Becui Hanpisinanpaaii akagomii HaByk benapyci. Cepsist dizika-maTamarsranbix HaByk. 2025. T. 61, Ne 3. C. 183-194 183

ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)

MATEMATHKA
MATHEMATICS
UDC 517.956.32 Received 17.08.2025
https://doi.org/10.29235/1561-2430-2025-61-3-183-194 Hoctymuna B penakiuio 17.08.2025

Viktor I. Korzyuk'?, Jan V. Rudzko', Vladislav V. Kolyachko'

!Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus
’Belarusian State University, Minsk, Republic of Belarus

A MIXED PROBLEM FOR THE WAVE EQUATION IN A CURVILINEAR
HALF-STRIP WITH DISCONTINUOUS INITIAL DATA

Abstract. We study a mixed problem for a one-dimensional wave equation in a curvilinear half-strip. The initial condi-
tions have a discontinuity of the first kind at a single point. The mixed problem models the problem of a longitudinal impact
on a finite elastic rod with a movable boundary. Using the method of characteristics, we obtain the solution in an explicit ana-
lytical form. For the problem in question, we prove the uniqueness of the solution and establish the conditions under which its
classical solution exists.

Keywords: wave equation, mixed problem, method of characteristics, classical solution, matching conditions, conjuga-
tion conditions, discontinuous conditions, curvilinear domain

For citation. Korzyuk V. L., Rudzko J. V., Kolyachko V. V. A mixed problem for the wave equation in a curvilinear half-
strip with discontinuous initial data. Vestsi Natsyyanal nai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk =
Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2025, vol. 61, no. 3, pp. 183—
194. https://doi.org/10.29235/1561-2430-2025-61-3-183-194

B. 1. K0p3l01c"2, 5. B. Pyubxol, B. B. Koasiuko'

1 o

Hucmumym mamemamuxu Hayuonanvnou axademuu Hayk benapycu, Munck, Pecnyonruxa beaapyco
2 o o
benopyccxuil eocyoapcmeennuiil ynugepcumem, Mumnck, Pecnyonuxa benapyco

CMEIIAHHAS 3AJTAYA OJIS1 BOJTHOBOI'O YPABHEHU SI
B KPUBOJUHEMWHON MOJYIIOJOCE C PA3PBIBHBIMU HAYAJBHBIMHA TAHHBIMU

AHHoTanus. M3yuyaeTcs cMellanHas 3a/1a4a Jisl OAHOMEPHOTO BOJIHOBOTO YpaBHEHHS B KpUBOJMHEIHOI nonymnosoce.
HauanpHble yca0BUS UMEIOT Pa3pbiB IEPBOrO POAa B OAHOM Touke. CMelIaHHas 3aa4a MOJACIUPYET 3a/1auy O IPOLOJIbHOM
yAape 0 KOHEUHOMY yIPYyTroMy CTEpPXKHIO ¢ MOABUXKHON rpanuueil. C UCHoab30BaHUEM METO/a XapaKTePUCTHK MOJy4EHO
pelleHe B ABHOM aHAJIMTUUYECKOM BHJe. J[1s paccMaTpuBaeMoil 3a1auu 1OKa3bIBaeTCsl €AMHCTBEHHOCTD PEIIECHUs U yCTa-
HaBJIMBAIOTCS YCIIOBHS, IIPH KOTOPBIX CYIIECTBYET €€ KJIACCHYECKOE PEIICHHE.

KiroueBble cj10Ba: BOIHOBOE YpaBHEHHE, CMEIIIAHHAS 3a/1ada, METOJ] XapaKTePHCTHK, KJIACCHIECKOE PEeNIeHHUE, YCIIOBHS
COTJIACOBAHMS, YCIOBUS CONPSDKCHUS, pa3pBHIBHBIC YCIOBHSI, KPUBOJIUHEHHas 001aCTh

Jas uutuposanus. Kopsiok, B. . Cmemannas 3amada As BOJTHOBOTO YpaBHEHHS B KPHBOJIMHEHHON MOJIymosoce
¢ pa3peIBHBIME HadanbHbIME JaHHBIMHE / B. U. Kop3mok, f1. B. Pyneko, B. B. Konsuko / Becui HanprstHanpHalt akagsmii Ha-
ByK bemapyci. Cepsis (izika-MatomMaTelaHbX HaByK. — 2025. — T. 61, Ne 3. — C. 183—194. https://doi.org/10.29235/1561-2430-
2025-61-3-183-194

