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Abstract. The article is devoted to the orthogonal regression analysis, which is associated with the representation of
the regression function by Fourier series by the multidimensional-matrix (mdm) orthogonal polynomials, in opposite to
the (usual) regression analysis, when the regression function is approximated by the (usual) polynomial (by the degrees of
the independent mdm input variable). We will also distinguish the classical regression analysis, when the scalar or might
the classical vector-matrix mathematical approaches are used, and the mdm regression analysis, when the mdm variables
and the mdm mathematical approach are used. In this article, the orthogonal regression analysis is developed on the base of
the orthogonal polynomials and the mdm mathematical approach, so called the mdm orthogonal polynomial regression anal-
ysis. The known results from the theory of the orthogonal mdm polynomials and Fourier series of the vector argument are
generalized to the case of the mdm argument and function. The analytical expressions for the coefficients of the second degree
orthogonal polynomials and Fourier series for the potential studies are obtained. The general case of the approximation of
the mdm function of the mdm argument by the Fourier series is realized programmatically as the single program function and
its efficiency is confirmed by the computer calculations. The properties of the estimations of regression coefficients and un-
known parameters are studied and their distributions when the normal distribution of the measurement’s errors are obtained
for the arbitrary covariance matrix of the errors of measurements and the arbitrary degree of the approximating polynomial.
These results allow testing the hypothesis and building the hyper-rectangular confidence areas relating the orthogonal regres-
sion function. Theoretical results are confirmed by computer simulation.
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B. C. Myxa

Benopycckuii 2ocyoapcmeennuiil ynuéepcumem ungopmamuxu u paouodrexkmponuru, Muncxk, Pecnyoauxa beaapyco

OPTOI'OHAJIBHBIN IIOJIMHOMMAJIBHBIIA MHOIT OMEPHO-MATPUYHbII
PETPECCUOHHbINA AHAJIU3

AnnoTtanus. Mccrenyercs OpTOroHa bHBIN PErpeCCHOHHBIN aHAH3, CBI3aHHBIN C IpeACTaBIeHHEeM QyHKIUN perpec-
cun psagoM Pypbe M0 MHOTOMEPHO-MAaTPHUHBIM OPTOTOHANBHEIM TOJUHOMAM, B IIPOTHBOIMOIOKHOCTE OOBIYHOMY perpec-
CHOHHOMY aHalu3y, KOraa (pyHKIUS PErpecCHH amMpOKCUMUPYETCs OOBIYHBIMH MONMHOMAMHM (CTEMEHSMHU HE3aBHCHMOM
BXOJIHOW MepeMeHHOH). byeM pa3mmuaTe KIacCHUECKUN PETPEeCCHOHHBIN aHallW3, KOTAA UCTONB3YIOTCS CKAISPHBIN HIIH,
BO3MOJKHO, KJTACCHUECKUII BEKTOPHO-MATPHIHBIH MAaTeMaTHUSCKUH TOAXOBI, I MHOTOMEPHO-MAaTPHYHBIH PETPEeCCHOHHBIH
aHaJIN3, KOT/Ia HCHOJIB3YIOTCSl MHOTOMEPHO-MaTPHYHBIE IEPEMEHHBIE 1 MHOTOMEPHO-MaTPUIHBII MaTeMaTHIECKUH TTOXO/.
B crartbe pazpabarbiBaeTcs OpTOrOHAIBHBIN PErPECCHOHHBIN aHAJIN3 HA OCHOBE OPTOTOHAIBHBIX MOJIHHOMOB M MHOTOMEp-
HO-MaTPUYHOI'0 MaTEMaTHYECKOro I10J1X0/1a, TAK Ha3bIBAEMbII OPTOrOHAIbHBIH MHOIOMEPHO-MATPUYHbBIN IOJUHOMUATBHBIN
perpeccUoHHbI aHanu3. 3BecTHbIE Pe3yabTaThl TEOPUU OPTOrOHAJIBHBIX MHOTOMEPHO-MATPUYHBIX IOJIMHOMOB U PsJIOB
®Oypbe BEKTOPHOT0 apryMeHTa 0000LIaloTCsl Ha ciydyail MHOrOMEpHO-MaTPUYHBIX aprymenTa u GyHnkiuu. [lonydyensr ana-
JIMTUYCCKUE BbIPAXKCHUA KOSq)(bHLIHCHTOB OpPTOTrOHAJIBHBIX ITOJJMHOMOB U PsJ10B (I)ypbe a0 BTOpOI‘/'I CTCIICHH JJIs1 BO3MOXHBIX
AQHAJIMTUYECKUX HccienoBannil. [IporpaMMHO peasin3oBaH O0LIHiA clydail annpoKCHMAIlMi MHOTOMEPHO-MaTPUIHOM (QyHK-
IIMM MHOTOMEPHO-MATPUYHOr0 aprymMeHTa psagamu @ypbe B BUJIe €AMHUYHOM porpaMMHoi GyHKINY, U ee 3G(HeKTUBHOCTD
MOATBEPKACHA KOMITBIOTEPHBIMH pacdeTaMu. M3ydeHs! cBOHCTBAa K03(h(HUIIMEHTOB PErPEeCCHN U HEN3BECTHBIX NApaMETPOB
U UX pacupeAesieHHs IPH HOPMAJIbHOM paclpeAeleHHH OUTMO0K U3MEPEHHH ¢ MPOU3BOIBHON KOBapHAIlHOHHON MaTpHIeH
JUTSL TIPOU3BOJIBHBIX CTETIEHEH allpOKCHMHPYIOMHX MOINHOMOB. [lomydeHHbIe pe3yabTaThl MO3BOISIOT MPOBEPATH T'HIIO-
TE€3bl U CTPOHUTH THIIEPIPSIMOYTONbHBIE JOBEPHTEIbHBIE HHTEPBANBI, OTHOCAIINECS K (GYyHKIHUU perpeccun. TeopeTHueckue
pEe3yABTaThl MOATBEPKACHBI KOMITBIOTEPHBIM MOJICTUPOBAHHUEM.
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KuroueBble ciioBa: MHOrOMEPHO-MaTPUYHBIE OPTOrOHAIBHBIC OJIMHOMBI, MHOTOMEPHO-MaTpHuHbIe psiasl Dypbe, op-
TOrOHAJIBHBI MHOTOMEPHO-MATPUYHEIH PerpecCCHOHHBIN aHaIN3
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Ne 3. — C. 203-230. https://doi.org/10.29235/1561-2430-2025-61-3-203-230

Introduction. The most important tool for research of the real systems and processes is the regres-
sion analysis. We will distinguish the classical regression analysis, when the scalar or might the classical
vector-matrix mathematical approaches are used [1, 2], and the mdm regression analysis, when the mdm
mathematical approach is used [3, 4]. The regression function is approximated in these cases by the poly-
nomials in vector-matrix or mdm forms respectively. The approach is also possible when the regression
function is approximated by Fourier series by the mdm orthogonal polynomials. Such a regression and
regression analysis we will call orthogonal. In this article, we will deal with the mdm orthogonal regres-
sion analysis, i. €. with the orthogonal mdm polynomials, mdm Fourier series and the orthogonal mdm
regression analysis.

The theory of the orthogonal polynomials of both one and several arguments dates back to
Hermite [5]. Hermite in [5] and then Appel P. and Kampe de Feriet in [6] studied in details the proper-
ties of the so-called Hermite polynomials of one and two variables. The general theory of the orthog-
onal polynomials of many arguments is developed in the work [7]. As for the works [5—7], this theory
is constructed as the theory of two bi-orthonormal sequences of the polynomials: basic and conjugate.
In the work [8], it is proposed to choose a polynomial with the unit coefficient at the highest degree
as the basic polynomial. This cited theory of the orthogonal polynomials of the several arguments us-
es only the scalar (classical) mathematical approach, and we will call it therefore the classical theory.
The classical theory can be found also in [9, 10].

The foundations of the theory of multidimensional matrices were laid in the work [11] and devel-
oped in the work [12]. The ideas of the works [7, 8] were combined in the works [12, 13] on the basis of
the mdm mathematical approach. This is how the mdm theory of orthogonal polynomials and Fourier
series of the vector argument arose. In the work [14], the general theory of the orthogonal polynomials
and Fourier series of the vector variable was extended to the vector spaces with the discrete weight.

In the article [15], the theory of orthogonal mdm polynomials and Fourier series is developed in
the direction of its practical use. Contrary to the works [12, 13], the case of mdm functions is consid-
ered, and the analytical expressions for the coefficients of the second degree orthogonal polynomials and
Fourier series of the vector argument are obtained.

In the current article, the theory of orthogonal mdm polynomials and Fourier series is generalized to
the case of mdm functions and mdm arguments. The constraints of the work [4] such as the covariance
matrix of the errors of measurements proportional to the identity matrix and the linear regression func-
tion with respect to the input mdm variable are removed.

Since the theory is created on the basis of mdm mathematical approach, the mdm notation is used
in the current article. The basic definitions of the theory of multidimensional matrices in English can be
found in the Appendix to the article [16] and in the article [15].

