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ISOPERIMETRIC PROFILE AND RESISTANCE DIAMETERS OF CAYLEY GRAPHS  
ON SYMMETRIC GROUPS WITH COXETER GENERATING SETS 

Abstract. Using combinatorial approaches we obtain asymptotically exact bounds on isoperimetric numbers and gener-
alized edge-isoperimetric numbers of bubble-sort Cayley graphs. We show that the generalized edge-isoperimetric constants 
of the bubble-sort Cayley graph BSn are equal to Θ(n) unless this constant is the Cheeger constant, otherwise we obtain 

asymptotic 1 .
n

 Θ 
 

 We apply these results to derive refined explicit estimates of resistance distance in bubble-sort Cayley 

graphs. It is proved that the resistance distance between any two vertices of BSn is lower bounded by 
2
n

 and upper bounded by 

11 5 5
n

+ + ε  with arbitrarily small ε > 0 for all sufficiently large n.
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ИЗОПЕРИМЕТРИЧЕСКИЙ ПРОФИЛЬ И РЕЗИСТИВНЫЕ ДИАМЕТРЫ ГРАФОВ КЭЛИ  
НА СИММЕТРИЧЕСКОЙ ГРУППЕ С ПОРОЖДАЮЩИМИ МНОЖЕСТВАМИ КОКСЕТЕРА 

Аннотация. С использованием комбинаторных методов получены асимптотически точные оценки на изопе-
риметрические числа и обобщенные реберно-изопериметрические числа графов Кэли пузырьковой сортировки. 
Показано, что обобщенные реберно-изопериметрические числа графа Кэли пузырьковой сортировки BSn имеют 

асимптотику Θ(n), за исключением случая постоянной Чигера, которая, в свою очередь, имеет асимптотику 1 .
n

 Θ 
 

 

Эти результаты применяются для вывода более точных оценок на резистивные расстояния в таких графах, а именно 

доказано, что резистивное расстояние между любыми двумя вершинами BSn находится между 2
n

 и 11 5 5
n

+ + ε  для 

сколь угодно малого ε > 0 для всех достаточно больших n.
Ключевые слова: резистивное расстояние, граф Кэли пузырьковой сортировки, изопериметрические неравен-

ства, постоянная Чигера
Для цитирования. Васьковский, М. М. Изопериметрический профиль и резистивные диаметры графов Кэли 

на симметрической группе с порождающими множествами Коксетера  / М.  М. Васьковский, А.  О. Задорожнюк, 
А. В. Гонимар  // Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-матэматычных навук. – 2025. – Т. 61, 
№ 2. – С. 106–117. https://doi.org/10.29235/1561-2430-2025-61-2-106-117

Introduction. Discrete isoperimetric inequalities (DII) are widely used in many fields of mathe-
matics and computer science. Such inequalities play crucial role in the analysis of expansion properties, 
graph connectivity in terms of resistance distance, percolation on graphs, some geometrical questions 
related to graph curvature [1–3]. Although there is a couple of generic DII, such as the Cheeger, Buser-
type inequalities [4, 3], many important classes of graphs including Cayley graphs on symmetric groups 
with Coxeter generators are not covered properly by those. Sometimes we need to investigate deeper 
combinatorial structure of graphs to get exact isoperimetric bounds.
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Bubble-sort Cayley graphs have a lot of applications for building inter-connection networks and ana-
lyzing some sorting algorithms [5–8].

One of the metrics which naturally arise when dealing with networks and signal transmission is 
hitting time between two vertices, that is the expected time it takes a random walk to travel from one of 
them to the other. The normalized version of this metric is known as a resistance distance. It is a con-
venient tool to encode the cluster structure of a network in many fields of computer science [9, 7], che-
mometrics and bioinformatics [10], mathematical physics [11]. This metric was introduced in paper [12] 
based on the Kirchhoff and Ohm laws in the corresponding electrical circuit. As opposed to the geodesic 
(shortest path) distance, the resistance distance between two vertices takes into account all paths be-
tween them.

The goal of this paper is to find exact asymptotic estimates for isoperimetric numbers of the bub-
ble-sort Cayley graphs. Also we are interested in refine known bounds for the resistance distance in 
the bubble-sort Cayley graphs.

The main part of the paper has the following structure. In the third and the fourth sections we obtain 
asymptotically exact estimates on isoperimetric and generalized edge-isoperimetric numbers in the bub-
ble-sort Cayley graphs. There are two core ideas which allow us to achieve this result: the first one is that 
any bubble-sort Cayley graph is a partial cube (can be isometrically embedded into some hypercube), 
the second one is to modify the bubble-sort Cayley graph a bit to make it edge-transitive. In the fifth 
section we use a modification of the flow method to connect concepts of generalized edge-isoperimetric 
numbers and resistance distance in generic graphs. Finally, with the help of the previous section’s results 
we obtain refined estimates on the resistance distance in the bubble-sort Cayley graphs. In the sixth sec-
tion we demonstrate how the established connection between generalized edge-isoperimetric numbers 
and resistance distance could give an alternative explanation of major difference between electrical cir-
cuits on two dimensional and higher dimensional grids.

Preliminaries. Let’s remind key objects we will use further.
For a finite group Γ let T be a self-conjugate 1(   )t T t T-∀ ∈ ∃ ∈  generating set without the identical 

element. The Cayley graph of Γ generated by T is an undirected graph Cay(Γ,T), where elements of Γ are 
vertices and two vertices g1, g2 are adjacent if and only if 1

2 1 .g g T- ∈
For a finite graph G  =  (V,E) let X be a non-empty subset of V. The set of edges 

{( , ) : , \ }X u v E u X v V X∂ = ∈ ∈ ∈  is called the edge boundary of the set X. Throughout the paper we 

will assume that | |0 | |
2
VX< ≤  considering edge boundaries.