1. Statement of the problem. In the curvilinear domain Q = {(t,x) :te(0,0)Ax€E (y(t),l )} , where /
is a positive real number, of two independent variables (¢,x) € O C R?2, for the wave equation

(6;2 —azai)u(t,x)zf(t,x), (t,x)eQ, (1)
we consider the following mixed problem with the initial conditions
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{0, x[0,]),
u(O,X):(P(X), 6m(0,x)=\|/(x)+ Z XE[O,Z], (2)
v, x=I,
and the boundary conditions
u(ty®)=m@), (07 +bdJuth=pa(0), 1e[0,), 3

where a, v, and b are real numbers; a > 0 for definiteness; /s a function given on the set Q; ¢ and y are
some real-valued functions defined on the segment [0,/]; and p, and p, are some real-valued functions
defined on the half-line [0,00). We also assume that

Y€ c! ([0,00)), Y'(t) e (—a,a) forall t€[0,0), lim y(¢)*at ==, 4

t—+0

and the curves x = y(f) and x = / do not intersect.

The mixed problem (1)—(4) models the following problem from the theory of longitudinal impact [1].
Suppose that an elastic finite homogeneous rod of constant cross-section, whose left moving boundary
x =7(9) is fixed, is subjected at the initial moment ¢ = 0 to an impact at the end x =/ by a load that sticks
to the rod. We also assume that an external volumetric force acts on the rod, that the displacements
of the rod and the rate of their change at the initial moment ¢ = 0 are not equal to zero, and that there
are no shock waves in the rod. Then, neglecting both the weight of the rod as a force and its possi-
ble vertical displacements, the displacements u(z,x) of the rod satisfy the mixed problem (1)—(3), where

a= Ep_l, b=SEM _1, where £ > 0 is Young’s modulus of the rod material; p > 0 is the density of
the rod material; S > 0 is the cross-sectional area of the rod; M > 0 is the mass of the impacting load;
—v is the velocity of the impacting load; p, is the external force acting on the end of the rod divided
by the mass of the impacting load. The quantity p,(#) has a physical meaning of function that defines
the movement of the end x = 0 of the rod in the longitudinal direction. The function f'is the external vol-
umetric force divided by p.

In the case

Y()=0, p=p=0, o=y=0, f=0. 6)

J. Boussinesq [2] constructed a formal solution of the problem (1)—(4) using the method of characteristics.
This approach was developed in [3—8]. E. L. Nikolai [4] found a general expression for the solution of the
problem (1)—(5) in the form of a piecewise given function using the Boussinesq method. S. I. Gaiduk [9]
solved the problem (1)—(5) by the method of contour integration [10]. He strictly proved the existence
and uniqueness of a unique generalized solution, but not its physical correctness. A similar mixed
problem, but with a boundary condition (8? + b0, + c)u(t,l) =0 instead of (6,2 +b0y |u(t,l)=0, was
studied in the work [11] by the method of contour integration, where again a unique generalized solution
was constructed and its physical correctness was not justified. X. Yufeng and Z. Dechao [12] obtained
a formal analytical solution in the form of a trigonometric series to a problem that is similar to a mixed
problem (1)—(5), but with the boundary condition u(¢,0)—B0,u(¢,0)=0 instead of u(#,0)=0.
The problem (1)—(5) has also been solved using numerical methods, such as symbolic computations [13]
and the finite element method [14].

When the data is smooth, v = 0, and the half-strip is straight, i. e. y =0, the problem (1)—(4) has been
studied using Fourier series [3, 15, 16] and the method of characteristics [17]. Auxiliary issues related
to the basis property of the system of functions appearing in the Fourier method for the problem (1)—(4)
with y=0 were studied in [18, 19]. Similar problems in curvilinear domains have been considered in
the works [20—22]. Questions related to the stabilization and controllability of solutions to the wave
equations in curvilinear domains have been studied in [23-25].