1. Orthogonal polynomials and Fourier series of the multidimensional-matrix variable.

1.1. Orthogonal polynomials of the multidimensional-matrix variable. Let Q) be some closed re-
gion of the space R", p(x), x € Q, be nonnegative function (weight function) such that the integrals (the
moments of the weight function p(x))

v.i=[x'p(x)dx <o, i=0,12,..,
Q
exist, and L;(p,Q2) be the space of the functions with integrable square in Q with the weight p(x). Here
x is the g-dimensional matrix of the size ny xny x---xng, n=nmny---ny, x' is (0,0)-rolled degree of the
g-dimensional matrix x: x'= 0.0 (x")= 0.0 (x-x---x) [12, 16]. We will denote the argument x as
xX=(Xji j20jg)s Ja =L2,sng, 0=12,..,q, oras x= (x7), where j = (J15J25->J¢) 18 the g-multiin-
dex. It is supposed that the values of the g-multiindex j =(jy, j2,..., j,) are ordered in some way and
take the values 1,2,...,n with n=mnn;---n,. We will call the numbers (n,n2,...,n,) as the size of
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the matrix x, or as the size of the g-multiindex j = (jj, j2,...,jq). The number n=nin;y---ng we will
call the length of the g-dimensional matrix x or the length of the g-multiindex j = (ji, j2,..., jq)-

The theory of orthogonal polynomials of the mdm variable is created as the theory of two bi-ortho-
normal sequences of polynomials.

A mdm r degree polynomial Q,(x), r=0,1,2,..., of the g-dimensional-matrix variable xeQ is
defined as follows [11, 12]:

0, (x) = i O,kq(c(*r,kq)xk): i O’kq(kafkq,r))a 1)

k=0 k=0
where C(*r,kq) are the (r + k)g-dimensional matrices of the coefficients,
* *
Clrigy =(Ch i )o 7=0L2ms k=027,

is symmetrical with respect to the g-multiindices i,...,i, when r > 2, symmetrical with respect to the
g-multiindices j,..., j; when k> 2 and satisfying the conditions

Clrig) = (C;kq,r) . Clign = (C(*,,kq))

The notations H(,15)g.kg and B(-1k)qky mean the transpose substitutions of the types “back” and
“forward” respectively [12, 16]. Each of the multiindices i,...,i-, ji,..., j; takes the values 1,2,...,n
with n=nny---ny.

)H(Hk)q,kq B(k+r)q.kq

In the notations C(*,,kq) and C(*kq,r), the index » means the degree of the polynomial, and the index
kg means that it is the coefficient for x*.

Definition 1. The sequence of the mdm polynomials Q,(x) (1) is called orthogonal in L,(p,Q2) if
the following conditions are satisfied:

0, k=0,L..r-1,

[0 (00: (p()ds f&o o @

b

Two sequences of orthogonal polynomials of the mdm variable are considered: the basic sequence
P .(x) and the sequence Q,(x) conjugate of P.(x), »r=0,1,2,... .
Definition 2. The mdm r degree polynomial in L, (p,Q2), r =0,1,2,..., of the following form

r—1 r—l1

Po(x)= X M(Clrsgr® ) +x" = X 46k Cpag )+ 7 3)
k=0 k=0

is called the basic polynomial, where C, ;. are (r + k)g-dimensional matrices of the coefficients,
Cirig) = (071,~~-,7z‘,71,-~~,7k ), r=0,12,.. k=0,12,..,r-1,

is symmetrical with respect to the g-multiindices i,...,i. when » > 2, symmetrical with respect to
the g-multiindices 7j,..., j; when k > 2 and satisfying the conditions

H(r+k)q ke _ (" Bk+r)q.k
Cirikg) = C(k(;,:) ke, Cikgr) = C(r(,k;) ke
Definition 3. The mdm polynomial P, (x) (3) is called the basic orthogonal » degree polynomial
in L,(p,Q) if it is orthogonal to the homogeneous polynomials 1, x,x2,,x 7 Xk =00 (xk ):

=0, k=0,,.,r-1,

[ P (x)x*p(x)dx {_
Q

4
#0, k=r. @

Definition 4. The sequences of the mdm polynomials P,(x) (3) and Q.(x) (1) are called com-
pletely orthonormal in L,(p,Q) if the conditions (2), (4) are satisfied and the following condition:

0, k#r,

5
rE®0,rq), k=r, ©)

_[ O, (X)Pk (x)p(x)dx :{
Q
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is satisfied too. Here E (S)(O, rq) is the symmetrical (0,rg)-identity matrix [12]. The matrix E (S)(O, rq) is
the 2rg-dimensional matrix which has such a property that for any mg-dimensional matrix
C=(C7,..5nr.J1.j, ) With m > r symmetrical with respect to the multiindices J, j2,..., j, the following
equality is fulfilled [12]: *"7(CE™)(0,r¢q))=C.

Remark. This definition is new compared to the author’s previous works. In this definition, the no-
tion of the symmetrical (0,r¢)-identity matrix E‘)(0,rg) is used. This made it possible to generalize
the theory to the mdm argument.

Let us introduce the initial i-th order moments v ; and the initial-central and central-initial (i + /)-th
order moments Vs Vi of the weight function p(x):

Vo= Ip(x)dx,
Q

inxj :vxi+j = Ixi+jp(x)dx, l+]:1’2,’ (6)
Q

inng :gj;xi(xj _ij )p(x)dx, i+j= L2,..., (7)

Vg =[G =y Dxp(dx, it =12, ®)

Q

where x', x'(x/ V) (x' —V. )x’ are (0,0)-rolled degrees and (0,0)-rolled products of the matri-
ces [12]. We will often avoid the notation (0,0)-rolled product and will write yx instead of **(yx).
The moments (7), (8) have the following properties:

inxg = vxéxj = Vxéxg - Vx”-j —inij ’ (9)

Big+jq.iq
xexg ( xgxt ) x/H x/ Xt

where Big jq,iq 1s the transpose substitution of the type “forward” [12]. These properties are proved by
calculation of the formulae (7), (8). The properties (9) allow us to use the following notations:

Mo =Voies =VaV s B =V e =V Y s W = () T
Let us introduce also the mutual moments
Vi = [ ¥ (0)x p(x)dx (10)
Q
with the properties
Vi =V i =V = g{yi(x)(xj =V PN =V i =V Y S

The weight function p(x) in the case v o =1 represents the probability density function of some ran-
dom g-dimensional matrix &.

Theorem 1 (generalization of the theorem [12]). If the sequences of the mdm polynomials P ,(x)
(3) and Q,(x) (1) are completely orthonormal in L,(p,Q), i. e. they satisfy the conditions (2), (4), (5), then
the coefficients C,;, of the basic r degree polynomial P,(x) (3), r =0,1,..., are defined by the following
mdm system of the linear algebraic equations

r—1
0,k .
Vo +kz:0 q(C(r,kq)kaxi)ZO, i=0,1,..,r—1,

where i is the number of the equation, and the coefficients C Ek,,kq) of the conjugate r degree polynomial
0,(x) (1) are defined by the expression

0,rq _
Clragp=r"" ("Bt Corkay )
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where " B(_rl,r) is the matrix (0,r)-inverse to the following matrix B -

r—1r-1

r—l1 r—l1
0,k 0,k 0, ki 0,s
B(r,r) :erxr +k§0 q(C(r’kq)kaxr )+k§0 q(erxk C(kq’r))—i_lgbg q(C(r,kq) 9q(kast(sq,r))).

The coefficients C, ,, of the basic r degree polynomial P,(x) (3), r =0,1,..., are defined by the following
mdm system of the linear algebraic equations:

r—1 0,kgq )
V. ir +kz‘b (Vx,‘ka(kq,r))=0, i=0,1,..,r—1,

where i is the number of the equation, and the coefficients C (*kq,r) of the conjugate r degree polynomial
0.(x) (1) are defined by the expression

* 0,rgq _
Clign=r'" (Cugn *Bin )

1.2. Fourier series by the orthogonal polynomials. Fourier series for the p-dimensional-matrix
function y(x) of the ¢g-dimensional-matrix variable x e Q < R" by the conjugate orthogonal polynomials
0.(x) (1) has the following form:

© 1 0,rq

© 1 o,
o~ % (B(pr)0r(x)) = > 0

(Or By ) (1)

where Bprq) =Bji..; p,fl,...,fr) are (p + rg)-dimensional symmetrical when » > 2 with respect to

the multiindices #,...,;, matrices of the » degree of the coefficients, Birg.p) = (B(p,rq) )B’”"””’ . They are
defined by the expressions [12]

Bprgy = (Y0P (x)) p(x)d. (12)
Q

Substitution of the polynomial P,(x) (3) into (12) gives the following expression for the coefficients B, .’

0,0 r=1
Bipray =] ()P () p()dx = | (y(x)[x’ > K (x* Clag )Dp(x)dx:
=0

Q Q
r=1 =l
r ki ) k _ N.¢ _
£ B (x|, ¢ 8Os Can) r012

Fourier series by the basic orthogonal polynomials P,(x) (3) is obtained analogously:

&1 or © 1 o
)~ 2= (@ P (0) = X (P ()0 ) (13)
r=07" r=07-
where
0,0
L(p,rg) = J. (y(x)Qr (x))p(x)dx (14)
Q
Since
0.rg 0,r p—1
Or(x)=r! (Pr(x) ’ B(r,r)),
then

O(prq) = gjz 0.0 (¥(x)0,(x))p(x)dx = r!gj; 00 (y(x) 019 (P.(x) O’rqB(_r{r)))P(X)dx =

0,rq 0,0 _ 0,rgq _
=] (" @R ) B Jods =t (B B ) 1 =012,
Q
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Approximation of the scalar (zero-dimensional-matrix, p = 0) function y(&) of the random ¢-dimensional
matrix & with the probability density function p(x) by the finite sum of the Fourier series:
no] 0,rq

Sm(E.a): Z

:0!"!

o] 0,rq

(B(p,rq)Qr (E.a)) (a(p,rq)Pr (&))

r:0r!

provides the minimum of the mean square error (m.s.e.) of the approximation

0,0 2 0,0 2
= E(" (1@ =50 ®)7 )= [ ** (50 =5 (x))” p)d:
Q
The minimal value Fmmin of the m.s.c. is defined by the expression [12]
mo]
Famin = E(*(©)) - X0 (Birripra )

where £(*) means the mathematical expectation by the weight function p(x).