Recall that graph G = (V,E) is called edge-transitive if for any two edges e1, e2 ∈ E there exists an 
automorphism of G that maps e1 to e2. For edge-transitive graphs the estimate below follows directly 
from Theorem 3.5 proved in [13].

P r o p o s i t i o n  1. Let G = (V,E) be a finite connected edge-transitive graph, X ⊂ V and let r be 
the harmonic mean of its minimum and maximum degrees. Then the following isoperimetric inequality 
holds:

| | .
| | 2diam( )

X r
X G
∂

≥

Let’s denote by BSn the bubble-sort Cayley graph Cay( , ),n nS T  where Tn is the Coxeter generating 
set of a symmetric group Sn ( {( , 1) | 1, 1}).nT i i i n= + = -  Also we define the modified bubble-sort Cayley 
graph  Cay( , ),nn nBS S T=  where  {(1, )}.n nT T n= ∪  

Recall that a subgraph G of the graph H is said to be isometric if the distance between every pair of 
vertices in G is the same as the respective distance in H.

P r o p o s i t i o n  2  [14].  The bubble-sort Cayley graph BSn is an isometric subgraph of the hyper-
cube ( 1)/2.n nQ -

P r o p o s i t i o n  3  [15]. Let S be a non-empty vertex subset of a hypercube Qn, (S,ES) be the induced 

subgraph of Qn. Then 
| | 1

1
| | ( ),

S
S

i
E h i

-

=
≤ ∑  where h(i) denotes the number of 1’s in the binary representation of i.
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D e f i n i t i o n  1. Let ( , )n n nG V E=  be a sequence of connected graphs with | |nV →∞  as n → ∞. 
We shall say that family (Gn) admits (α,β)-isoperimetric signature if the following conditions held:

–  1 1sup{ | 0 :| | | | };nc X c X X V nδα = δ∈ ∃ > ∂ ≥ ∀ ⊂ ∀ ∈ 

–  2 2sup{ | 0 :| | | | log | | }.nc X c X X X V nα θβ = θ∈ ∃ > ∂ ≥ ∀ ⊂ ∀ ∈ 

R e m a r k  1. To compare expansion properties of two infinite families of graphs (Gn) and (Gn′) with 
(α,β) and (α′,β′)-isoperimetric signature respectively, it is convenient to define the order for isoperimet-
ric signature in the following way: ( , ) ( , )′ ′α β α β  if there α ≥ α′ holds and equality α = α′ implies that 
β ≥ β′. In this case we will write ( ) ( ).n nG G ′  Particularly, if (Gn) forms a family of edge-expanders [1] 
and admits (α,β)-isoperimetric signature, then ( , ) (1,0).α β 

E x a m p l e  1. Let Gn be a sequence of connected graphs with | |nV →∞  as n → ∞. It’s clear that 
the best possible (α,β)-isoperimetric signature is for the family of complete graphs : ( , ) (2,0),nK α β =  
the worst case is the family of paths ( , ) (0,0).:nP α β =

For the family of hypercubes ( , )n n nQ V E=  we have | | | | nX X X V∂ ≥ ∀ ⊂  [16]. Also we can find 
subsets n nX V⊂  such that | | | |n nX X∂ =  and | |nX →∞  as n → ∞ (for example, we can choose Xn in 
such way that Xn induces the hypercube Qn–1). That is why ( , ) (1,0).α β =

Let ( , ),   1,d
n n nB V E n= ≥  be the sequence of graphs of d-dimensional rectangular grid of a size n in 

one dimension. According to the Bollobas and Leader results [17], for any nX V⊂  there holds

	 { }1 1/ / 1| | min | | : 1,2, , .d d rX X rn r n- -∂ ≥ = …
	

(1)

It follows from (1) that

	
1 1/| | (2 | |) .dX X -∂ ≥ 	 (2)

For any n we consider a subset Xn of Vn that induces [ /2].n
dB  It is clear that 1 1| | ,   | | / 2].[d d

n nX n X n n- -∂ = =  
Thus, the bound (2) is sharp, and ( , ) (1 1 / ,0).dα β = -

D e f i n i t i o n  2. Let G = (V,E) be a finite graph and (0,1].δ∈  We call the generalized edge-isope-
rimetric number the following value

| |( ) min ,
| |

E
X V

Xh
X δ⊂

∂
δ =

where minimum is taken over all subsets X V⊂  with | |0 | | .
2
VX< ≤  Constant hE(1) is known as

isoperimetric number (or Cheeger constant) and will be denoted by hE.
Bounds on the Cheeger constant in bubble-sort Cayley graphs.
R e m a r k  2. It is possible to obtain estimates of the isoperimetric number from the following 

Cheeger inequality

2 ,
2 Eh dσ
≤ ≤ σ

where d is the degree of a graph (assuming its regularity), σ is the spectral gap (the smallest positive 
eigenvalue of the Laplacian matrix of a graph).