2. Curvilinear half-strip. Let us note some properties of the domain Q in which the problem is
considered.

Assertion 1. Let (tg,xo) € Q. Then the value xy + aty is nonnegative under the conditions (4).

Assertion 2. Let a€[0,0). Then the equation y(t)+at=a has a unique solution under
the conditions (4).
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Assertion 3. Let ae(—©,0]. Then the equation y(t)—at=0o has a unique solution under
the conditions (4).

Assertion 4. Let (tg,x9)€ Q. Then the curve (t,y(t)) intersects the line x+at=xy+aty at
a single point under the conditions (4).

Assertion 5. Let (tg,x9)eQ and xog—aty<0. Then the curve (t,y(t)) intersects the line
X—at =Xxg —atgy at a single point under the conditions (4).

The proofs of Assertions 1-5 are given in the article [21].

Consider the following functions:

Y+:[0,0)> ¢t y(¢)+at, y-:[0,00)>¢ y(¢)—at.
We also need the inverse of the functions y, and y_, which will be denoted by the symbols ®, and ©_,

respectively, i. e. @, (y(¢)+ at) =t and O_ (y(t) - at) =1t. Such functions exist by Assertions 2 and 3.
From the inverse function theorem, we get the formulas:

’ 1 " 'Y”((D_(t))
q)—(t):,—, (D—(t)z_ , [0500), (6)
Y (®_(1)-a (y’(cI)_(t))—ar)3 y
' 1 " ’Y”(®+(t))
CD+([):,—a CI)+(I)=— > 1 [0,00) 7
V' (©4(t))+a (y'(®+(t))+a)3 - @

Note that the representations (6) and (7) and condition (4) imply that @, is an increasing function and
@ _is a decreasing function.
3. Auxiliary problem. Consider the following simple case

v=0. )
The solution u of the problem (1)—(4), (8) has the form
u(t,x)=w(t,x)+ g(x—at)+ p(x+at), )

where w is a particular solution of Eq. (1). We can take it from the paper [20], it satisfies the homogeneous
initial conditions

w(0,x)=0,w(0,x)=0, x¢€[0,]],

and belongs to the class C*(Q) if, for example, f e C'(Q). Moreover, 87w(0,x)= (0,x) holds for all
x€[0,7].

So, we want to find closed-form expressions for the functions g and p. To do this, we partition the do-
main Q according to the following formulas (for clarity see Figure):

Q(O’O) =0n{(t,x) :x—at€[0,[]nx+at €[0,]},

0 0 {(t,x) : x—at e[y_(1),0] A x+at €[0,1]},

A;
(1'3, 'y(l‘_})) ___________ (13' I)
Q(3‘2)..~..:" ----- Q(’ 3)
. W\ 22 TTeeall
(2, Y2\ o JIDSEE 12
qul) B LTl Q<l.2)
"""""" an T
(r, yrD) 2= oL (1. 1)
o0 :::;(.0:0%::: 0-h
0 [ x

Partitioning of the domain Q
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Q(OJ) :Qm{(t,x) :x—ate[O,l]/\x+ate[1,I+all]},

0 =0 {(t,x):x—at e[y_(n),y_ ()] Ax+at e[l +al; 1,1 +al;1), (10)

where 79 =1y =0, l;=ri+a ' (I-y(r1)), ri=®.(+aliy).

Let us demonstrate the correctness of the partitioning (10) of the domain Q. First, we draw the char-
acteristic of the family x —at = const through the point (7o =0,v(r9) = 0), which intersects the line x =1
at the point (l 1=la 'l ) Next, we draw the characteristic of the family x+ at =const through the point

Li=la™',1 ) According to Assertion 4, this characteristic intersects the curve x=v(¢) at the point

r,Y(r )). At the same time, 7, > 0. Next, we draw the characteristic of the family x —a¢ = const through
the point (rz,y(rz)). This characteristic intersects the line x = / at the point (/5,/) and, by Assertion 5,
does not intersect the curve x = y(f) at any point other than (rz ,y(rz)). Thus, starting from i = 0, we se-
quentially define the points: (/;,0), (rix1,v(ri41))s (is2.0)s (743,7(ri23)), (LivasD), (Fias,v(rivs)) ete.