1.3. The polynomials orthogonal with the discrete weight function. The theory of the polynomi-
als orthogonal with the continuous weight function p(x) outlined above coincides with the theory of
the polynomials orthogonal with the discrete weight function (p,,x;), when the / distinct points are given
in the region Q < R" with positive weights p1, p2,..., p; and the measure p of the region Q is defined by
the formula p(Q) = ZXk <o Pk [14]. One talks in this case about the polynomials orthogonal on the sys-
tem of the points. The moments (6) are defined in this case by the expression:

L Lo
=V ey = Ix’”duz >xUpk, i+j=12,..,
Q

inxj =1

and the mutual moments (10) are defined by the expression

. . Lo
Vi = g{y’(x)xjdu = ]{Z::ly;{x,ipk, i+j=12,..,
where y; = y(xg), k=12,...,1.

We will call the discrete weight function with v o =1 as the discrete distribution of some random
variable & The important discrete distribution is so called empirical, or sample distribution, when x; are
the sample values of a random variable &, and p; =1//, where / is the length of the sample. If the empir-
ical distribution is used, then the approximation (11), (13) is called empirical.

The orthogonality conditions (2), (4), (5) of the polynomials for the sample distribution as the weight
function look like:

14 00 0, k=r,
=500 P (x) P (x))) = 15
2" (B Rn) {io, e (15)
14 00 0, k=,
l; (Qr(XI)Qk(Xl))_{;tO, kIl”,

0, k#r,

(16)

~ | —

L 0,0 ‘ N
2O, PL) {F!E(S)(O’rq)’ e

In this article, we will deal with the polynomials orthogonal on the system of the points, and, there-
fore, with the empirical approximation.

1.4. The multidimensional-matrix polynomial approximation by Fourier approximation. It is of
interest to obtain the coefficients ¢, ,,, of the approximation of p-dimensional-matrix function y(x) by
the mdm m degree polynomial:

Y@~ Y (et (17)
k=0
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in the case when Fourier approximation by the basic orthogonal polynomials P,(x) (13) the same degree
of this function is obtained

no1 0k
()~ Y — (g Pr (X)) (18)
k=0 k!
We will call the approximation (17) as the representation of the function y(x) by the degrees of
independent variable x, and the approximation (18) as the representation of the function y(x) by
orthogonal polynomials.
The polynomial P,(x) of the fixed degree k provides in the expression (18) the following summand:

k

0,kq

1 o0k 1 koo i 1 o, i

= @ P®) == || X (Coinx’) | |= 2= 4 M @ Cirin)x ) (19)
k! k! bar Sok!

The variable x of the degree r, r < k, appears in the expression (19) in the summand

O.rq( 0k (0 (p.kg)C (k’.rq))x’ ) / k!: Summation of the coefficients at x” by & from r to m gives the following
formula for the desired coefficients:

mo]
Ciprg) = kz F O’kq(a(p,kq)C(k,rq) ), r= 0,1, 2,.., m. (20)
=r .

If one takes in account that C(; ;) =FE (S)(O,iq) is the symmetrical identity matrix which ensures
the equality 0.ig (CiC(ii)) =0 (p,iq)» then instead of (20) we will have the expression

07kq((x(p,kq)c(k,rq) )5 r= O, 19 2a“5m' (21)

1 mo ]
Clpra) =% pra) kZ o
! k!

Let Fourier approximation of the function y(x) be obtained by the conjugate orthogonal polynomi-
als Q,(x):
mo] 0,kg
()~ X — " (BpugyQk (X)) (22)

=0 k!

Then the following expression for the coefficients ¢, ., in (17) could be obtained:
< 1ok .
C(prg) = kZ P (BipsaClirp)s 7=0.1.2,m. (23)

The algorithm of the approximation of the functions y(x) by Fourier series (18) and (22) was realized
programmatically in the form of a standard Matlab function for general case of the theorem 1 and was
checked on many functions. The considered approximations have undoubted advantages compared to
the classical approach: algorithmical generality and extensive possibilities. However, they have certain
hardware limitations: out of memory and unacceptably long calculation time for the personal computer
in the case of big data.

1.5. The orthogonal 0-2 degrees polynomials and Fourier series. In the work [12], the expressions
of zero and first degree orthonormal polynomials and the particular cases of the second degree polyno-
mials are obtained. These results are completed in this article by the general expressions of the second
degree polynomials and Fourier series. The complete expressions are presented in the Table for the case
on =1.

Orthogonal polynomials and Fourier series up to second degree inclusive

Polynomials P(x) Polynomials Q(x)
Py(x)=1 Oo(x) =1

Pi(x)=Cq0)+x, Cqo) =—Vx

_ % (0gp-1 =
O1(x)= BanPi(x)), B =Hxx =V —ViVx
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End of table

Polynomials P(x)

Polynomials Q(x)

Py(x) = Ca0) + * (Canx) + X2,
0.q 0, -1
Cany=- (szx ’quxx):

Ca0 =="1(Canvs)—V 2,

H)sz: VX3 _VXZVX

0,2¢q _
0:(x)=2" (¥ BEyP(),

0.9
— 0,9 ’ 0,g -1
3(2,2) =H.202 - [ (P-XZX P—xx)P-XXZ ja
noae2 =Vx4 —sz\/xz,

L2 =V.3-Vavy

Fourier series by the polynomials P(x)

Fourier series by the polynomials O(x)

0,0
()~ (apogPo(x)) =V,

y(x)~ " (B(p.0nQo(x)) =V,

Y@~ (09 Po0))+ 7 (0 AW))

90 ~" (Br00y Qo))+ * (B Q1 (),

0.q 0, -1 Bp.og) =Vys Bpg) =Hux
O (p.0g) =Vys Q(pg) = (F‘yx q“ﬂ)

90~ ((popyPo()) + * (g Pi(x)) + 9~ (B (000 () + ** (B(p.yQ1 () +

| 1
Y 2 (a2 Pa(0)), 3 " (Bip2n@:(),

0,0 _ Bp.og) =V,
a0 = (Bipon "B )=V, () =

. Bpg) =Hyxs
-4 0,9 p-1 \_ 0, 0,q  —1

A= (Bipg "Bl )= " (e "), %90 g0,

B(p,2q):uyx2 - M yx ( ’ Hxx“xzx)

0.2¢ 0,29 p-1
A2 =2 (Bipap **BE)

Coefficients of the approximation of the function y(x) by the series (17) by the degrees of the variable
x up to the second degree inclusive (m = 2) are defined by the following expressions defined by the for-
mula (21):

1 21 ox 0 I o2
C(p.0) = ;% (p.00) +l§1; (0 (k) Clkg0)) = O (p,0g) + ’q(a(p,q)c(q,0>)+5 (0L (p29)C24.0))s

1 21 ox [J)
C(p.g) :Fa(p,q) +k22; (0 (k) Ckg,1)) =% (p.g) +5 (0 (p2g)Cag0)s

1

C(p2q) = aa(plq)-

2. Orthogonal regression analysis.

2.1. Orthogonal regression analysis. Statement of the problem. Let the p-dimensional-matrix
function y(x) of the g-dimensional-matrix variable x be represented by the conjugate orthogonal polyno-
mials Q,(x) and is measured with errors (x) in the points xj,x2,...,x; so that

moq 0,rg .
Yoi=Yite&€;= Z; (B(p,rq)Qr(xi))+8ia l=1)27~~~9la (24)
r=0"-
and be represented by the degrees of the variable x (what is the same as (24)),
m
Yoi=Yité;= Z O’rq(C(p,rq)xr)-‘rSi, i=1,2,...,l, (25)
r=0

where ¢, are the values of the random p-dimensional matrix of the errors &(x;), and
(B(p,rq)Qr (xi))a (26)

moq 0,rq

r:Or!

Yi=
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or, what is the same,

m

0,
Yi= Z rq(c(p,rq)xir): (27)

pm
is the regression function. We will suppose that E(g;) = 0 is the mean value of g;, V; = E (O’O 8,-2) =FE( 0.0 82)
is the covariance matrix of the errors g;, £() means the mathematical expectation, ¢, and ¢; are inde-
pendent random matrices by i, so that

E(o,O(sisj))={;; l:j

We suppose also, that the covariance matrix V, of the errors €, is unknown.
The measurements (y,;,x;), i=12,...,/, allow us to approximate the function y(x) by the empirical
Fourier series by the orthogonal polynomials

-~ - m 1 Oarq N . - P .
yi :(y?(p)): Z; (B(p,rq)Qr(xi))a l=1’2""5l’ l(p) =l1’12""5lp5 (28)
r=07"-
or, what is the same, by the degrees of the argument x,

m p—
Fi=0i,) =2 1 Coprpxl)s i=L20L ) =ininnip, (29)
r=0

where the coefficients ﬁ p.q are defined by the following expression:

! —
B(p,rq) = (Bf(p)j(r)):%_ 1 00 (yo,iPr(xi))a i(p) = i15i25“'5ipa j(r) = jq,lajq,Za--'ajq,ra r=0,12,...,m, (30)
which follows from the expression (12). The coefficients B( p.rq) €an be considered as the estimations of
the regression coefficients B, ., in (26), and y; in (28), (29) can be considered as the estimation of
the hypothetical regression function (26) (estimation of the response).

The estimations ¢(, k) of the coefficients ¢, in representation by the degrees of the variable x
(25), (27), (29) are defined by the following expressions

- ~ o 1 0,kq *
C(pra) = (Ci(P)’j(rq)): kzz‘;F q(B(p’k‘I)C(qu))’ r=0,12,.,m, (31)

which follows from the expression (23).