For some graphs (hypercubes, for example) this approach gives fine results. But for the bubble-sort 
Cayley graphs BSn we obtain really poor estimates with this approach:

	

1 2
2 E

c ch
nn

≤ ≤
	

(3)

for some positive constants c1, c2. 
Unfortunately, the bubble-sort Cayley graphs have negative Ricci curvature unless n ≤ 3 [18]. This 

does not allow to use a discrete Buser-type inequality [3] to derive better estimates for hE comparing to (3).
Now we will obtain much better estimates on hE in the bubble-sort Cayley graphs by using a combi-

natorial approach instead of spectral arguments.
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T h e o r e m  1. For any n ≥ 3 the isoperimetric number hE of the bubble-sort Cayley graph BSn sa
tisfies the inequalities 

2 2 .
3 Eh
n n
≤ ≤

P r o o f. To prove the upper estimate on hE it is enough to provide an example of the set nX S⊂  

with 2| | / | |X X
n

∂ =  (here and further we consider subsets of vertices X satisfying normal constraints 
coming from definition of isoperimetric number, i. e. 0 | | /2nX S< ≤ ). Let X be the set of all permutations 

nSσ∈  such that 1 1(1) (2).- -σ < σ  It’s obvious that | | !/ 2.X n=  Now let’s see what edges between X and 
\nS X  are possible. To go out of X, an edge (σ,τ) should make 1 occur after 1 12 : (1) (2)- -σ < σ  and 

1 1(1) (2).- -τ > τ  And since in the generating set we only have transpositions swapping consecutive 
elements, these 1 and 2 should be neighbors swapped by a transposition. There are (n – 1)! such vertices 
in X, and for each of them only one edge swapping 1 and 2 is possible, so we have | | ( 1)!.X n∂ = -  Then 

( 1)! 2 .
!/ 2E

nh
n n
-

≤ =

Let’s prove the lower bound on hE. The bubble-sort graph is not edge-transitive. However, if we 
add the transposition (1,n) to the generating set, the resulting Cayley graph which is the modified bub-
ble-sort Cayley graph  nBS  will be edge-transitive. It contains BSn as a subgraph and their vertex sets 
are the same. We are going to prove the following lemma which states that the sizes of the edge-bound-
aries of the same vertex subset in BSn and in  nBS  differ no more than by a constant factor.

L e m m a. Let nX S⊂  be a subset of vertices of BSn (as well as  nBS ), and let ∂X and ∂′X denote its 
edge-boundary in BSn and  nBS  respectively. Then | | | | /3.X X′∂ ≥ ∂

P r o o f. Denote ( , 1),   {1, , 1},is i i i n= + ∈ … -  and (1, ).ns n=  Any edge ( , ),   i ns Sσ σ σ∈  will be 
called an si-type edge.

To obtain ∂X from ∂′X, we must delete from it all sn-type edges.
Both BSn and  nBS  are connected graphs, so for any pair of vertices u, v, connected by an sn-type 

edge there must exist a path between them containing no such edges. There may even exist several such 
paths which do not intersect, but for our proof it will be enough to consider the path of edges of types s1, 
s2, ..., sn–2, sn–1, sn–2, ... s2, s1, which we will denote by p(u,v). Since ∂′X is a cut-set in the graph  ,nBS  any 
path in  nBS  between u X∈  and \nv S X∈  contains an edge from ∂′X. So, if these vertices are con-
nected by an sn-type edge belonging to ∂′X, there must also exist an edge from p(u,v) that belongs to ∂′X.

It may be possible that for several pairs of vertices ui,vi = snui their respective paths p(ui,vi) all share 
a common edge, and this is the edge that belongs to ∂′X. Let us show that three paths p(ui,vi), i = 1,2,3, 
corresponding to different pairs (ui,vi) cannot have a common edge.

Let’s suppose that several paths p(ui,vi) have a common edge e of an sj-type. Then if 1 < j < n – 1 
the other edges from these paths which can be incident to this one can be of just two types: sj–1 and sj+1. 
Note that all edges from one vertex are of different types, so there can be no more than two such edges 
incident to each endpoint of e, and thus, just no more than two different paths. If e is of an s1-type, one 
of its endpoints has to be ui or vi. But, because there’s only one edge of the sn-type from each vertex, this 
would mean that the edges of the sn-type connecting vertices ui to vertices vi are in fact the same edge, 
and all those pairs of vertices are the same pair. Finally, if e is of an sn–1-type, only edges of an sn–2-type 
can be incident to it, and so there can be no more than one path p(ui,vi) containing e.

Thus, in ∂′X one edge of the type different from sn corresponds to at most two edges of the sn-type, 
meaning | | | | /3.X X′∂ ≥ ∂  The lemma is proved.

Now we can complete the proof of the theorem.

Since a diameter of the graph  nBS  is 
2

4
n 
 
  

 [8], Proposition 1 implies that

	 | | 2
| |

X
X n
′∂

≥ 	 (4)
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for any subset X of Sn. Taking into account the lemma above and inequality (4), we obtain the required 
lower estimate on hE. The theorem is proved.

Asymptotic estimates of generalized edge-isoperimetric constants. According to Theorem 1, 

for the family of bubble-sort Cayley graphs BSn we have 1 .Eh
n

 = Θ 
 

 Our next step is to investigate 

the asymptotics of generalized edge-isoperimetric constants ( ),   (0,1),Eh δ δ∈  in the bubble-sort Cayley 
graphs.

Let G be a Cayley graph of a finite group. The growth function V(G,ρ) of the Cayley graph G is 
the number of vertices in the ball B(ρ) of radius ρ surrounding the identical element with respect to geo-
desic (shortest path) distance. Define the function φ(G,k) as follows: 

( , ) inf{ : ( , ) }.G k V G kϕ = ρ ρ ≥

Recall the following Coulhon – Saloff – Coste inequality in the Cayley graphs [2]:
| | 1

| | 2 ( ,2 | |)
V X
X G X

∂
≥

ϕ

for any vertex subset X of G, where ∂VX denotes the exterior vertex boundary of X.