Let us describe the process of finding points of the form

(o)), (r2i1s¥(r2i1)),  i=0,1,... .

Through the point (/y =0,/) we draw the characteristic of the family x + at =const, which intersects
the curve x = y(?) at one point (r,y(r1)) by virtue of Assertion 5. Now, through the point (r1,7(r1)) we
draw the characteristic of the family x —af = const, which intersects the line x =/ at one point (/,,/) and,
by Assertion 5, it does not intersect the curve x = y(#) at any point other than (rl,y(rl)) according to
Assertion 5. Then through the point (/,,/) we draw the characteristic of the family x+ at = const, which
intersects the curve x = y(f) at one point (}’3,’}/(7"3)) by virtue of Assertion 4. Thus, starting from i =0, we
sequentially define the points: (r;,y(r;)), (li1,0), (Fis2.¥(ri43))s (i3,0), (riv4,Y(risa)) etc.
We will look for the function as a piecewise-defined, i. e.

u(t,0)=u(t,x),  (6.x)e Q7. (1
Because of (9)—(11), we can write
ul™(t,x) = w(t,x)+ gV (x—at)+ pV(x+ar), (,x)eQ"). (12)
We determine the functions g and p© from the Cauchy conditions (2):

X 173
g0 =2 Liy@aerc. xefon (13)

2 2a

x) 17
PO =2 Liy@ae-ci. xelo, (14)

2 2a;

where C, is a real number. The function g” for ie N can be defined from the Dirichlet boundary
condition (3) on the curve x = y(f). We substitute (12), where Q"+/ ) = Q(i’i’l), into (3) and obtain

w(t,y®)+ g (y@) —at)+ pV (y(t) +at) =i (0), telr,nl, ieN
Changing the variable z =v(¢) —at, i. e. t =D _(z), results in the equation
w(®_(2),7(P-(2))+ gV @)+ p" " (W@ (2) +a®_(2) =i (B _(2)), P_(2)elrir], ie,
which we can solve to obtain

g(@)=m(D_(2)-p" P (1(P_(2)) +a®_(2)) - w(D_(2),7(P-(2))),

®_(z)elria,n], ielN (15)

The function p for j €N can be defined from the boundary condition (3) on the line x = /. Again, we
substitute (12), where Q") =0U™) into (3) and get
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a2D2g(j_1)(l —at)+ a2D2p(j)(l +at)+
+b(Dg D1 = aty+ DpD (I + at) + 6xw(t,l)) +02w(t,1) = na(0), (16)
tellig,li], jeN,
where D is the Newton — Leibniz operator. Changing the variable ¢ = a”(z-1) transforms Eq. (16) into

a’D?*p Y (z)+bDp)(z) =

:uz(z"j D¢V (21 -z)-bDgV V(21 - 2) - baxv(z llj atv(z lljs (17)
a a

a

zel[l+ali,l+al;], jeN.
We solve Eq. (17) and obtain

: : z b(l+al -y -
PP @) =pV(+al;+0)+ | exp[—( "le ”)Jx
I+alj— a

(18)

I+al j—1

x{pz (%) —a’D?gU D 21-)-bDg V(21 -F) —b&xv(%,lj - a%v(%,z)}ngdn,

zel[l+al;4,l+al;], jeN.

. - o
X[Dp(])(“'aljl +0)+ _[ a’ exp(ij
a

We choose the values p(j ) (!+aljy+0) and Dp G )(I +al;_1 +0) in the representation (18) by conti-
nuity, 1. e.

pP(+al;+0)=pY V(+al;-0), DpYV(I+al;+0)=DpY (I+al;;-0), jeN. (19)

According to formulas (15), (18), and (19), the following relations hold for all i € N:
A =g (v-(m)=g”(v-0:)=p " (v+ (:) = PV (v+()) =

Z;=L@““Wv(n»—zg“dv(n»=—§{%%%(Dp“”(vwn»—zw“WYAn»)=

~i

vW2

Ag = - p2 (z+1)( (r)) D2 (z)( —(Vi))ZM(DZ (i- 1)( (r)) D2 (z)(Y+(ri))),
(a=v'(r))