The p-dimensional-matrix function y(x) of the g-dimensional-matrix variable x can be represent-
ed also by the basic orthogonal polynomials P,(x) and can be measured with errors g(x) in the points
X1,X2,...,x; so that

moq 0,rq . 32
Voi=Yi+te€; = Z; (a(pmq)Pr(xi))J"gia l=1,2,...,l. ( )
r=017"-

In this case, the estimations o, ., of the coefficients o, 4 are defined by the expressions

~ ~ 1 ! 0,0 - .. . = - - -
G‘(P,Vq) :(af(p),]:(r))ZYZl (yO,iQV(xi)), l(p) 211,125~"5lp3 J(V) :]q,b]q,Za'“an,r’ r:031523“'am5 (33)
i=

which follows from the expression (14), and the estimations c(, 4, of the coefficients ¢, in the rep-
resentation by the degrees of the variable x (25), (27), (29) are defined by the following expressions:

~ ~ mo] 0.kg s ~
c(p,rq) = (ci(p),J:'(rq) ) = ]{Z::rg q(a (p,kq)C(k,rq))a r= 09 19 27"7ma (34)

which follows from the expression (20). We have now the following regression function:

S 2ol 0~ . - . .
yiz(y;(p))zz; @y Pr (), =120, ) =ilinsenip. (35)
r=0"-
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The estimation V of the unknown V; = E (0 0 2) can be obtained by the following expression:
P -
Ve=g 2™ (voi=30)" (36)
i=1

The problem consists of the study of properties of the empirical regression functions (28), (29), (35)
and the estimation 7, (36).

Let us note that the representation of the regression function by the degrees of the argument x (25)
is more convenient in practical use. It is supposed that the estimations B(p,rq) (30) or 0.(p,rq) (33) are
calculated at first and then they are recalculated to the estimations ¢, ., by the formulae (31) or (34).
In what follows we will consider all cases.

2.2. Properties of the estimations of the regression coefficients. We start from the estimations

B(p,rq), r=0,1,...,m, (30). Substitution (24) into (30) gives

; 00 )
B(prq) ;Z‘i [( =~ 1, " q(B(p sq)Ds (X ))+5sz (xz)]

mo ] 0,0 0,59 1J
:;ZZ—, ( (B(p,sq)Qs(xi))Pr(xz ) _Z (SiPr(xi)):
i=1s=0S Z
m 0,s /
5L (B (0B ) X (08 x)
i=1s=0S" 5

We receive the following expression due to the orthogonality of the polynomials O (x) and P,(x):

~ 1 / 0.0
Bipray =Bipra) +7 2 (eiPr(x1)), 37)
i=1
and
—~ 1 ! 0.0
Eg gy TEBprg) = E B(p,rq)Jr;gi (&P (x1)) | =B(p.rg)» (38)

where E(') is the mathematical expectation. The expression (38) means that the estimation ﬁ( prq) 18
unbiased. We have from (37), (38) that

Bp.rgy —EB(p.rg)) =Bp.rg) —Bprg) = lZi (gipr(xi))zﬁ(p,rq)‘
1

The covariance between ﬁ(p,,q) and ﬁ(p,sq) is

Vs, = VB (p.rg)-Bp.sg)) = E((B(p,rq) =B )Bpusg) ~ B(p,sq))) =

[ >3 ((a,-PAx,-))(sJ-Ps(xj)))}:(v,;,,.(m,,(,q),k(p),,(w)). (39)

i=1 j=1

Let us transform the expression 0-0 ((siPr(xl-))(s P (x j))). Since

_ 00 X NN
= (EPEP)) = ) Py 5 Py = W) Figy i Tisn) = P BT B Pisg)) =

00
PeeP)=7=
(Freebs) = (/mn i(p)k(p). l(sq))

where 7(p), IF( p) are the p-multiindices; ]:'(,q), l_(sq) are the sets of the multiindices, consisting of r

U- = — = = Thi -
and s g-multiindices respectively, then Koy Tendo s — 27 (rq),l(.p),k(p), Tso) This means, that the ma
trices U and Z are connected to each other by the transpose operation:

U zzT(}’,S)



Becui HanpisinanbHait akaapmii HaByk bBenapyci. Cepbist izika-maTomarbrabix HaByk. 2025. T. 61, Ne 3. C. 203-230 213

where
l(p) T kp)» l(sq) B
T(r,s)= =(Bpirg,psE prsq)s (40)
T Koy ki lisa)

and B .y, is the transpose substitution on p +7q indices of the type “forward” on p indices; E ., is
the identical substitution on (p + sq) indices. The expression (39) has now the following form:

T(r,s)

Vors = VB30 Forarkim don ) = 2 Z Z (Pr (xi)E(gie ))Py(x,)) A1)

i=1j=1

The expression (41) is simpliﬁed due to the independence of ¢; and &; when i #

l rs 1Jd .S
Vs, = L300 Bz Py ()T — 77X (P (Ve (x)) ). @2)

(B«p) Ty k() l(sq) e P i=1

The expression (42) can be represented in other form. If we transform the expression
0,0 :
U= ((sl-Pr(xi))(ssz(xj))) in (39) as follows

_ 00 0.0 N
= (@PXER)) = 00 Py B PTsgy) = Wiy Ty i Ty = P Py B B ) =

=90 (P.Pge)=Z =z ),

T0rq)lisq) o p) K p)

then u This means, that the matrices U and Z are connected to ecach

= = TN T =Zz= 7T T .
U(p)>J(rg)K(p)lsq) = J(rq)-sq)-ip) K(p)
other by the transpose operation

U= ZT] (r,s)
with the transpose substitution 7;(7,s):

i .y l
Ty(rs) = (p) ]( q)>%(p)>t(sq) ‘

Ty l(sq) i(p)-k(p)

The expression (42) is represented now in the following form:

10,0 / Ti(r,s)

0,0
- =i = - = = ’ . , 43
Vﬁr,s (vﬁ,i(p),j(rq),k(p)J(sq)) ([Z (Pr(xz)Ps(xz))ng] . ( )

I? i=1
Due to the orthogonality condition (15) of the polynomials P,(x;) we have that V5 =0 providing r #s.

Thus, the estimations B, ) are uncorrelated. This is an important positive feature of the orthogonal
regression compared to the mdm regression [18].

The variation Vg, = cov(B( p,,q),ﬁ( p.rq)) Of the estimation [3( prq) 1s defined as the matrix Vﬁr,r by
one of the following expressions:

1 Loo T
Vs =V; (Br)_ ):— P (P (i WP (xi
Br ﬁr,r ( l(p) ](rq) k(p) l(rq) 12 Z;‘ ( ( 1 ( ))

or

! 0,0 ! oo Ti(r,r)
Vs, =V, _[ Br_ j—— ([z ’ (Pr(xi)Pr(xi))jVs] : (44)

W pyo i) K)oy ) 12 P

We can represent the data observations model (24) by the polynomials P,(x;) (32) and receive the es-
timation O.(p,4) of the coefficient a.(, ) as follows:
11

~ 0.0
& (p.rg) 2;2 (70,0r(x1)), r=0,1,2,...m. 45)
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The properties of the estimation o, 4 (45) can be received analogously to the estimation B( g -

-~ 1L 00
O (p,rq) = O(p,rq) +;Zf (8:0r(x1)),
l:

_ 1L 00
Ea(p,rq) ZE(G‘(PJ"I))ZE(O“(P,W) +;Zl (SiQr(xi))jza(p,rq)a (46)
i=

o

_ _ _ 14 0,0 °
A (p,rq) ~ E(Q(p,rq)) = O(p,rq) = U(p,rq) = Zi (giQr (x,»)) =0l(p,rq)»
1

~

/ !
Vi =COV(G(praypsa) =3 " (0 () Eeie) 05 (1)) = =3 * (0, (6 W05 ()

2 2
[7 =1 e

T(rs)

0,0 T (r,s)
_ _ 1d 1 /
Var = 00V(@(prs(psn)) =77 2 (0, (x)Qs (xi)V: )" = o ([Z “0(0,(x:)0s (xi))JVSJ ,

i=1 i=1

Vo, = CoV(QL(p,rq)»U(p,sq)) =0 providing r #s,

. _ _ _ _ 2

Var = ( f(O;a))/(;q) K(p)olrg) ) = OV ), ) = E((a(" RCE) ) -
1 Lopo T(r,
=72 (Qr)Va0r(x1) )
i=1

. _ _ _ _ 2

Ve, = ( l(((;),)/(rq) K(p)-lirg) j = OV (prg)- O (pr) = E((a(" o~ E@ ) ) -
1 0,0 / 00 Ti(r,r)
:l_z [(Z | (Qr(xi)Qr(xi))jVaJ . (47)
i=1

Let us formulate the result as follows.

Theorem 2. Let the errors €, in the measurements model (24) have zero mean value E(g;)=0,
the covariance matrix V, = E(O 0 2) E(0 0 2) and are independent by i. Then

1) the estimations ﬁ(p rq) Of the coefficients B(prq), ¥=0,L,...,m, in the presentation (28) are un-
biased, i. e. Eg = = (B(p rq)) =B(p.rg)> are uncorrelated by r, i. e. Vg, = =cov(B(p.rg)>B(p.sq)) =0
provided r # s, and have the variation Vg = COV(B( Prq)> [3( prg)) 44);

2) the estimations O.(p rq) Of the coefficients O.(p rq), ¥=0,l,...m, in the presentation (35) are un-
biased, i. e. Eq(, .,y =E(Q(p,rg)) =0(p,rq), are uncorrelated by r, i. e. Vg,  =COV(0l(p,rg)>0(p,sq)) =0
provided r # s, and have the variation Vg, =cov(Q(p rq),%(p,rg)) @7).

