Since a diameter of the graph BS, is { 2 } [8], Proposition 1 implies that

ox|, 2

4
| X n @
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for any subset X of S,. Taking into account the lemma above and inequality (4), we obtain the required
lower estimate on /. The theorem is proved.
Asymptotic estimates of generalized edge-isoperimetric constants. According to Theorem 1,

for the family of bubble-sort Cayley graphs BS, we have hp = @(lj Our next step is to investigate
n

the asymptotics of generalized edge-isoperimetric constants /4z(3), &< (0,1), in the bubble-sort Cayley
graphs.

Let G be a Cayley graph of a finite group. The growth function V(G,p) of the Cayley graph G is
the number of vertices in the ball B(p) of radius p surrounding the identical element with respect to geo-
desic (shortest path) distance. Define the function ¢(G,k) as follows:

o(G,k)=inf{p:V(G,p) > k}.

Recall the following Coulhon — Saloff — Coste inequality in the Cayley graphs [2]:
[0y X | S 1
X 29(G,2| X))

for any vertex subset X of G, where 0,X denotes the exterior vertex boundary of X.

Since diam(BS,,) = n(nz— D [19], the ball B(p) contains BS), for k = [\/E ] By the Stirling formula we get

V(BS,.p)2[Jp |1z Cet?

for some C > 0 that does not depend on 7 and p.
Therefore,

O(BS,. k) < inf{p .CelP > k} _ 1og2§.

Taking into account the Coulhon — Saloff — Coste inequality, we get the following estimate for
the edge boundaries in BS,:

ox pe— 2L 5)
log” | X|

for all vertex subsets X of BS, and some positive constant ¢ that does not depend on 7.

Since the graphs BS, are bipartite and do not contain subgraphs K 5 [19], it follows [20] from Turan
results on a maximal number of edges in bipartite graphs containing no complete bipartite subgraphs K, ,
[21, 22] that

X [z cin| X |2 ©)
for all vertex subsets X of BS, with | X |= o(n?) and some positive constant ¢,, that does not depend on 7.

Gathering together (5) and (6), we obtain that for any 6 (0,%) for the graphs BS, we have

hi (8)=0(n). (7)
For the accurate analysis of resistance distance asymptotic it is important to extend the result (7) to
some 0 > > To make this extension possible we are going to derive better isoperimetric inequalities for

subexponential volumes in BS, comparing to (5) and (6).
Theorem 2. Let n > 3. For any vertex subset X of the bubble-sort Cayley graph BS, and any
a €(0,1) there holds the inequality

(I—an—1)x, if x<2%",
|0X [> f (| X [), where f;"(x)=1 2

2

n

if x>2%"
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Proof. If | X [>2%", the needed estimate follows directly from Theorem 1. So, it remains to con-
sider | X |<2%". Let E be the edge set in the subgraph of BS, induced by vertices in X. According to
Proposition 2, BS, is a subgraph of the hypercube Q,(,-1)2. Let’s denote by (X E x) the subgraph of
On(n-1y/2 induced by vertices in X.

Let’s apply Proposition 2. Then we have

X X|log, | X
ExlEx iy, h< X021 X]

2 5 ®

With the help of estimate (8) we obtain the following bound for the cardinality of edge boundary in
the bubble-sort Cayley graph:

|0X [=(n=1)| X [-2| Ex 2| X [(n—1-logz | X ) 2] X [((1-a)n—1).

The theorem is proved.
Remark 3.It’s clear that Theorem 2 provides asymptotically best possible isoperimetric estimate

(up to constant multiplier) for subsets X when llog 2 | X| is separated above from 1. Also Theorem 1
n

. : o . _ n!
implies that the function f,* gives an exact estimate (up to constant multiplier) at x = >

Remark 4. Note that sharp isoperimetric inequalities for the transposition Cayley graphs T8,
(generating set is the set of all transpositions (i,j) of S,) were proved in paper [23].

Now we are ready to prove that 4;(8) = ©(n) in BS, for any 6 € (0,1).

Theorem 3. Forany d€(0,1) and € > 0 there exists ny(3,€) such that for any n=no(9,€) the ge-
neralized edge-isoperimetric numbers hy(3) of the bubble-sort Cayley graph BS, satisfy the inequalities

(I-en<hp@)<n-l.