A} =p (A +ali) = pO U +al) =0,

A =Dp ™D (1 +aly)— Dp V(I +al;) =0,

Ay =D2p(i+1)(l+al-)—D2p(i)(l+al-)=—D2g(i)(l—a1,~)+ng(H)(l—al,-)—
—aiDg@(z ali)+— Dg(’ V(1 -aly). (20)
By virtue of the expressions /; =r;_ + ail(l —v(r;-1)) and ; =@ (I +al;_;) we have
PV VAV (B VO Caa (1) 6 Vol VU VL B P VEeSD
(a=v'(r)) a

The base of the recurrence relations (21) can be computed using the representations (13), (14), (16), (18)
and (19). So, after some simple calculations, we get
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_5, = v(0) +7'(0)9'(0) —p1(0)
a—v'(0)
~i 1

Ag =85 =———( (11 ()~ w(0)y"(0)=a’¢"(0) +a>¥(0)¢"(0) +7(0) x

(a=v'(0)
x(£(0,0)+2'(0)y'(0) +v'(0)*¢"(0) - f (0) ) -
—a(£(0,0)+2y'(0)w'(0) + ¢'(0)y"(0)+1'(0)*¢"(0) ~ u{ (0)),

_SOD -1 (0) +be'v+ae"().

612

~0
Ay =80 =pn1(0)-(0), Ag

b

~0 ~0

The following assertion holds.
Assertion 6. Let the smoothness conditions

peC([0,0]), weC'([0,1]), w eC*([0,), w2eC(0,0), yeC*([0,0), feC'(Q) (23)
be satisfied. Then the functions g and p, defined by the formulas (13)—(15), (18), (19), and
g(2)=g"), zel00], g(z)=g"(z), ®_(2)elrin]l, ieN,

; 24
p(z):p(o)(z), ze[0,1], p(z):p(’)(z), zel[l+aljy,l+al;], jeN @4
are twice continuously differentiable if and only if the following matching conditions are satisfied
11(0) - 9(0) =0, (25)
11(0) =y (0) +7'(0)¢'(0) =0, (26)
KI) (@ +((0))° 0 (0) = /(0.0 -2/ (0w ()~ V' (0)¢'(0) =, @n
12(0) = £(0.) = bg'(0) — a’¢"()) = 0. (28)

The proof is based on the formulas (13)—(15), (18), (19), (21) and (22). Using the method of mathe-
matical induction, we will first demonstrate that

g(i)eCZ(’}D(g(i))), p(i)eCZ(’i)(p(i))), i=0,1,....

Indeed, if p Cz([O,I]), Y e Cl([O,Z]), then, according to the expressions (13) and (14), g(o) € Cz([O,Z])
O ec? ([0,1]). Thus, we have proved the base case of induction. Now suppose that
g"eC’ (D), pPec’(92(p")

are true for some nonnegative integer i. In this case, if the conditions (23) are true, then according to
the representations (15) and (18) we have

g™ eC?(ly-G)y-(a)), p"V eCP (U +aly,l +alin]).

Therefore, we have proved the induction step. The function g is twice continuously differentiable
everywhere except perhaps at the points y_(#;), i=0,1,..., and the function p is twice continuously
differentiable everywhere except perhaps at the points /+al;, i=0,1,... . For the functions g and p to
be twice continuously differentiable everywhere in the domain of definition, it is necessary and sufficient
that the following conditions are satisfied:

and p

. ~ ~i . -~ ~i
Ay =AL=Ag=AL=AL=A,=0, i=0,1,.. (29)

According to the discontinuity representations (21) and (22), the conditions (29) are true if and only if the
matching conditions (25)—(28) are satisfied. The assertion is proved.
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Assertion 7. The functions g and p defined by the formulas (13)—(15), (18), (19) and (24) are of
the form g =g +Cy, p=p—Ci, where g and p are some functions not depending on the constant C,.

Proof. We will prove the theorem using the method described in [26, p. 179]. We will apply
the method of mathematical induction. According to the formulas (13)—(15), the expression holds

gV =g+, pPw=p"w-0, xel0,1],

where

509 _ 1 ¢
g (x)= 5 2a(f)\v(é)d§, xe[0,7],

ﬁ(o)(x):M 1

5 +Z£\y(§)d§, x €[0,1].