2.3. Mutual properties of the estimations of the regression coefficients. We get analogously (41),

42), 43)

COV(@(purg) B pusa)) = lizzl% " (Or (xi)Ve P (xi))T(r’s) )
i
or
COV(E@(purg)Bpuse)) = lizé " (Or (xi) P (xi)Ve )Tl(r’s).
Since (16)

0, k#r,

L 0,0 ‘ Mo
E (Qr(xl)Pk(xl)) {F!E(S)(O,}"q), k=r,

N',—a
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then
0, r#s,

COV(&‘(p,rq)aﬁ(p,Sq)) = )TI(VJ) (48)

, I'=S,

10,0
= (EV Qg

where 7,(r,s) is the following substitution of transpose:
()l
Ti(r.s) = [l(p) s J(r)>K(p)s (r)] 49)
Tyl Ty )

o

0,0
2 2 / 2
Let us consider also the product {B(rqm) By, Sq)] Since - ! Z 0.0 (eiP(x1)) = B(p.rg)» then

M i " 14 00 1’00
[B(rq,p)ﬁ(pasq)J: [(;Z; P (x; )8 (Z Zl € 'Ps(xj))J]:
= Jj=
0

1 1100 0.0
= =PI (P(x) (’(Siﬁj)Ps(xj))j

%]

MN

/0,0
> ()" (7)) =

1j=1

and

1 0

, 2 2 [ 0,0 0.0 ~ ~
VBr,s = E( 0.0 (B(rq,p) B(p,sq))J = lz Z (Pr (xi) (Vsps (xl))) = COV(B(rq,p)aﬁ(p,sq))-

i=1
Due to the condition (15) we have

0, r#s,

izioo(Pr(xi)O,O (VgPr(xl'))), r=s. (50)

Vors =CoVBrg.p)-Bip.sg) =

-1
The comparison of the expressions (50) and (42) shows that (Vj, ,)T () — VA ,» Where T (r s) is
the substitution inverse to the substitution T7'(7,s) (40) Smce T(r,s)= (B prq.psE prsq), then

T (r,s)= (B p+rgrgsE prsg)- We will denote T~ Y(r,s)=T"(r,s). Thus, we have the following expression:

0, r#s,

Vs,s =OVPBg.p)-Bp.sg)) = {(Vﬁr YN, Q)

where T7(r,r) = (B pirg.rgs E pirg)-

Theorem 3. Under the conditions of Theorem 2

1) the covariance COV(&(p,rq),ﬁ(p,sq)) between the estimations O.(p 4 and ﬁ(p,sq) is defined by
the expressions (48), (49);

2) the covariance cov(ﬁ(,q’p),[g(pasq)) between the estimations ﬁ(,q,p) and B(p,sq) is defined by
the expressions (51).

2.4. Properties of the estimation of the response. The estimation y of the response y in (26) is de-
fined as follows (see (28), (35)):

&1 0rg o

Yy~ %; i (B(p,rq)Qr(x))a (52)
~ nol oo rq

Yy~ — (Uv(p rq)P ()C)) (53)

=07 r!
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Since E(B(p.rg)) =Bpra)> E(Q(p.rg)) = C(p.rg) then

_ m o1 o o mo1 g - m 1 o
E@ﬁfﬂgﬁ”q@@mgmmﬂ=g$3°%Emm@XL@»iWNqu@mgAm)
E(5)= E( R CIr <x>)j 5 (E @ Ho9)= 2 (ki ()=

Thus, the estimation y (52), (53) of the response y is unbiased. Further,

o

0,rq 0,rq
" : moy (e
_E(y)): Zl' {QV(X)B(rq,p)}: Z_' [B(p’rq) Ql"(x)]:
r=07" r=07:

and
0,0

0,rg R m 0,sg o
(,)7_E(.)7))2 = zl' [QV(X)B(rq,p)] 2()% (B(p,sq) QS(X)J =

5=

0,0

0,rg R 0,5 /.
) —, Z - {Qr(x)ﬁ(rq,p)J [B(p,sq) o} (x)] =
r=07"s=0S
0,rgq 0,59 0.0
I A R e [B(,q B0 Sq)JQxx)
r=0"'5=0S5"

Due to the expression (50), the covariance matrix V5 of the estimation y of the output variable y is
defined by the following expression:

o0 =E(G-E)) - $— (0.0 (,0.0) (54
i(p)» J(p) Y= y = 0(r!)2 r (X Brrr X )
where Vér . 1s defined by the expression (51), 1. e.
Vér,r :Cov(ﬁ(”‘]al’)’B(P,”q)):(Vﬁr’r)T (r,r)’ T*(rar)Z(Bp+rq,ranp+rq)-

The expression (54) shows that the covariance matrix V5 of the estimation y of the output variable y is
defined by each term of Fourier series separately.

Theorem 4. Under the conditions of Theorem 2

1) the estimation y of the respond y is unbiased, i. e. E(y)=y;

2) the covariance matrix Vy = E (( y—E( )7))2) of the estimation Y is defined by the expression (54).

2.5. Properties of the estimation Ve. Let us find the mathematical expectation E(V,) of the es-

timation ¥, (36). Since yg; = 3"~ (B(pryOr(x1)) +8i, then E(y,;)= z L org (BpryOr (30)),
0i —E(yo,)=¢; and a

14 /
7; (yo,i_);i) ; ((yoz E(yoz)) ( E(yoz)))

N';—a

0,0 2

/ m 0,rgq o
— X" (e EGu)) =X [ei- 2 [B@,,q)gr(x,-)J , (55)
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o

where ﬁ( prg) = B( poq) —E (B( p.rg)) 18 defined by the expression (46). Further, we can write the formula (55)

in other form:
0,0 2

1 / m 0,rq s
Ve Z_Z € — Z_ B(p,rq) Q”('xi) =
l- r=0}"!

0,rq 7 o m o 0,59 o
[&(p,rq) Pr(xi)JJ € — Z ; (Qv (xi)B(sq,p)J 5 (56)
! s=0S"

where B(sq’ ») = (B( s q))BP“q’Sq. Transformation of the expression (56) gives

0,0

0.sq o 0.0 0,rq
_ 14 0.0 14 m 1 2 m 1 °
Ve==3"0 (&-&)—;Z g, — (Qs(xi)ﬁ(sq,p)J ——Z [Z— (OC(P,FQ)Pr(Xi)]JSi +

lia i=1 s=0S! lia r=07!

11 mlO,rq R mlo’sq o
+- [2— [&(p,rq)Pr(xi)J] Z—, Qs(xi)B(sq,p)J =s1—s2-s3+s4.  (57)

We have for the first summand s, of the expression (57) that
14
E(s1) = E(;z " (sisi)J =V,
i=1

Let us consider the summand s, of the expression (57)
0,0

0,0
0,sq R 0,sg
11 m 2 11 m
S2:;z 812; QS(xi)B(sq,p) :_Z glz; QS('xl
i ! s=095"

N|_

[

i: (Ps(x,-)s,-)D =

11 %97 oo 0,50
_sllsyy [si (" (Qs<xi)Ps(x,-))sj)). (58)

=S oo

0.0/ g0
The expression [Si (o,sq (Qs(xi)PS(x j))gj)] in (58) can be transformed. Let us denote

b (Qs (xi) Py (xj)) =m; ;. Since m, ; is a scalar, then
00 0.0 10,6 0,0 0,0 0,0
(gi (0,‘(] (QS(xi)PS(xf))gj)j: (Si O’O(mi,jgj)): (Si 00 (Sjmi,j))= (O’O(Sisj)mi,j) (59)

and

m 1121 100 0.0
52=Y =52 % (&% 0mie) = z
s=081 17 izl j=1

=0S

11
0.0(c o V. . 60
‘12“121 ( (s,sj)m,,]). (60)

The mathematical expectation of the expression (59) is equal:

E( N (070 (eie;)mi, )j - (E( G Sf))mi’j )

Due to the independency of ¢; and €; when i # j we have

E(O’O (0’0 (Sigj)mi,j))z o0 (E(O’O(eiﬁj))m,-,j):{O’O(ngﬂi,i), l:J

1# ],
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and

11
112

m /
B2 = S 20 Wy = 108 (1.0 (P
s=0r-l

i=1

Due to the property (A2), which was proved in theorem Al in Appendix, we have
Ve s )
E(s2)=—F% tr(E (o,sq)).
s=0

Let us consider the summand s, of the expression (57). Since

2 1
O (p.rq) :72 o0 (giQr(xi))

i=1

then
1[00 mlo’rqo 1100 m 1 1L 07900
S3—;§ [E); ((X(prq)P(x )j} =71§1 L(;O;;IZ_I ( (2,0-(x))P (%))J ]
mo 1L 00,
:,%;l_z,éjz:l (; (Oq(Qr(xj)P(x ))e )j
We have

E(s3)=E(s2) = VT é (9 (0.rg)).