Since ( 1)( )
2

diam n
n nBS -

=  [19], the ball B(ρ) contains BSk for .k  = ρ   By the Stirling formula we get

( , ) !nV BS Ce ρ ρ ≥ ρ ≥ 

for some C > 0 that does not depend on n and ρ.
Therefore,

{ } 2( , ) inf : log .n
kBS k Ce k
C

ρϕ ≤ ρ ≥ =

Taking into account the Coulhon  – Saloff – Coste inequality, we get the following estimate for 
the edge boundaries in BSn:

	
2

| || |
log | |

XX c
X

∂ ≥
	

(5)

for all vertex subsets X of BSn and some positive constant c that does not depend on n.
Since the graphs BSn are bipartite and do not contain subgraphs K2,3 [19], it follows [20] from Turan 

results on a maximal number of edges in bipartite graphs containing no complete bipartite subgraphs K2,t 
[21, 22] that

	
1/2

1| | | |X c n X∂ ≥ 	 (6)

for all vertex subsets X of BSn with 2| | ( )X o n=  and some positive constant c1, that does not depend on n.

Gathering together (5) and (6), we obtain that for any 10,
2

 δ∈ 
 

 for the graphs BSn we have 

	 ( ) ( ).Eh nδ = Θ 	 (7)

For the accurate analysis of resistance distance asymptotic it is important to extend the result (7) to 

some 1 .
2

δ >  To make this extension possible we are going to derive better isoperimetric inequalities for 

subexponential volumes in BSn comparing to (5) and (6).
T h e o r e m  2 .  Let n ≥ 3. For any vertex subset X of the bubble-sort Cayley graph BSn and any 
(0,1)α∈  there holds the inequality

( )(1 ) 1 ,  if   2 ,
| | (| |), where  ( ) 2 ,  if   2 .

3

n

n n n

n x x
X f X f x x x

n

α

α α
α

 - α - ≤
∂ ≥ = 

>
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P r o o f. If | | 2 ,nX α>  the needed estimate follows directly from Theorem 1. So, it remains to con-
sider | | 2 .nX α≤  Let EX be the edge set in the subgraph of BSn induced by vertices in X. According to 
Proposition 2, BSn is a subgraph of the hypercube ( 1)/2.n nQ -  Let’s denote by ( , )XX E  the subgraph of 

( 1)/2n nQ -  induced by vertices in X.
Let’s apply Proposition 2. Then we have

	


| | 1
2

1

| | log | || | | | ( ) .
2

X
XX

i

X XE E h i
-

=
≤ ≤ ≤∑

	
(8)

With the help of estimate (8) we obtain the following bound for the cardinality of edge boundary in 
the bubble-sort Cayley graph:

( )2| | ( 1) | | 2 | | | | ( 1 log | |) | | (1 ) 1 .XX n X E X n X X n∂ = - - ≥ - - ≥ -α -

The theorem is proved.
R e m a r k  3. It’s clear that Theorem 2 provides asymptotically best possible isoperimetric estimate 

(up to constant multiplier) for subsets X when 2
1 log | |X
n

 is separated above from 1. Also Theorem 1 

implies that the function nf α  gives an exact estimate (up to constant multiplier) at 
!.

2
nx =

R e m a r k  4. Note that sharp isoperimetric inequalities for the transposition Cayley graphs TSn 
(generating set is the set of all transpositions (i,j) of Sn) were proved in paper [23].

Now we are ready to prove that hE(δ) = Θ(n) in BSn for any (0,1).δ∈
T h e o r e m  3. For any (0,1)δ∈  and ε > 0 there exists n0(δ,ε) such that for any 0 ( , )n n≥ δ e  the ge

neralized edge-isoperimetric numbers hE(δ) of the bubble-sort Cayley graph BSn satisfy the inequalities 
(1 ) ( ) 1.En h n- e ≤ δ ≤ -

P r o o f. The upper bound is trivial (it is enough to consider any one-element subset of Sn). 
Let’s take arbitrary (0,1)δ∈  and (0,1).e∈  Let ,   0 | | | | /2.n nX S X S⊂ < ≤  It follows from Theorem 2 that

1| | 2 | |
3| |

X X n
nX

-δ

δ
∂

≥ ≥

assuming that 1 2| | 1.5 .X n-δ≥  Let’s consider subsets X with 1 2| | 1.5 .X n-δ≤
One can find n0(δ,ε) such that for any n ≥ n0(δ,ε) there holds

| | 2 ,nX α≤

where 0 < α < ε.
Then Theorem 2 implies

( ) 1| | (1 ) 1 | | (1 ) ,
| |

X n X n
X

-δ
δ

∂
≥ - α - ≥ - e

that is true for all sufficiently large values of n. The theorem is proved.
R e m a r k  5 .  Benjamini and Kozma [24] conjectured that hE(δ) is separated from 0 below over all 

finite connected vertex transitive graphs G with a diameter less than 1| | .G -δ  Theorem 3 states that we 
have even hE(δ) = Θ(n) for the family of bubble-sort Cayley graphs.

Let’s go back to isoperimetric inequality (5) and try to understand whether we can improve ex-
ponent 2 in logarithm. The following theorem shows that we can replace 2 by 1, and this exponent is 
the best possible.

T h e o r e m  4. The family of the bubble-sort Cayley graphs BSn, n ≥ 3, admits (1, –1)-isoperimetric 
signature.

P r o o f. It follows from Theorem 1 that there exists c > 0 such that for all n ≥ 3 and any ,nX S⊂  
0 | | | | /2nX S< ≤  we have
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| || | .
log | |

XX c
X

∂ ≥
	

(9)

Indeed, if | | 2 nX α≤  for some (0,1)α∈  that does not depend on n, inequality (9) clearly holds.
If | | 2 ,nX α>  we get

2

2 2 | || | | | .
3 3 log | |

XX X
n X

α
∂ ≥ ≥

As it was shown in the proof of Theorem 1, there exists nX S⊂  such that | | !/ 2X n=  and

	

| | 2 .
| |

X
X n
∂

=
	

(10)

Let the family BSn admits (α,β)-isoperimetric signature. It follows from (9) and (10) that α = 1. It fol-
lows from (9) that β ≥ –1. Taking into account (10) and the Stirling formula we obtain that β ≤ –1. Hence, 
(α,β) = (1,–1). The theorem is proved.