Thus, the base case of induction is proved. Now, let us assume that the relation
g"=g"+c, pU=p"-a, (30)
is true for some i € {0} U N. According to the formula (15), we have the following representation:
g"@=g"+C, O_(2)elnnl,
where
g @)= (®-(2)- PV (1(0-(2) + a®_(2)) - w(®-(2)¥(®(2))+ C1. ®_(2) €lri.rin]

In turn, the formulas (18) and (19) imply that

P @ =p" )+ Cr. O_()ell +alil+ali],

where

@) =p VU +al+0)+ | exp(—b(”“i"‘”)jx

I+al; a
. n _I—al _ . .

X[Dﬁ(l+1)(l+ali+0)+ J' exp(—b(f’ 12 al’)]a_z{uz(_g lj—azng(l)(Zl—E))—ng(l)(Zl—é)—

I+al; a a

— 2 —
—bé—w(‘g Z,zj—a W(E’ Z,zj de |dn, ze[l+alil+ali)
ox\ a ot a

Thus, the induction step is proven. Consequently, the expression (30) holds for all i € {0} U N. Therefore,
we can define the functions g and p as follows

g=g+C, p=p-Cy,
where
2=, zel0.0],
§2=3"0), o-(elrnl, i=12.,
p(2)=p"). zelo.],
p(2)=pVz), zell+aly,l+al;], j=12,...

The assertion has been proven.

Theorem 1. Let the smoothness conditions (23) be satisfied. The mixed problem (1)—4), (8) has
a unique solution in the class C? (Q) if and only if the matching conditions (25)—(28) are satisfied. This
solution is determined by the formulas (11)—(15), (18), (19).



190 Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2025, vol. 61, no. 3, pp. 183—194

Proof. Assertions 6 and 7 imply the existence of a solution. The uniqueness of the solution stems
from its construction and Assertion 7 because it is derived from the general solution. Assuming there
are two solutions to the problem (1)—(4), (8) implies that the difference between them satisfies the homo-
geneous equation (1) and the homogeneous conditions (3) and (4). Formulas (11)—(15), (18), and (19), as
well as Assertion 7, show that the homogeneous problem has only a zero solution. These results prove
the uniqueness of the solution to the problem (1)—(4).

4. Main problem. Since in the general case y ¢ C'([0,/]), the problem (1)—(4) has no solution be-
longing to the class C Z(Q), 1. e. the problem (1)—(4) has no global classical solution defined on the set
0. However, it is possible to define a classical solution on a smaller set O \ T that will satisfy Eq. (1) on
the set O \ T in the standard sense and some additional conjugation conditions on the set I

Definition. A function u is a classical solution of the problem (1)—(4) if it is representable in
the form u =u; +u,, where u, is a classical solution of the problem (1)—(4) with v =0 and u, satisfying
the Eq. (1) with f =0, the initial conditions u;(0,x)=0,u,(0,x)=0, x€[0,/], the boundary condi-
tions (3) with p; =p, =0, and the following matching conditions

[(u2)" =) 1t x=y_(r;)+at)=0, i=0,1,.., (31)
()" —(u2) Jt,x=1+al; —at)=0, i=0,1,.., (32)

[(Buz) = (@) N(t,x=1+al; —ar)=C?, ieEven[NuU{0}],

_ (33)
[(Buz)" —(@uuz) Nt,x=1+al; —at)=0, iecOdd[N],

where C (i), i=0,1,..., are some constants;
Even[Q]={x :xe QAx=0(mod 2)},

and
0dd[Q]={x :xe Q Ax=1(mod 2)}.

Theorem 2. Let the smoothness conditions (23) be satisfied. The mixed problem (1)—(4) has
a unique solution in the sense of Definition if and only if the matching conditions (25)—(28) are satisfied.