Proof. The upper bound is trivial (it is enough to consider any one-element subset of S,).
Let’s take arbitrary § € (0,1) and e € (0,1). Let X = §,,, 0<| X |<] S, | /2. It follows from Theorem 2 that

1-8
oX] 21X
|X° 3n

assuming that | X |1_52 1.5n2. Let’s consider subsets X with | X |1_SS 1.5n°.
One can find n((3,¢) such that for any n > n(9,¢) there holds

| X <29,

where 0 <o <e.
Then Theorem 2 implies

|0X |

|X|5_((l ayn—1)| X [0 (1-e)n,

that is true for all sufficiently large values of n. The theorem is proved.
Remark 5. Benjamini and Kozma [24] conjectured that /;(d) is separated from 0 below over all

finite connected vertex transitive graphs G with a diameter less than |G |178 . Theorem 3 states that we
have even /;(5) = ®(n) for the family of bubble-sort Cayley graphs.

Let’s go back to isoperimetric inequality (5) and try to understand whether we can improve ex-
ponent 2 in logarithm. The following theorem shows that we can replace 2 by 1, and this exponent is
the best possible.

Theorem 4. The family of the bubble-sort Cayley graphs BS,, n >3, admits (1, —1)-isoperimetric
signature.

Proof. It follows from Theorem 1 that there exists ¢ > 0 such that for all # > 3 and any X = §,,,
0< X< S, |/2 we have
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jax e Xl )
log| X|

Indeed, if | X [<2*" for some a € (0,1) that does not depend on 7, inequality (9) clearly holds.
If | X [>2%", we get
20 |X|

|8X|2£|X|2 .
3n 3 logsy | X|

As it was shown in the proof of Theorem 1, there exists X < §, such that | X |=n!/2 and

lox|_2 i

X[ n
Let the family BS, admits (a,f)-isoperimetric signature. It follows from (9) and (10) that o = 1. It fol-
lows from (9) that f > —1. Taking into account (10) and the Stirling formula we obtain that § <—1. Hence,
(0.,p) = (1,-1). The theorem is proved.
Remark 6. We conjecture that a stronger isoperimetric inequality comparing to (9) must be valid
for the bubble-sort Cayley graphs:

| X |loglog| X |

|0X 2 ¢
log| X |

vVXcS, Vn=3.

Example 2.Itis interesting to find an isoperimetric signature for other widely used families of
Cayley graphs on symmetric groups, for example, to the family of star Cayley graphs SS, (generating set
is of transpositions (1,2), (1,3), ..., (1,n)) and the family of transposition Cayley graphs 7,

Since the spectral gap is equal to 1 for any SS), [25], the Cheeger inequality implies that | 0X || X | for

!
any vertices subset X. Let n be even. One can find a set X such that |0X || X | and | X |= % (we can push

into X all permutations ¢ such that o(1) < g). Hence, the family SS, has (1,0)-isoperimetric signature.

It is known that spectral gap of 7S, is equal to n [26], so, the Cheeger inequality implies
that |0X [>n| X | for any X < S,. Let’s take X to be the set of all permutations €S, such that
2n—1

3
Theorem 4, application of the Stirling formula allows one to show that the family 7, has (1,1)-iso-
perimetric signature.

Finally, in terms of Remark 1 we can make the following comparison:

(K) = (TS,) = (SS4) = (Qn) = (BSy) = (B ) = (By).

!
o'(1) <o 7(2). For this subset X we have |X|=% and |0X |= | X'|. Similarly to the proof of

Remark 7. We conjecture that for any (o,p) such that (2,0) > (o) >~ (0,0) one can build a se-
quence of connected graphs G, = (V,,E,) with |V}, | > co that admits (a,f)-isoperimetric signature.

Application to the explicit estimate of resistance distance. In this section we apply the results
obtained in the previous section to refine known bounds for the resistance distance in graphs. Recall that
the resistance distance R, , between two vertices u and v in a finite connected graph G = (V,E) can be de-

Cu,v
9

fined as where C, , is commute time between u and v (which is the expected length of a random

walk from u to v and back) [27]. Also there is an equivalent definition of the resistance distance based on
electrical circuit theory [12, 28].
Theorem 5. Let G = (V,E) be a finite connected graph, d be the maximal vertex degree in it.