R e m a r k  6. We conjecture that a stronger isoperimetric inequality comparing to (9) must be valid 
for the bubble-sort Cayley graphs:

| | log log | || | 3.
log | |

  n
X XX c X S n

X
∂ ≥ ∀ ⊂ ∀ ≥

E x a m p l e  2. It is interesting to find an isoperimetric signature for other widely used families of 
Cayley graphs on symmetric groups, for example, to the family of star Cayley graphs SSn (generating set 
is of transpositions (1,2), (1,3), …,  (1,n)) and the family of transposition Cayley graphs TSn.

Since the spectral gap is equal to 1 for any SSn [25], the Cheeger inequality implies that | | | |X X∂ ≥  for 

any vertices subset X. Let n be even. One can find a set X such that | | | |X X∂ =  and 
!| |

2
nX =  (we can push 

into X all permutations σ such that (1)
2
n

σ ≤ ). Hence, the family SSn has (1,0)-isoperimetric signature.

It is known that spectral gap of TSn is equal to n [26], so, the Cheeger inequality implies 
that | | | |X n X∂ ≥  for any .nX S⊂  Let’s take X to be the set of all permutations nSσ∈  such that 

1 1(1) (2).- -σ < σ  For this subset X we have 
!| |

2
nX =  and 2 1| | | | .

3
nX X-

∂ =  Similarly to the proof of 

Theorem 4, application of the Stirling formula allows one to show that the family TSn has (1,1)-iso
perimetric signature.

Finally, in terms of Remark 1 we can make the following comparison:

( ) ( ) ( ) ( ) ( ) ( ) ( ).d
n n n n n n nK TS SS Q BS B P     

R e m a r k  7. We conjecture that for any (α,β) such that (2,0) ( , ) (0,0)α β   one can build a se-
quence of connected graphs Gn = (Vn,En) with | |nV →∞  that admits (α,β)-isoperimetric signature.

Application to the explicit estimate of resistance distance. In this section we apply the results 
obtained in the previous section to refine known bounds for the resistance distance in graphs. Recall that 
the resistance distance Ru,v between two vertices u and v in a finite connected graph G = (V,E) can be de-

fined as , ,
2 | |

u vC
E

 where Cu,v is commute time between u and v (which is the expected length of a random 

walk from u to v and back) [27]. Also there is an equivalent definition of the resistance distance based on 
electrical circuit theory [12, 28].

T h e o r e m  5 .  Let G = (V,E) be a finite connected graph, d be the maximal vertex degree in it. 

Then for any 1 ,1
2

 δ∈  
 such that hE(δ) > 1 and any u, v V∈  there hold the inequalities

, 2
2 ,

1 ( )
u v

E

M dR
d h

δ≤ ≤
+ δ
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where
2 2 1

2 1
( 1) ( )2inf , (1,2] .

( ) 1( 1)( 1) 1
| E

E

hM
h

δ- δ

δ δ- δ

 α γ - γ αγ δ = + α ≥ γ∈ 
δ -α - γ - γ -  

P r o o f. Let’s prove the lower bound. It follows from the monotonicity principle [29] that we can set 
all edge resistances to be 0, except edges from u and v. We replace all vertices except u and v by one 
vertex w. The obtained scheme is equivalent to a 3-node graph with multiple edges between u and w, w 
and v, and perhaps, an edge between u and v. If vertices u and v are non-adjacent in Gn, the resistance 
distance between u and v in the obtained 3-node scheme is at least 2/d. Otherwise the resistance distance 
between u and v is at least 2/(d + 1). 

To prove the upper bound we will use the idea from the unpublished paper of Anari and Oveis 
Gharan (2014).

We fix arbitrary 1 ( ),1 ,   
2 ( ) 1

E

E

h
h

δ δ∈ α ≥  δ - 
 and vertices u, .v V∈  Let’s assume that the current flow 

is 1 and the potential of the sink vertex v is pv = 0. Denote the potential at the vertex w V∈  by pw. So, to 
estimate the resistance Ru,v we need to estimate the potential pu. For any non-negative r let’s define the 
sets with higher and lower potentials:

.     { : }, { : }r w r wH w V p r L w V p r= ∈ ≥ = ∈ ≤

For any ,   | | | | /2,X V X V⊂ ≤  we denote ( ) ( ) | | .Ef X h X δ
δ = δ

For some r ≥ 0 such that | | | | /2rH V≤  consider the flow through the edge boundary ∂Hr of Hr. Since 
∂Hr is an edge-cutset separating vertices u and v, the flow can’t be less than 1. The potentials of the ver-
tices from Hr are higher than the potentials in \c

r rH V H= , there cannot be any flow into Hr. Thus 
the flow between Hr and c

rH  is equal to 1:

,
( , ) ,

1,
E r r

s t
s t H s H

y
∈∂ ∈

=∑

where ys,t is the flow through the edge (s,t). 
Then the average flow ,( )s ty  over all edges of ∂Hr is equal to 1/ | |,rH∂  where the expectation 

,( )s ty  is given with respect to the uniform distribution of edges (s,t) in ∂Hr. Markov’s inequality im-
plies that at least through 1(1 ) | |rH-- α ∂  of edges in ∂Hr the flow ys,t is at most :

( )rf Hδ

α

, ,
( ) ( ) 11 ( ) 1 1 .