Let us consider the summand s, of the expression (57):

0,0 0.
1! mop (e mop ot o
S4=_Z Z_‘ Uv(p,rq)Pr(xi) Z_' QS('xl)B(Sq’p) =
lig r=07": s=0S":
0,rg 0,59
1L momoq ° 0,0 2
:_Z z Z_'_' OL(PJ“I) (Pr(xi)QS(xi))B(sq’p)
lia| r=os=or!s!
Due to the property (16) of the polynomials Q,(x) and P,(x) we have
0,rq 0,5q 0,rq
m ° (s) 2 m o1 ° °
sa=2— | 0w | EVOr)B, | [m X5 % (prg) Birg.py |
r=07": r=07"

- 1! 2 1L 00
Since O (p,rq) :?Z ( iQV(xi))’ B(rq,p) 272 (Pr(xi)gi), then

m 0rd l /
84 = Zl. [(12 " (szr(xz-))][lZ " (Pr(xj)gj)D:
r=07" lig 1]:1
11 Ld 0.0 0,0 0,rg
SIS [ (Mo mncp)e) s
r= 0r'l i=1 j=1

We get

E(S4):E(s2):%% tr(E(S)(O,rq)).
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Since s, =53 =54, We have as a result

_ y. m .
EWV)=E(s1—s3—53+84)=E(s1—52)=V¢ —TSZ tr(E( )(O,Fq)).
r=0

Taking into account the formula (A6) (Appendix, theorem A2), we get

S (n+r- 1)'
E(V) =V, - rzo T (61)

where n=mnny---ny is the length of the ¢g-dimensional-matrix argument x. Thus, the estimation ¥, is

€

1 dyg
biased. If we denote d = Z w then E(Ve) =V, —
=0 rin-Dt’ l

tion V,. The unbiased estimation of V, is

_ d Vel
Ve1=Ve /| ——2+1|=——. 62
g,l € ( / j l—ds ( )

The number ds is the missing number of the freedom degreases.
Instance. Regression function is a 3 degree polynomial of the vector argument with 3 compo-
nents: m = 3, n = 3. In this case
(r+2)! 2! 3! 4! 5!
= +—+

3 —1\! 3
g, =y Dt s - Y 14346+10=20,
S Am-n! S 2 02! 120 2120 312

Obviously, the estimation Ve can be calculated by the formula (36) in which the estimation y; is
calculated by the formula

1 0,7 . - .o .
(yz(p)) z q((l(prq)P (x,)) l=1,2,...,l, l(p):ll,ZQ,...,lp,

instead of the formula (28).

Theorem 5. Under the conditions of Theorem 2

1) the mean value E(VS) of the estimation Ve of the covariance matrix Vg = E(0 -0 2) of the errors
€ is defined by the expression (61) and is biased,

2) the unbiased estimation of V, is defined by the expression (62).

2.6. Properties of the estimations of coefficients in multidimensional-matrix representation. The
estimations C(,kq) of the coefficients c(, 44 in representation of the regression function y(x) by the de-
grees of the argument (17), (27) are defined by the expressions (31) or (34). Let us use the following
expression (31):

~ 1 0.4q
C(P rq) = ( l(p),J(rq)) Z (B(p kq)C(k rq)) 1"20,1,2,..,7}’1,

and obtain the mathematical expectation E(c(,)) of the estimation ¢(, ) and the covariance matrix
CoV(C(p,rq)>C(p.sq)) Of the estimations C(p,rq)» C(p,sq)- Since

0,kq (@ * _ 0,k Q * _0, *
E( ™™ Bty Clera))) =" (EB(pia)) Cltory ) =" Byt Clirp):

then

ECiprg) = Z g BipsiaClirp ) = oy 7=01.2,0m.

It means that c(,,) is unbiased estimation of the coefficient c(, ). We will denote

o

E(p,rq) = E(p,i’l]) - C(p,rq)- Then E(p,rq) Z F 0, Q(B(p kq) C(k rq)J Further,
k=r
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Ve, s =COV(C(p,rg)C(p.sq)) = E(E(p,rq) E(p,sq)J =

B momo ] 0.0 0,kg (3 * 0ng (13 * =
=F Z Z— ( (B(p,kq)c(k,rq)) (B(p,nq)c(n,sq))j -

k:rn=sk!n!
s E S onsin) i
ip)-dtrg) M p)HGse) ) 22 k! (b= hra) (png) = (n.50)
m m 1
=2 2 ——Uin 63)
k:rn:sk!n!

Let us consider the separate summand U, , in (63)

U B ) . 0,0 0kq (A C* 0,nq [~ C*
b = (U3 T K i) = (B(P’kq) ("’"1)) (B(P’”q) (”’Sq))

O,kq(

and transform it. First, we transform the multiplier B( 24 Clkrg) ) :

O’kq (A * ) = - = = - = i = = i = = = =
BirkaCikra) )= S7) Ty [j(zk:)ﬁ i(p),f(kq)ckkq)d(rq)J [J(Z Tikg)-Jrg) l(p)d(kq)]
q

kq)

0,kq ~
— [ — [ _ — é - — ! !
_[Z Ctrq)-itha) f(kq»i(m] (f_,(,q),l(p)) (CP”“IB(P”“I))‘
J(kg)
Since ¢t = =c% = then C —(C y )BquM Since B5, - =By = then
CToaqyicay = Ciikgyicra)’ (krq) =\ & (k.rq) Ttkayip) = Pipydthe)?

N [ ptkq.kq . v _ NBp+rq,p
B p.kg) _(B(p,kq)) - Sinee f 5 = fiTea then F =(F") . Thus, we have

o Bpirg,
Ojkq(ﬁ(p,kq)c(*k,rq) ) N q ((C(*k’”’) )Bk”’%”f (ﬁ(p’kq) )B’”kq’kqj - '

However,

0,0
“(ma B R 0,0 R B Jq-Epng)\ _ 1/ B g »E ptn
E( ((B(p,kq)) prata Bp.ng) )j = E( (B(p,kq)ﬁ(p,nq))( prkaks-Eping) ) - (Vﬁk,n )( peatg-Epna),

Then
0,kq 3 B E . (Bp+rg.p-Eptsq)
Uk,n — ((C(*k,rq)) k+rq,rq 0,nq ((VB/{,” )( prkq kg >E p+ng) C(n,sq) )) .
Let us note:
T3 (k,r) = Bk+rq,rq 5
TZ(F:S) = (Bp+rq,szp+Sq)9
Ty(k,n)= (Bp+kq,kq 5 Ep+nq )-
Then
0,kq Tr(r,s)
Ugn = ((C(*k,rq))T3 (k,r) O’nq((VBk,n )T4(k,n) C(*n,sq) ))
and
v Z(V(a,s) o ): s Ly, -
rs T\ Vi dep kdso ) 2 S ke "

m m 1

Oka (o T3k 0 Ta(kon) o Ta(r.s)
=22 ((C(k,rq)) 3 ’nq((VBk,n) A C(n,sq))) :

k:rn=sk!n!
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Providing V5, == cov(ﬁ(p,kq),ﬁ(p,nq)) =0 when k # n, we have

(r.s) Z 1 Ok ( T3(k,r) 0.k Tk J6) o )TZ(”S)
Ve, o =|v2 "=~ _ = ’ ’ Vi e . 64
s “P)x“rq%X(P)4“Sq)) k:nééins)(k!)z () (( i) (qu)) )
The covariance matrix of the estimation ¢(, i4) is defined as V5, . :
(Cr r) o - 2 i
Ve, =Ve,, = - = = =E =
Crr ( ) J(r),k(p),“(r)) CoV(C(p.rg)>C(prg)) (C(p,rq) C(p,rq)j
0.k . Ta(r.r)
((C(k ) P kq((V DHERCE ) )) : (65)
k=r (k')
If we will use the expression (34)
~ 0,kq / ~
Clprg) = Z F 1@ Cltrg))s  7=0,1.2,0m,
k=r
then we will have the following expression for Vz, . :
(@) o1 Ok ( T3(k.r) O.kg Ta(k ) )T 2(r>r)
Ve, =Va,, = = C M (Vs e 66
o (V’(p),l(rq) M(p)Hi(rq) ) i (k1)? Ceern) (( i) (k”q)) . (66)

where T3(k,r) = Bk+rq,rq , D(r,r)= (Bp+rq,p ,Ep+rq ), Ta(k,k)= (Bp+kq,kq aEp+kq)-
Let us remind that C( ) is the coefficients of the polynomial Q,(x) of the degree £,

k k
Or(x)=2 O’rq(c(*k,rq)xr ) =2 (xrc(*rq,k) )’
r=0 r=0
and C( .4 1s the coefficient of the polynomial P;(x) of the degree &,

k k
Pe)= % " Crrrpx”) = 2 (% Cirgtr)-
r=0 r=0

If r¢ = 0, then T3(k,r)=Big0=Ery, To(r,r)=(Bpp.Ep)=(Ep,Ep)=Ez,. If kg = 0, then
Ty(k,k)=(Bpo,E,)=(E,,E,)=E,,. It means, that in these cases the transpose is not required for any
p=0,12,...

Theorem 6. Under the conditions of Theorem 2

1) the estimation c(p, 4y of the coefficient c(, ,q4) in the representation (17), (27) of the regression
Junction y(x) by the degrees of the argument is unbiased, i.e. E(C(p,rq)) =C(p,rq)>

2) the covariance Vg, ;= COV(E(p’rq),E(p’Sq)) between the estimations C(p,q) and C(p.sq) is defined
by the expression (64);
(Cr r) )

i(p)sJ(r) k- (p)H(r)
C(p,rq) IS defined by the expressions (65) or (66).

2.7. Distributions of the estimations. We will use the following notations for distributions: N(4,R)
for the normal distribution with mathematical expectation 4 and covariance matrix R; W(k,R) for
Wishart distribution with k degreases of freedom and parametric matrix R; H(k) for * distribution with
k degreases of freedom; 7(k) for Student distribution with k£ degreases of freedom. We will denote the be-
longing of a random matrix & to some distribution by the relation symbol €. For instance, the notation
¢ € H(k) means that the random matrix & has y* distribution with k degreases of freedom.

We will suppose that the errors €, in the measurements model (24) have zero mean value E(g;) =0,
the covariance matrix ¥, = E(**¢?) = E(*%¢?), the normal distribution N(0,7,), and are independent by i.