Then for any & e (%,1} such that hy(d) > 1 and any u, veV there hold the inequalities

2 <R <M3d

d+1" """ T k)
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where

2 1y 206-1 5
My =2inf]- 20 lz)syl a2 he®) ot
(a=D=" -1) v°-1 he(8)—1

Proof. Let’s prove the lower bound. It follows from the monotonicity principle [29] that we can set
all edge resistances to be 0, except edges from u and v. We replace all vertices except # and v by one
vertex w. The obtained scheme is equivalent to a 3-node graph with multiple edges between u and w, w
and v, and perhaps, an edge between u and v. If vertices u# and v are non-adjacent in G,, the resistance
distance between u and v in the obtained 3-node scheme is at least 2/d. Otherwise the resistance distance
between u and v is at least 2/(d + 1).

To prove the upper bound we will use the idea from the unpublished paper of Anari and Oveis
Gharan (2014).

. 1 hg (6 .

We fix arbitrary 0 e (5,1} o> #())1 and vertices u, ve V. Let’s assume that the current flow
£(8) -

is 1 and the potential of the sink vertex v is p, = 0. Denote the potential at the vertex we V' by p, . So, to

estimate the resistance R, , we need to estimate the potential p,. For any non-negative r let’s define the

sets with higher and lower potentials:
H,={weV:p,2r}, L,={weV:p,<r}.

Forany X <V, | X |V |/2, we denote f5(X)=hg(d)] X|8 .

For some » > 0 such that | H, |[<| V| /2 consider the flow through the edge boundary 0H, of H,. Since
OH. is an edge-cutset separating vertices u and v, the flow can’t be less than 1. The potentials of the ver-
tices from H, are higher than the potentials in H; =V \ H,, there cannot be any flow into H. Thus
the flow between H, and H, is equal to I:

Z ys,l‘zls

(s,t)e0EH ,s€H

where y, , is the flow through the edge (s,?).
Then the average flow [E(y,,) over all edges of 0H, is equal to 1/|0H, |, where the expectation
E(ys,) 1s given with respect to the uniform distribution of edges (s,?) in 0H,. Markov’s inequality im-

plies that at least through (1- oc_l) |OH | of edges in OH, the flow y, , is at most @,

fS(Hr)
p fB(HV) fS(Hr) 1
[ys’t<f5(H,)J>1 E(ys’t)—l——| r|21——.

So one can find a subset D, c 0H, with at least f5(H r)(l—ofl) edges such that the current

through them is no more than .
f 8 (H r)
Since the resistance of each edge is 1, the potentials difference on the endpoints of the edges of

the set D, is at most D) as well. Thus all these endpoints belong to H,_q/ 5(m,). Which means,
) r

there holds the inequality

H)(1-o™
| Hpmag oy Pl 1 |+ L2022 (1
assuming that | H, || V| /2.
The same is to be done for lower potentials to obtain
s(L)(1-a”
D (1)

assuming that | L, |[<| V' |/2.
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Bd|H,|

Take > 0 such that y=1+p(1 - aHe,?2] Applying recursively (11) and (12) {
5 r

:|+1 and

{Bd L, q +1 times respectively, we see that either there hold the inequalities
fS(Lr)
H)(1-a ([ pd|H,
N A (Y 21, | 2L )@ 0 )qHJZvIHrI, (13)
720y So(Hr) FsH\ | foHr) oAy
L)1-a ([ pd|L,
L ogar o |2l ( sl 1] STMPRAL )El )([L} (lL )qﬂ}zyu, L (14
+ r
2wy ol | s {fs(h)} o

or the left-hand sides of (13) and (14) are greater than |V |/y 2|V | /2.
Taking r = p, and applying (13), we obtain that at least y vertices have potentials higher or equal to

ofd|H, | o« ofd o p
- - 2 Pu— - =n
fEH)  fs(H)) hE(8)  he(d)
Analogously, at least y* vertices have potentials higher or equal to
ofd | H, | o afd o
) - R T 5
fs(Hy)  Ss(Hn) hi (d)y he (8)y

Repeating this procedure at most [log., | V'|] times, we obtain that at least |V |/2 vertices of G have

potentials higher or equal to
logyVI-I( B4 o
Pu= X ( 2 Bi(ZS—l) + s [ (15)
i=0 \hg(3)y he (d)y

u

.