( ) | |
r r

s t s t
r r

f H f Hy y
f H H

δ δ

δ

 α
< > - = - ≥ -  α α ∂ α 

 

So one can find a subset r rD H⊆ ∂  with at least 1( )(1 )rf H -
δ - α  edges such that the current 

through them is no more than .
( )rf Hδ

α

Since the resistance of each edge is 1, the potentials difference on the endpoints of the edges of 
the set Dr is at most 

( )rf Hδ

α  as well. Thus all these endpoints belong to ( ) .rr f HH δ-α  Which means, 

there holds the inequality

	

1

( )
( )(1 )| | | |r

r
r f H r

f HH H
dδ

-
δ

-α
- α

≥ +
	

(11)

assuming that | | | | /2.rH V≤
The same is to be done for lower potentials to obtain

	

1

( )
( )(1 )| | | |r

r
r f L r

f LL L
dδ

-
δ

+α
- α

≥ +
	

(12)

assuming that | | | | /2.rL V≤
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Take β > 0 such that 11 (1 ) (1,2].-γ = +β -α ∈  Applying recursively (11) and (12) | | 1
( )

r

r

d H
f Hδ

 β
+ 

 
 and 

| | 1
( )

r

r

d L
f Lδ

 β
+ 

 
 times respectively, we see that either there hold the inequalities

   
2

1

| | | | 1( )( ) ( ) ( )

( )(1 ) | || | 1 | |,
( )r r

rr r r

r r
d H r rd Hr r rf Hf H f H f H

f H d HH H H H
d f H

δ δ δδ

-
δ

αβ α   α β- - - +  δ 
  

  - α β
≥ ≥ + + ≥ γ  

   	

(13)

	
2

1

| | | | 1( )( ) ( ) ( )

( )(1 ) | || | 1 | |,
( )r r

rr r r

r r
d L r rd Lr r rf Lf L f L f L

f L d LL L L L
d f L

δ δ δδ

-
δ

αβ α   α β+ + + +  δ 
  

  - α β
≥ ≥ + + ≥ γ  

  
	

(14)

or the left-hand sides of (13) and (14) are greater than | | / | | /2.V Vγ ≥
Taking r = pu and applying (13), we obtain that at least γ vertices have potentials higher or equal to

12 2
| | .

( ) ( )( ) ( )
r

u u
r Er E

d H dp p r
f H hf H hδδ

αβ α αβ α
- - ≥ - - =

δδ

Analogously, at least γ2 vertices have potentials higher or equal to

11
1 1 22 2 2 1

| | .
( )( ) ( ) ( )

r

rr E E

d H dr r r
f Hf H h hδ- δ
δδ

αβ α αβ α
- - ≥ - - =

δ γ δ γ

Repeating this procedure at most [log | |]Vγ  times, we obtain that at least | | /2V  vertices of G have 
potentials higher or equal to

	

[log | |] 1

2 (2 1)
0

.
( ) ( )

V

u i i
i E E

dp
h h

γ -

δ- δ
=

αβ α
- +

δ γ δ γ

 
  
 

∑
	

(15)

Analogously, starting with | | 1rL ≥  for r = pv = 0 and iterating inequality (14) at most [log | |]Vγ  
times, we obtain that at least | | /2V  vertices of G have potentials at most

	

[log | |] 1

2 (2 1)
0

.
( ) ( )

V

v i i
i E E

dp
h h

γ -

δ- δ
=

αβ α
+ +

δ γ δ γ

 
  
 

∑
	

(16)

It follows from relations (15) and (16) that

	

[log | |] 1

2 (2 1)
0

2 .
( ) ( )

V

u i i
i E E

dp
h h

γ -

δ- δ
=

 


αβ


α
≤ +

δ γ γ 
 δ

∑
	

(17)

Since hE(δ) ≤ d, we have

2 ,
( )

u
E

M dp
h

δ≤
δ

that finishes the proof of the theorem.
C o r o l l a r y  1. For any ε > 0 there exists an effectively computable constant n0 such that for any 

n ≥ n0 the resistance distance Ru,v between any vertices u, v in the bubble-sort Cayley graph BSn satisfies 
the following inequalities

,
2 11 5 5 .u vR
n n

+ + e
≤ ≤

P r o o f. The lower bound follows immediately from Theorem 5. Let’s consider the function
2 2 1

2 1  2 ( 1) 2( , , ) , 1, (1,2], (1 / 2,1],
( 1)( 1)

      
1

  g
δ- δ

δ- δ
α γ - γ αγ

α γ δ = + α > γ∈ δ∈
α - γ - γ -

used for definition of the constant Mδ in Theorem 5 statement.
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Since the function g(α,γ,δ) is continuous and Theorem 3 holds, we obtain that for any ε > 0 one can 

find numbers 0n ∈ and 1 ,1
2

 δ∈ 
 

 such that ( ) (1 )Eh nδ ≥ − ε  and 1 M Mδ ≤ + ε  for all the bubble-

sort Cayley graphs BSn with n ≥ n0, where 1 inf{ ( , ,1) | 1,   (1,2]}.M g= α γ α > γ∈
It remains to show that 1 11 5 5.M = +  Indeed,

2
2 ( 1) 2 ( 1)( , ,1) .

( ) 1 ( 1)
g αγ αγ − αγ αγ −
α γ = ≥

αγ − α + γ + αγ −

By straightforward computations we obtain that the minimum of the right-hand side is achieved at 
1 5 .

2
+

αγ =  Hence, 1
1 5 1 5, ,1 11 5 5.

2 2
M g

 + +
= = +  

 
 The corollary is proved.