Let us start with the estimations B( prg) (30) and Vg~ (44) and rewrite these expressions here:

- N 1L 00
B(P,rq) :(Bf(p)s]:(rq))zjz (yO,iPr(xi))5 r=0,1,25"'7m7 (67)
i=1

3) the covariance matrix Ve, =Ve, , =(v V(E(p7rq),5(p,rq)) of the estimation
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1 %00 Ti(rr)
V- (B) j:_ 0,0 PP (e |7 ’
Br ( l(P)aJ(rq) k(p) l(rq) 12 E ( r( l) V( l)) €

i Jk, l
Ti(rr) = (p) J(rq) (p)>trg) ’

T l(rq) i(p)-kp)

(68)

where 7(p), IF( ») are the p-multiindices; ]:'(,q), lz(rq) are the sets of the multiindices, consisting of r

g-multiindices. If the errors ¢, have the normal distribution N(0,V), then the estimation B( p.rq) has the
normal distribution N(f3 ,, ,q,Vﬁ ), as it follows from the expressions (37), (38), (44).

If we fix the values of z(p) and ](,q), i.e. z(p) = z(p), j(,q) —](,q), then B;(*) o) will be a sep-
arate element of the matrix B( prg) (30). The mathematical expectation of the estimation ﬁlf(*) T 18
p)J(rg

equal to B,* - and the variation of the estimation B,* -« 1s equal to V(B’ _, . Itisclear,
)>J(rq) "(p)>/(rq) 1(p)-J(rg)-i(p) T rq)
that P+ =s N| B-« (B’ , re B« =« and VSEr - _. =, are defined by
NI (p)-Jrg)’ l(p)d(rq) i(p)-J(rg) p)-J(rq) i(p)>J(rq)-i(p)-J(rg)
the formulae (67), (68).
It is clear, that
BT* = —BT* =%
(Br Up)sJ(rq) Up)>J(rq) EN(O 1) (69)

oy T \/ Br)
l<p>’l(rq) ’(p) /(rq)

Let us continue with the estimation V. Since s, = s, = s, in the expression (57), and s, is defined by
the expression (60), then

Ve =51-152, (70)
where
18 00
=;Z " (giE), (71)
§2 = Z 3 Z Z ( ;0 (ms,i,jgj))a (72)
§= OS'Z i=1j=1

meiy =T (05 (k)P (x)))-

The expressions (71) and (72) can be represented in the following forms:

/
=13 (e e) = Z 5! (St ")

Ii:1 l 1j=1
0,0 14200
Sz—Z ZZ (EiO’O(Ms,i,jﬁj)) =—>> (8i0’0(Mi,j8j)),
sOlzljl li:ljzl
where 5 1s Kronecker delta and

My 1 0.sq

=— (0 (x)Ps(x))), (73)

S, =
sl sl

m 1 0,sq
Mij=%M;;=2—
s=0 s:OS-l

(s ()P (x ). (74)
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This allows us to represent Ve (70) as

~ 1L 100
Ve=-22 (SiO’O(Ui,ij)), (75)
Z i=1j=1
where U; ; = ZM Sy Vel (75) 1s the quadratic form with the matrix (U;)). Since the matri-
s=0 ‘
ces (M, ;) (73) are idempotent (Appendix, theorem 3), the matrix (A, ) (74) is idempotent (Appendlx

KRN
theorem A4) and the matrix (U, ) is idempotent (Appendix, consequence from theorem A6), then Vel

(75) has Wishart distribution W(k V) with the degrees of freedom number k& which is equal to the trace of

Y
the matrix (U, ) [19]. Since tr(e; ;) =1, tr(My,; ;)= % (Appendix, formula (A6)), then
' sl(n—=1!
m (n+s-— 1)'
k=tr(U,"j)=tr(e,~,j)—tr Z (Ms,l',j) Z (76)
s=0 = sl(n-1!"

where n=mnny---n, and (n1,n3,-+-,n4) is the size of the g-dimensional-matrix argument x.
The statistic

0, _
L (Lo L))
k=5 € H(k), (77)
A
where 7, is calculated by the formula (36) for an arbitrary p-dimensional matrix L of & (or y) size

(Appendix, theorem A7).
Let us continue with the estimation y; (52). Since the estimation y; is the linear function of the nor-

mal distributed estimations [3( rg,py» then it has the normal distribution: y; € N(y;,V5;), where V5, is
defined by the formula (54). In such case

Vs — Y-s
u =2 W) o no,1). (78)
[,

(p)+i(p)
The estimations ¢(p,rq) of the coefficients ¢, ,, in the mdm representation of the mdm m degree
polynomial y(x) (17) (31) or (34) has the normal distribution:

E(p,rq) € N(C(p,rq) s VEV )9
where V5, is defined by the expressions (66) or (65). Then

ET* =% —Cex_ =x
(Cr) _Up)sJ(rq) U p)>J(rq) EN(O,I) (79)
l(p) ) \/ @r.r)
’(p) J(rq) l(p) J(rq)

Theorem 7. Let the errors ¢; in the measurements model (24) have zero mean value E(g) =
the covariance matrix Vg = E(0 0 2) E (0 -0 2) the normal distribution N(0,V,), and are mdependent
by i. Then

1) the estimation B(p rg) has the normal distribution N(B ,q,V5,);

2) the scalar statistics u' (B r defined by the expression (69) have the normal distribution N(0,1);

=%

’(P) J(rq)
3) the scalar statistic i defined by the expression (77) has the chi-square distribution with k de-
grees of freedom;
4) the estimation y; of the respond has the normal distribution N(y;,V5,);

5) the scalar statistics u(y ) defined by the expression (78) have the normal distribution N(0,1);
’(p)
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6) the estimation C(p ,q) has the normal distribution N(c(prq),Ve, );

7) the scalar statistics u(c’) -, defined by the expression (79) have the normal distribution N(0,1).

i(p)+J(rq)
2.8. Distributions of the statistics related to the Fourier series. The estimation
= 1{ [ . . . .
Bpra) =;ZO’O (siP,(xi))zzo’o (¢;P.;) is a linear form with the matrix (P.;)=(P-(x;)/!), and
i=1 i=1

!
the estimation V = %Z >

10vq

(Ui,j)z[ai,j ) Y (Qs(xl)P(xj))j

o

The estimations B( ) and ¥, are independent if and only if o1 ((Pr,i)(U i, j)) =0 [19]. We have

/ 10’0 m
“PDUL))= (Z 0-0 (Pr,,-U,-,nj = [;Z (Pr (x,-)(a,-,,- €L Tl (0, (x)P, (x,))m

i=1

/ lO’O m
- GZ " (P8, )] - [%Z (Pr (xi)[ =" (P, <xf>)m -
i=1 i=1 s=0s!!

l m
_ Gz 0.0 (P (x:)8;,; )] { 2 l'%

[ia

=

0,sgq
1L 00
((-Z (P (x)Qs (xi))sz (x j)}]- (80)
The first summand in the expression (80) is equal

i
G;l °0 (P (x)5s, )J - %Pr x)).

Let us find the second summand in (80).

due to the condition (16). Thus, ol ((P,J)(Ui,j)) P (x;)— P (x;)=0, and the estimations B(p rg)
and Vg are independent. Then the statistic

(B )
1 Br_ _ Tt —0\k eT(k), 31
i(p)J(rg) i
where u (B "_, and X% are calculated by the formulae (69) and (77) with the use of the arbitrary L and V.
i(p)-J(rg) o
Let us consider the statistic relating to the estimation y; (52). Since the estimations in formu-

rq,p
la (52) and the estimation ¥, (36) are independent, then the estimations y; and V, are independent too.

In such a case, the statistic
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u ) ~

—% Vo — V==
(y) _ _Up) _ Up) i(p)
tO) = k = Jk eT(k), 82
N TR MO w

i(p)>i(p)

where uf{) and Xi are calculated by the formulae (78) and (77) with use the arbitrary L and V.
i(p)
We get analogously that

(cr)

MT* =%

(O, =Tk e T(h), (83)
Wp)-J(rq) Yk
where ugi*);* and X% are calculated by the formulae (79) and (77).
Up)>J(rq)

The statistics z‘ﬂir):.* (81), tg) (82) and tfi’):.* (83) can be used for the hypothesis testing rela-

Up)-J(rq) Up) U(p)J(rq)

ting to B, ,,» v and ¢, .-
Theorem 8. Under the conditions of Theorem 7

1) the estimations ﬁ( prq) (30) and Ve (36) are independent;

2) the scalar statistics tff):_* defined by the expression (81) have Student distribution with k de-
W(p)-J(rq)
grees of freedom;

3) the scalar statistic tg) defined by the expression (82) has Student distribution with k degrees of
ip)
freedom,

5) the scalar statistics 1) defined by the expression (83) have Student distribution with k de-

i(p)-J(rg)
grees of freedom.