Analogously, starting with |L, [>1 for » = p, = 0 and iterating inequality (14) at most [log, | V'|]
times, we obtain that at least |V |/2 vertices of G have potentials at most

[logy V(11 apd o J
Pt s+ = | (16)
bar [hé(a)v @D e (S)y™

It follows from relations (15) and (16) that

[logy|V[I-1 apd o
pu<2 Y ( s+ = | 17)
iz \hE@)y Y hp@)y®

Since /() < d, we have

M sd
pu S 2 ’
hi(3)
that finishes the proof of the theorem.
Corollary 1. For any € > 0 there exists an effectively computable constant n, such that for any
n 2 n the resistance distance R, , between any vertices u, v in the bubble-sort Cayley graph BS, satisfies
the following inequalities
2 g, < 11+5\B+s'
n n
Proof. The lower bound follows immediately from Theorem 5. Let’s consider the function
202y -y B 20y°
25-1 3
(a=-Dy=™ -1 " -1

used for definition of the constant M in Theorem 5 statement.

g(a,y,0)= , o>, ye(,2], de(/2,1],
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Since the function g(a.y,0) is continuous and Theorem 3 holds, we obtain that for any € > 0 one can
find numbers np €N and de (%,lj such that hz(8)>(1—¢g)n and Ms< Mi+¢ for all the bubble-

sort Cayley graphs BS, with n > n;, where M= inf{g(a,y,D|a>1, ye(,2]}.
It remains to show that M1 =11+ 5+/5. Indeed,

2ay(ay =1 2ay(ay =1)
ay—(a+y)+1 (Jay-1)*

By straightforward computations we obtain that the minimum of the right-hand side is achieved at

1++/5 ~ 14++/5 1+4/5
\/(x_y= . Hence, M1=¢g ,
2 2 2

Remark 8. As it was shown in [29], the application of Kaneko — Suzuki algorithm [30] (for con-
structing n — 1 node-to-node disjoint paths in the bubble-sort Cayley graph) gives asymptotically better
upper bound on resistance distance in BS,, : R, , = O(n) comparing to the spectral approach which gives
only O(n%). In paper [20] there was suggested a flow-based approach to estimate the resistance distance
in Cayley graphs, which gives right asymptotic R, , = O(1/n) for BS,, but the constant hidden in O is
much worse comparing to Corollary 1.

Corollary 2.Let G, = (V,,E,) be a family of finite connected graphs with maximal degree d, —

g(o,y,1)=

1 |=11+55. The corollary is proved.

as n — . If there exists 0 € (%,1} such that hg(d) = O(d,) in G,, then R, ,= ©(1/d,) for the resistance

distances in G,,.

Example 3.Let BY be the graph of d -dimensional rectangular grid of size n in one dimension.
Taking into account Corollary 2 and Example 1, we obtain that R, , = ©(1) for any fixed d > 3. If d = 2,

1
Corollary 2 does not work, since /4;(8) — 0 as n — oo for any fixed & 6(5,1}. Also we know from

the results of [27] that R, , = ©(logn) in case d = 2.

Discussion. It is well-known [27] that good expansion properties (in terms of isoperimetric con-
stant /1) of a graph family lead to fine asymptotic estimates of the resistance distance. Informally speak-
ing, in this case resistance distance R, is a local characteristic, it depends mainly on the degrees of
vertices u, v (so called, Luxburg — Radl — Hein property) [9].

Also it was known that some families with poor expansion properties (finite grids in dimension
d > 3, for example) admit Luxburg — Radl — Hein property. For the grids it was shown in [27] by using
combinatorial arguments on flows that is very specific on graph structure.

In the present paper we have demonstrated that generalized isoperimetric constants /;(3) are much
more flexible for the resistance distance analysis including graphs with complex combinatorial structure.
To have Luxburg — Radl — Hein property in a family of graphs we rather need to look at asymptotic of

h(d) for some 6 e (%,1) (Corollary 2). As we’ve already demonstrated, we have the needed asymptotic

hg(8) = ©(d,) for families of the bubble-sort Cayley graphs and d-dimensional grids with d > 3. This
helps us to obtain the Luxburg — Radl — Hein property for both of these families using the same simple
arguments (Theorem 5).

1
The threshold 5 for & in Theorem 5 is really important. Looking at the family of d-dimensional

finite grids for d = 2 and d = 3, we see how the generalized isoperimetric constant /;(5) controls the
asymptotic of the resistance distance in corresponding grids. Of course, this major difference between
2-dimensional and higher dimensional grids was well-known earlier (see [27]). The present paper
provides a new kind of explanation to this phenomenon in terms of generalized isoperimetric cons-
tants.
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