R e m a r k  8. As it was shown in [29], the application of Kaneko – Suzuki algorithm [30] (for con-
structing n – 1 node-to-node disjoint paths in the bubble-sort Cayley graph) gives asymptotically better 
upper bound on resistance distance in BSn : Ru,v = O(n) comparing to the spectral approach which gives 
only O(n2). In paper [20] there was suggested a flow-based approach to estimate the resistance distance 
in Cayley graphs, which gives right asymptotic Ru,v = O(1/n) for BSn, but the constant hidden in O is 
much worse comparing to Corollary 1.

C o r o l l a r y  2. Let Gn = (Vn,En) be a family of finite connected graphs with maximal degree dn → ∞ 

as n → ∞. If there exists 1 ,1
2

 δ∈  
 such that hE(δ) = Θ(dn) in Gn, then Ru,v = Θ(1/dn) for the resistance 

distances in Gn. 
E x a m p l e  3. Let d

nB  be the graph of d -dimensional rectangular grid of size n in one dimension. 
Taking into account Corollary 2 and Example 1, we obtain that Ru,v = Θ(1) for any fixed d ≥ 3. If d = 2, 

Corollary 2 does not work, since hE(δ) → 0 as n → ∞ for any fixed 1 ,1 .
2

 δ∈  
 Also we know from 

the results of [27] that Ru,v = Θ(logn) in case d = 2.
Discussion. It is well-known [27] that good expansion properties (in  terms of isoperimetric con-

stant hE) of a graph family lead to fine asymptotic estimates of the resistance distance. Informally speak-
ing, in this case resistance distance Ru,v is a local characteristic, it depends mainly on the degrees of 
vertices u, v (so called, Luxburg – Radl – Hein property) [9].

Also it was known that some families with poor expansion properties (finite grids in dimension 
d ≥ 3, for example) admit Luxburg – Radl – Hein property. For the grids it was shown in [27] by using 
combinatorial arguments on flows that is very specific on graph structure.

In the present paper we have demonstrated that generalized isoperimetric constants hE(δ) are much 
more flexible for the resistance distance analysis including graphs with complex combinatorial structure. 
To have Luxburg – Radl – Hein property in a family of graphs we rather need to look at asymptotic of 

hE(δ) for some 1 ,1
2

 δ∈ 
 

 (Corollary 2). As weʼve already demonstrated, we have the needed asymptotic 

hE(δ) = Θ(dn) for families of the bubble-sort Cayley graphs and d-dimensional grids with d ≥ 3. This 
helps us to obtain the Luxburg – Radl – Hein property for both of these families using the same simple 
arguments (Theorem 5).

The threshold 
1
2

 for δ in Theorem 5 is really important. Looking at the family of d-dimensional 

finite grids for d = 2 and d = 3, we see how the generalized isoperimetric constant hE(δ) controls the 
asymptotic of the resistance distance in corresponding grids. Of course, this major difference between 
2-dimensional and higher dimensional grids was well-known earlier (see [27]). The present paper 
provides a new kind of explanation to this phenomenon in terms of generalized isoperimetric cons
tants.



116	  Proceedings of the National Academy of Sciences of Belarus. Рhysics and Mathematics series, 2025, vol. 61, no. 2, рр. 106–117

References

1. Krebs M., Shaneen A. Expander Families and Cayley Graphs. Oxford University Press, 2011. 288 p.
2.  Lyons R., Peres Y. Probability on Trees and Networks, Cambridge University Press, 2016. 699 p. http://doi.

org/10.1017/9781316672815
3. Klartag B., Kozma G., Ralli P., Tetali P. Discrete curvature and abelian groups. Canadian Journal of Mathematics, 

2016, vol. 6, no. 3, pp. 655–674. https://doi.org/10.4153/CJM-2015-046-8 
4. Chung F. Four proofs for the cheeger inequality and graph partition algorithms. AMS/IP Studies in Advanced 

Mathematics, 2010, vol. 48, pp. 331–349. https://doi.org/10.1090/amsip/048/17 
5.  Ohring S. R., Sarkar F., Das S. K., Hohndel D. H. Cayley graph connected cycles: a new class of fixed-degree 

interconnection networks. Proceedings of HICSS’95. Wailea, 1995, pp. 479–488. https://doi.org/10.1109/HICSS.1995.375509
6. Akers S. B., Krishnamurthy B. A group-theoretic model for symmetric interconnection networks. IEEE Transactions 

on Computers, 1989, vol. 38, no. 4, pp. 555– 565. https://doi.org/10.1109/12.21148
7. Sauerwald T. Randomized Protocols for Information Dissemination. Padeborn, 2008. 150 p.
8.   Heydemann M. C. Cayley graphs and interconnection networks. Graph Symmetry. NATO ASI Series. Dordrecht, 

Springer, 1997, vol. 497, pp. 167–224. https://doi.org/10.1007/978-94-015-8937-6_5
9. Luxburg U., Radl A., Hein M. Hitting and commute times in large random neighbourhood graphs. Journal of Machine 

Learning Research, 2014, vol. 15, no. 52, pp. 1751– 1798. https://dl.acm.org/doi/10.5555/2627435.2638591
10.  Klein D. J., Randic M. Resistance distance. Journal of Mathematical Chemistry, 1993, vol. 12, no.  1, pp.  81–95. 