Proof. According to Theorem 1, under the smoothness conditions (23), the “smooth” part of
the solution, i. e. the function #, from Definition, exists and is unique if and only if the conditions (25)—
(28) are satisfied. The “discontinuous” part of the solution, i. e. the function u, from Definition, can be
defined by the formula

uy(t,x)= gg) (x—at)+ p,gj) (x+at), (t,x)e Q(i’j), (34

where
2P =pPx)=0, xe[0,1], 35)
(@) =-pi M (y(®_(2))+a®_(2)), D_(2)€[r1.ii], ieN, (36)

. . z b(l+al: — _ (-D ;
p(2)=pY Vi +al i -0)+ | exp[%j{@,il—l)(”a[ﬁl_0)+w_

l+al j1 a

~ | e exp(wj(azDz gV 21-g)+bDg V(21 - é))d&}dn, (37)

I+al j1 a

ze[l+aljy,l+al;], jeN,

where X odd is an indicator function of a set Odd[N]. The formulas (34)—(37) can be derived in the same
way as (11)—(15), (18) and (19). Let us write this out in more detail. First, we construct the function u,
from the general solution of Eq. (1) with f =0. It has the form
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ur(t,x) =g (x—at)+ pP (x+at), (t,x)eQ®), i=0L.., j=0L..i-j<1. (39

Here, the functions g,ﬂi) and ﬁii) (i=0,1,...) are piecewise twice continuously differentiable functions.
From the homogeneous Cauchy conditions (2) with ¢ =y =0 it follows [26, p. 174—175]

g0(x)=Cy, xel01], (39)
@) =-C1, xelo0.], 40)

where C is a real integration constant. The functions gN,Ei) forall i € N are determined from the Dirichlet
boundary condition (3) with p; =0. For a fixed positive integer i and j =i —1, we substitute the general
solution (38) of Eq. (1) with /' =0 into the boundary condition (3) with p; =0 and obtain
g0 (v@y—at)+ pSV (y(0) +at) =0, telri,n), i=0,1,....
Using the results of Section 3, we arrive at the following equality:
@) =-p 7V (y(@-(2))+a®_(2)), P_(2)elni,n], i=12,... @1
Similarly, we define the function ﬁ(j ) for all jeN:

< - z b(l +al;s -
p(2)=p (I +al i +0)+ | exp[—( 61121 n)Jx
a

I+al j1

. n ] —ql:
x[D[?iJ)(l +al; +0)+ [ exp (M}z_z x
a

I+al j—1

x{pz[%j—azngij_l)(Zl—&)—bD§£j_])(2l—§)}dé';]dn, zell+al,yl+al;], j=12,.. 42

Here the values p,ﬂf )(l +al;1 +0) and Di),gj (1 + al ;1 +0) in the representation (42) must be chosen so
that the matching conditions (32) and (33) are satisfied. From the representation (38) it follows

[(u2)" —(u2) Nt x=1+al; —at)=pY V(I +al; +0)- p V(I +al; -0), j=0,1,..,

+ —
H&g_fj —(a;‘—:) }(r,x=l+alj—at)=aD[7,£j+1)(l+alj+0)—aD[7,£j)(l+al_,~+0), i=0,1,....

So, we need to choose

P +al; 1 +0)=pY V(I+al;-0), j=1,2,.,
Dpi (U +aljy+0)=DpY V(I +al; 1 —0)+a ' CYU ™Dy 04()y j=1,2,....

Similarly to Assertion 7, it can be shown that the functions g,,(f ) and pﬁj ) have the form
g =g+, pP=p -G, j=0,1,.,

where gij ) and p,Ej ) are some functions that do not depend on the constant C; and are determined by
the relations (35)—(37). Therefore, since the expression (38) does not depend on the constant C; then

the constructed solution is unique and it is expressed by the formulas (38)—(42) when C, =0, i. e. by
the formulas (35)—(37).

The fulfillment of the conjugation conditions (31)—(33) is verified directly. Let us demonstrate this
with the condition (31) fori =1, i. e.