2.9. Computer simulation of the regression analysis. Let us consider the quiet simple regression
model

0,0 0 0 1 0,2 2 0,3 3
Yo =" (c(pogx’ )+ (cpapx' )+ (ep2g®® )+ (epanx® ) +o (84)

with p=1, ¢=1, y, =(¥0i), x=(x;), €=(g;), i=1,2, and with the following coefficients:

0 1
C(p,oq)=(Cz')=(5 3), C(p,q):(ci,j)z[ ],

4 3
wy @ 12 22 Wy @) (12) (22
Clpag) = (Ci,jl,jz )= M [ C111 €121 €12 €122 j _ (1)[ 0 0 0 4 ,
@)\cant ¢ ca2 c22) 2\ 2 25 25 5
ALy a2 112) (12,2 @11 2.2.0) 2.1,2) (2,2,2)
Clpg) = (ci,j1,j2,j3 )= M ( Cl111 C1121 C1112 C1122 C1211 C1221 C1212 C1222 _
)\ et ca21 c12 c222 €21 Ca1 0 212 Cox

ALy a2l (LL2)  (122) (2L 2.2.0) 212 (22.2)
@ 4 0.3 0.3 -2.3 0.3 -2.3 2.3 2
"2 =3 0 0 0 0 0 0o -1

We can see that some elements of these matrices are equal to zero. They are ¢y, ¢{115 121> Ci12> Ca1215
Co1125 C21225 Can11> C2201> Can12- T he covariance matrix of the measurements error € is chosen to be equal

0.1 0.05
e=0i) =005 01 )

The design of the experiment is simulated as follows: each component of one-dimensional matrix x
takes 4 values linearly spaced between and including —1, 1, in sum 16 measurements. The estimations
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C(p.rq) Of the coefficients ¢, in (84) were calculated by the formula (34). The real function (the po-
lynomial in (84)) and its orthogonal approximation (the orthogonal regression function)

y="0 (5(,9,051)?6O ) +04 (5(117,61)x1 ) +0:2¢ (6(17,2(1)’“2 ) +0-3 (5(117,3q)x3 )’ (83)

were calculated with use of the mdm Horner scheme [20]. The confidence interval for the response was

calculated on the base of the #-statistics tg:) (82) for the confidence probability y = 0.95. It looks as
ip)

- gy 1-y)/2 \
5o (\/Y_) v 2 <yor <P & v i, (86)

ip) i(p)-i(p) i(p) ip) i(p)-i(p)
P)ip k P)-ip

follows:

where t-yy2 1s 100(1 —7)/2 percent point of ¢ (Student) distribution with k& degreases of freedom; y_ o

17

is i(p-th element of the matrix y= (Vi,)) (85); v s (i(p)»ip))-th element of the matrix
(p)’l(p)

Vi = (v:%, )) 7o ) (54); Xk is the statistic (77) and k is the parameter (76). Figure 1 shows the surfaces of

the real regression function y, = y,(x,,x,) and its omdm-approximation y; = y;(xj,x,). Figure 2 shows
the surfaces of the real regression function y, = y,(x,,x,) and its confidence interval (86).

Real function and its orthogonal approximation

Fig. 1. The surfaces of the real regression function y, = y,(x,,x,)
and its omdm-approximation y; = y1(x1,x2): (-) — real function; (0) — omdm-approximation

Real function and its confidence interval

Fig. 2. The surfaces of the real regression function y, = y,(x;,x,) and its confidence interval (86): (-) — real function
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The hypothesis testing relating to the coefficients ¢, ., in (84) was performed on the base of /-statis-
tics (83) at the significance level a = 0.05. All of zero coefficients were recognized as insignificant, and
all of non-zero coefficients were recognized as significant.

Conclusion. The known results of Fourier series by the orthogonal polynomials are extended to
the case of the mdm functions and mdm arguments. The analytical expressions for the orthogonal poly-
nomials and Fourier series of the second degree useful for the potential analytical studies are obtained.
The theoretical results are realized as the single program function for any cases. This software feature
we call the algorithmic generality. The efficiency of the program function is confirmed on the instance,
performing of which is impossible by the classical approach. The theory of the orthogonal mdm regres-
sion analysis is developed and confirmed by the computer simulation.

Appendix. Theorem Al. The following condition for the orthogonal polynomials Q,(x) and P (x)
hold:

] (0, ()P () p(x)d = rlte( E)(0.rg)). (A1)
Q

where x is the g-dimensional-matrix of the size (ny,ns,...,ny) argument, E¥(0,rq) is the symmetrical
(0,rq)-identity of the order n=ny-n;-...-n, matrix E® (0, rq), tr(E(S)(O,rq)) is the trace of the ma-
trix E(0,rq). The equation (A1) for the sample distribution as the weight function seems as follows:

%éo,rq (Qr(xi)Pr(xl-))=r!tr(E(s)(0,rq)). (A2)

é% be the elements of the matrices Q,(x), P.(x) and E¥(0,rq) re-

spectively, i. e. 0.(x) =(gz(x)), Pr(x)=(pa(x)), E®(0,rq)= (e%% ) Then

Proof. Let gz(x), p5(x) and e

(00 ()P (1)) = 2.4z (X) pz (%) (A3)
Integration of the expression (A3) with the weight p(x) gives
[*7(0, ()P (x)) plx)dx = > [ az(x) pz (x)p(x)dx. (A4)
Q cQ

The orthogonality condition (5) means that
J 4z () pa(p(dr=rlel)
O

and

[ 4z (x)pz (x)p(x)dx = rlel). (A5)
Q

Substitution (AS5) into (A4) gives
]2 (0 (0P ()p)dr = 1T el

Q

Since the element e’ is the diagonal element of the matrix E(0,rq) (r¢,0,rg)-associated with the ma-

c,C

c,c

trix £4(0,rg), then Ze@ is the trace of the matrix £“)(0,rg), and the equation (A1) holds. Theorem Al
c

is proved.
Theorem A2. The trace of the matrix E®(0,rq) (rq,0,rq)-associated with the symmetrical
(0,rq)-identity of the order n=ny-n, -...-ng, matrix E¥(0,rq) is defined by the following expression:

(9 (0.rg)) = Chares =%, (A6)

where (ny,ny,...,ng) is the size of the multiindex q.
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Proof. We need the following definition of the symmetrical (0,7g)-identity of the order
n=ny-ny-...-n, matrix E0,rq):

E®(0,rq) = ( %Zﬁ): u! ’ - , (A7)
0, if perm(c)=m

where , is the number of repetitions of the number i in the set of the multiidices ¢ (or m), i =1,2,...,n;
n=ny-ny-..-ng is the power of the multiindex g; (n1,n2,...,hy) is the size of the multiindex g;
W+ Uy +...+ 1, =r; ris the number of the multiindices in the set of the multiidices c; perm(?) 1S
some permute of the multiindices in c.

The diagonal element eis% of the matrix E“(0,r¢) has, in accordance with the definition (A7),
!
the value e’) = Bilpatopy! and repeats on the diagonal S times, which gives one in sum.
e r! prlpslow,!

Since each element with the structure py,ps,...,1, lies on the diagonal, and the contribution of each of
them in trace is equal to one, then the trace of the matrix is equal to the number of the structures C,,_;.

-
So we have Ze(s) —tr(E ) (0, rq)) [ M Theorem A2 is proved.
ri(n—1)!
Theorem A3. The matrix
mr’i" 1 OI'
Mr=<Mr,,-,j>=( N’] [ (0P, (x,>)j (A8)
is idempotent. Its trace is equal:
(s) (I’l+l"—1)! A9
(M) = tr( E®(0,rg)) = Cr., T (A9)
Proof. Letus find the matrix M2, =M, -M, :
! 1 /00 0,7 0,7
M2r :Mr 'Mr = ZMr,i,er,v,j :WZ ( " (Qr(xi)Pr(xv)) 7 (Qr(xv)Pr(xj))):
v=1 r. v=l1
1 " O (L o0
= ) O, (xi) [Z | (Pr(xv)Qr(xv))Pr(xj)j .
(r'h v=l
Since
[0,0 — (s
> Or (x)Pr(xi)) = rUE(0,rg),
i=1
then
w2, = (0,00 " (EO 0B ) | = (0, o) =
r—m Qr Xi ,rq }"x] ( 'l) (er x]

The equation (A9) follows from the theorems Al, A2 of the Appendix. Theorem A3 is proved.
Theorem A4.Ifr#s, then 0’I(M,MS)=O.
Proof.

/
0,1
T M M)=> M, ; M,
( ) vzzl s (r‘l)(S'l)

0.rq 0,rgq /
[Qr (x;) [z % (P (x)0r (x1))Py (xj)ﬂ =
v=]

/
e (R ) (0 R -

1
(D))

l
since Y. 00 (Ps (x)0; (xy )) =0. Theorem A4 is proved.
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Theorem AS. The matrix

M= M,, (A10)

where M, is defined by the formula (AS8), is idempotent.
Proof. We have on the base of the theorems A4, A3 the following equations:

01 0.1 m m momoog mooq m
KR (DT 5TV 5 5 S ATA RS S VAR S VI
r=0 s=0 r=0s5=0 r=0 r=0

Theorem A5 is proved.

Theorem A6. If the order | matrix A is idempotent and [ is the order [ identity matrix, then
the matrix I — A is idempotent.

Proof. This known result is proved as follows:

(I-AI-A)=1-A-A+A-A=1-A-A+A=1- A

Theorem A6 is proved.

Consequence. If M is the matrix (A10) and [ is the order / identity matrix, then the matrix / — M
is idempotent.

Definition. Let E=(&;y,... ») be a p-dimensional random matrix with normal distribution

/
N(Q,V), x1,X2,...,x; is the random sample of the volume / from this distribution and W =3’ O’Oxlz. We
i=1
will call the distribution of the random matrix W as the central Wishart distribution with / degreases of
freedom and parametric matrix /" and will denote such a distribution W(/,V) and will write W e W (L,V).

Theorem A7 If2p-dimensional random matrix W has Wishart distribution W(L,V) (W eW(l, V)),
0,p
and L is the fixed arbitrary p-dimensional matrix admitting the product (L 0.p (WL)), then a random

O”(LOW(WZﬂ

variable X2 = has the ¥* distribution with [ degreases of freedom H. v

O”’(L"’P(VL))

x? =MEHI.

0”7(L°fp(VL))

!
Proof. The matrix W can be represented in the following form: W =) %W.U;), where
i=1
U; € N(0,V), and the random p-dimensional matrices U;,U,,...,U; are independent. We have

0.p
Y (20r o) = [L " [i 0 (U,-U,»)LH S (2" (o wwn) =" ()

i=1 i=l
0, .
The random variables # (LU;) are independent on i, 7 (LU;)e N (0, s (L 0. (VL))) and the variable

0,p 0
L™P(WL)
x2 = # satisfies the definition of ¥ distribution with / degreases of freedom. Theorem A7
T (Lo o)

is proved.
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