https://doi.org/10.1007/BF01164627
11. Seshu S., Reed M. B. Linear graphs and electrical networks. Addison-Wesley Publishing Company, 1961. 315 p.
12. Gvishiani A. D., Gurvich V. A. Metric and ultrametric spaces of resistances. Russian Mathematical Surveys, 1987, 

vol. 42, no. 6, pp. 235–236. https://doi.org/10.1070/rm1987v042n06abeh001494
13. Babai L., Szegedy M. Local expansion of symmetrical graphs. Combinatorics, Probability and Computing, 1992, 

vol. 1, no. 1, pp. 1–11. https://doi.org/10.1017/S0963548300000031 
14. Alahmadi A., Alhazmi H., Ali S., Deza M., Sikiric M. D., Sole P. Hypercube emulation of interconnection networks 

topologies. Mathematical Methods in Applied Sciences, 2016, vol. 39, no. 16, pp. 4856–4865. https://doi.org/10.1002/mma.3820
15. Hart S. A note on the edges of the n-cube. Discrete Mathematics, 1976, vol. 14, no.  2, pp.  157–163. https://doi.

org/10.1016/0012-365X(76)90058-3
16. Mohar B. Isoperimetric numbers of graphs. Journal of Combinatorial Theory, Series B, 1989, vol. 47, no. 3, pp. 274–

291. https://doi.org/10.1016/0095-8956(89)90029-4
17. Bollobas B., Leader L. Edge-isoperimetric inequalities in the grid. Combinatorica, 1991, vol. 11, no. 4, pp. 299–314. 

https://doi.org/10.1007/BF01275667
18. Siconolfi V. Ricci curvature, graphs and eigenvalues. Linear Algebra and its Applications, 2021, vol. 620, pp. 242–

267. https://doi.org/10.1016/j.laa.2021.02.026
19. Konstantinova E. Vertex reconstruction in Cayley graphs. Discrete Mathematics, 2009, vol. 309, no. 3, pp. 548–559. 

https://doi.org/10.1016/j.disc.2008.07.039
20. Vaskouski M. M., Zadorozhnyuk A. O. Asymptotic behavior of resistance distances in Cayley graphs. Doklady 

Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2018, vol. 62, no.  2, 
pp. 140–146 (in Russian). https://doi.org/10.29235/1561-8323-2018-62-2-140-146

21. Godsil C., Royle G. Algebraic Graph Theory. Springer, 2001. 443 p. https://doi.org /10.1007/978-1-4613-0163-9
22. Gould R. Graph Theory. Dover Publications, Inc., 2012. 350 p.
23. Atzmon N., Ellis D., Kogan D. An isoperimetric inequality for conjugation invariant sets in the symmetric group. 

Israel Journal of Mathematics, 2016, vol. 212, no. 1, pp. 139–162. https://doi.org/10.1007/s11856-016-1296-7
24 Benjamini I., Kozma G. A resistance bound via an isoperimetric inequality. Combinatorica, 2005, vol. 25, no.  6, 

pp. 645–650. https://doi.org/10.1007/s00493-005-0040-4
25. Friedman J. On Cayley graphs on the symmetric group generated by transpositions. Combinatorica, 2000, vol. 20, 

no. 4, pp. 505–519. https://doi.org/10.1007/s004930070004
26. Kalpakis K., Yesha, Y. On the bisection width of the transposition network. Networks, 1997, vol. 29, no. 1, pp. 69–76. 

https://doi.org/10.1002/(sici)1097-0037(199701)29:1<69::aid-net7>3.0.co;2-a
27. Chandra A. K., Raghavan P., Ruzzo W. L., Smolensky R., Tiwari P. The electrical resistance of a graph captures its 

commute and cover times. Computational Complexity, 1996, vol. 6, no. 4, pp. 312–340. https://doi.org/10.1007/BF01270385
28. Gurvich V. Metric and ultrametric spaces of resistances. Discrete Applied Mathematics, 2010, vol. 158, no.  14, 

pp. 1496–1505. https://doi.org/10.1016/j.dam.2010.05.007
29. Vaskouski M., Zadorozhnyuk A. Resistance distances in Cayley graphs on symmetric group. Discrete Applied 

Mathematics, 2017, vol. 227, pp. 121–135. https:/doi.org/10.1016/j.dam.2017.04.044
30. Kaneko K., Suzuki Y. Node-to-node internally disjoint paths problem in bubble-sort graphs. 10th IEEE Pacific 

Rim International Symposium on Dependable Computing, 2004. Proceedings, pp.  173–182. https://doi.org/10.1109/
PRDC.2004.1276568



      Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-матэматычных навук. 2025. T. 61, № 2. С. 106–117	 117

Information about the authors

Maksim M. Vaskouski – Dr. Sc. (Physics and Mathe
matics), Professor, Head of the Higher Mathematics Depart
ment, Belarusian State University (4, Nezavisimosti Ave., 
220030, Minsk, Republic of Belarus). E-mail: vaskovskii@
bsu.by 

Hanna A. Zadarazhniuk – Ph. D. (Physics and Mathe
matics), Associate Professor of the Higher Mathematics De
partment Belarusian State University (4, Nezavisimosti Ave., 
220030, Minsk, Republic of Belarus). E-mail: a_zadorozhnuyk@
mail.ru

Aleksey U. Hanimar – Student, Belarusian State Uni
versity (4, Nezavisimosti Ave., 220030, Minsk, Republic of 
Belarus).

Информация об авторах

Васьковский Максим Михайлович  – доктор фи-
зико-математических наук, профессор, заведующий ка-
федрой ФМИС, Белорусский государственный универ-
ситет (пр. Независимости, 4, 220030, Минск, Республика 
Беларусь). E-mail: vaskovskii@bsu.by

Задорожнюк Анна Олеговна  – кандидат физико-
математических наук, доцент кафедры ФМИС, Бело
русский государственный университет (пр. Независи
мости, 4, 220030, Минск, Республика Беларусь). E-mail: 
a_zadorozhnuyk@mail.ru

Гонимар Алексей Владимирович – студент, Бело
русский государственный университет (пр. Независимо
сти, 4, 220030, Минск, Республика Беларусь).