[(2)" = (u2)"1(t,x =at) =0. 43)
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The formulas (34)—(36) imply the representations (u>) " (¢,x =at)=0 and (u>)” (¢,x = at) = 0. These
equalities yield [(u2)" —(u3)~](t,x =at)=0. It proves the condition (43). The remaining conjugation
conditions are verified similarly. The fact that the functions gii) and pf ) i=0,1,.., belong to classes
c? (@( gii ))) and C? (CD( pf))), respectively, as it is established analogously to Assertion 6, allows us to

conclude that the function u, belongs to the class C 2 (Q(i’j )) forall ie{0}UN, je{0}UN, [i—; | <1,

and satisfies Eq. (1) on the sets Q(i’j ) with f =0. The fulfillment of the initial and boundary conditions
also follows from the construction, since the functions g,Ei) and p,x(f), i=0,1,..., are chosen so that
the homogeneous initial and boundary conditions are satisfied. The theorem is proved.

Remark 1. The solution to problems (1)—(4) is not uniquely defined. Specifically, we must specify
the constants C?” for all i e Even[N].

Remark 2. According to Theorem 2, any choice of the constants C?, i € Even[N], uniquely de-
termines the solution.

5. Physically correct solution. By a physically correct solution we mean one that correctly de-
scribes the impact process. The following statement holds.

Assertion 8. Suppose Dy(r;)=0 for all ieEven[N]. Then, we can set C” = v and obtain
a physically correct solution in Theorem 2.

The proof of Assertion 8 is given in the paper [27].

The following theorem describes a more general case of Assertion 8.

Theorem 3. Ifwe set

(@) zvi/z a+vy'(raj-1)

j=14a —Y’(sz'—l)

c , ieEven[NU{0}], (44)

then a solution of the problem (1)—(4) constructed in Theorem 2 is physically correct.

Proof. The conditions (30) and (31) are derived from the continuity. Therefore, we only need to
show the correctness of the condition (32) under the conditions. At the initial moment ¢ = 0, the rod is
subjected to an impact at the end x = /. It generates the shock wave that spreads along the characteristic
x + at = [. Its velocity must satisfy the following condition

[(Cu)" —(©@u) |(t,x=1—at)=v.

It proves (44) for i = 0. For the derivation of the previous equality, we refer the reader to our paper [28].
Furthermore, when the rod reaches its endpoint, it is immediately reflected and propagates along
the characteristic at a speed that we cannot set but can calculate as follows:

[(atu)+ _ (atu)_](t,x =y_(n)- at) —y a+ y/(l’]) ‘
a-y'(n)
Interacting with the moving end of the rod changes its velocity. Since waves propagate at the same speed

in elastic rods [29], we should have
(@) — @) Yt.x =1 +als —at) =[@uu)* — @) (t.x=7-(n) —at) :%8
a—="7n

It proves (44) for i = 2.
We will prove it further using the method of mathematical induction. The base case has been proven.
Now, let us prove the induction step. Assume that we have
i2 g4y (r i
(@) — (@) tox =1 + al, — ar) =v[ ] L0220
j=1a4=Y (’”2j—1)

for some i € Even[N]. The wave that moves along the characteristic /+al; —at will be reflected from
the end x =y(¢) of the rod and its speed will become equal to
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a+y' (i) I3 a+y' () _ vl”/z a+y'(rj1)

o) =) 1(t,x=y_(rin)—at)=
(@)™ ~@an Wt =v-Cu)=at)=v o T ™ e

according to the formulas (34)—(37). The wave propagates at the same speed in elastic rods, so

[@ut)" — @) Ntsx =1 + aliss —at) =[@t0) — (@) Y(tsx =7 (o) —at) =v [ o2,
j=1 =Y (7”2]'—1)

The induction step is proven. Thus, we have proven the physical correctness of the condition (33) for all
ie Even[N U {0}] when the equalities (44) are satisfied. Since there were initially no shock waves in
the rod, no shock wave propagates along the characteristics

x=at, x=l+ali—at, x=y_(n)+at, x=Il+aly—at, x=vy_(ry)+at

etc,i.e. x=y_(ry)+at and x=1+aly, —at, i=0,1,.... It proves the physical correctness of the con-
dition (33) for all i € Odd[N].

Conclusions. In the present paper we have obtained the necessary and sufficient conditions under
which a unique classical solution of a mixed problem exists for the wave equation with discontinuous
conditions in a curvilinear half-strip. We have constructed the solution in an implicit analytical form.
We have proposed a method for constructing solutions to mixed problems for hyperbolic equations with
discontinuous conditions in curvilinear domains.
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