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A REMOTE SENSING IMAGE OBJECT DETECTION  
METHOD ABS-YOLO BASED ON IMPROVED YOLOv11

Abstract. The problem of object detection in Earth remote sensing images is studied, which is important for agricul-
tural monitoring, urban planning, early warning of natural disasters, etc. Due to the different sizes of objects, complex back-
ground, and dense distribution of small objects in remote sensing images, problems such as high percentage of missed objects 
and insufficient accuracy of their coordinates often arise. In this regard, an improved method for YOLOv11, ABS-YOLO, is 
proposed, which significantly improves the performance of object detection by integrating Averaged Convolution (AConv), 
Bidirectional Weighted Feature Pyramid (BiFPN), and Swin Transformer attention mechanism. Experimental results show 
that, compared with YOLOv11, the proposed object detection method ABS-YOLO with AConv, BiFPN, and Swin Transformer 
achieves 3.9 % increase in mAP50 estimations and 2.6 % increase in mAP50-95 on the NWPU VHR-10 dataset with signif-
icant improvement in precision and recall rates. This method allows achieving a balance between efficiency and accuracy of 
remote sensing object detection due to the proposed improvements.
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МЕТОД ОБНАРУЖЕНИЯ ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ ДИСТАНЦИОННОГО  
ЗОНДИРОВАНИЯ ABS-YOLO НА ОСНОВЕ УЛУЧШЕННОГО YOLOv11 

Аннотация. Исследуется задача обнаружения объектов на изображениях дистанционного зондирования Земли, 
что важно для сельскохозяйственного мониторинга, городского планирования, раннего предупреждения о стихий-
ных бедствиях и др. Из-за различных размеров объектов, сложного фона и плотного распределения мелких объектов 
на изображениях дистанционного зондирования часто возникают проблемы, связанные с высоким процентом про-
пущенных объектов и недостаточной точностью определения их координат. В связи с этим предлагается усовер-
шенствованный метод для YOLOv11 – ABS-YOLO, который значительно повышает производительность обнаруже-
ния объектов за счет интеграции усредненной свертки (AConv), двунаправленной пирамиды взвешенных признаков 
(BiFPN) и механизма внимания Swin Transformer. Экспериментальные результаты показывают, что по сравнению 
с YOLOv11 предложенный метод обнаружения объектов ABS-YOLO с AConv, BiFPN и Swin Transformer достигает 
увеличения оценок mAP50 на 3,9 % и mAP50-95 на 2,6 % на наборе данных NWPU VHR-10 со значительным улучше-
нием в точности и показателях полноты. Данный метод позволяет достичь баланса между эффективностью и точно-
стью обнаружения объектов дистанционного зондирования благодаря предложенным усовершенствованиям.

Ключевые слова: YOLOv11, Swin Transformer, изображение дистанционного зондирования, обнаружение объ-
ектов
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Introduction. Remote sensing object detection is one of the most fundamental and challenging tasks 
in the field of remote sensing, which has attracted people’s attention for along time. Especially in recent 
years, with the development of deep learning technology, remote sensing object detection technology 
has made great progress. Advances in satellite technology have made the acquisition of remote sensing 
images (such as Google Earth [1]) and large-scale Earth observation [2] no longer difficult, even for 
high-resolution remote sensing images under changes in spatial, temporal, and spectral resolution [3]. 
However, remote sensing data detection still faces multiple challenges in the context of rapid technolo
gical development.

Traditional object detection methods mainly rely on manually designed feature extraction techniques, 
such as Histogram of Oriented Gradients (HOG) [4], Scale-Invariant Feature Transform (SIFT) [5], and 
Local Binary Pattern Histogram (LBPH) [6]. These methods show certain advantages in local feature 
extraction and classifier design, especially in scenes with simple structures and uniform backgrounds, 
where they are more applicable. However, when facing complex scenes, the discriminative ability of tra-
ditional methods is often limited, especially under diverse target shapes, textures, or lighting conditions, 
where their detection accuracy and robustness fail to meet practical requirements. In recent years, with 
the significant improvement of computer computing power, deep learning has gradually become an im-
portant research direction in the field of artificial intelligence. Among deep learning algorithms, object 
detection methods based on Convolutional Neural Networks (CNN) have achieved faster computational 
speed and higher detection accuracy due to their weight sharing and translational invariance, gradually 
replacing traditional methods and becoming the mainstream object detection technology today.

Object detection algorithms based on deep learning are mainly divided into two categories: two-
stage detection and one-stage detection. Two-stage detection methods firstly extract features from 
the image and generate candidate regions, then classify and localize these candidate regions to ulti-
mately output the position and category information of the target. Typical two-stage algorithms include 
R-CNN [7], Fast R-CNN [8], and Faster R-CNN [9]. These methods improve detection accuracy through 
staged processing but have higher computational complexity and are suitable for scenarios with high 
accuracy requirements. One-stage detection methods directly use CNN to extract image features and 
complete object detection through multiple fully connected layers without the need to pre-generate can-
didate regions. Their typical representatives include YOLO (You Only Look Once) [10] series and SSD 
(Single-Shot Multibox Detector) [11]. One-stage methods significantly improve detection efficiency by 
simplifying the process and eliminating the generation of candidate regions and frequent data trans-
formations. They are particularly suitable for large-scale data processing tasks. Therefore, in practical 
applications, one-stage detection algorithms demonstrate broader application potential due to their high 
efficiency and real-time performance.

Although one-stage object detection algorithms represented by YOLO series have shown significant 
performance advantages in general scenes, they still face significant challenges in the field of remote 
sensing image analysis. The unique spatial characteristics of remote sensing images, including complex 
background interference, high-density target clustering, and a prominent proportion of sub-pixel small 
targets, lead to limitations in feature representation and localization accuracy for traditional one-stage 
detection paradigms. To enhance the detection performance of targets in remote sensing images, in re-
cent years, many researchers have carried out multi-dimensional algorithm innovations around YOLO 
architecture. Yin Zhang et al. [12] proposed FFCA-YOLO, which enhances the weak feature represen-
tation of small targets and suppresses confusing backgrounds by integrating a Feature Enhancement 
Module (FEM), Feature Fusion Module (FFM), and Spatial Context-Aware Module (SCAM) into YOLO. 
Yi Hao et al. [13] proposed an improved YOLOv8 algorithm called LAR-YOLOv8, which uses a du-
al-branch architecture attention mechanism to enhance C2f module, reducing the repeated use of C2f 
module and achieving efficient feature extraction. Tianyong Wu et al. [14] proposed a new YOLOv8-
based network called YOLO-SE, which integrates an Efficient Multi-scale Attention (EMA) mechanism 
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into the network to form an SPPFE module, addressing the issue of multi-scale target detection. Qiu 
Xue Wang et al. [15] proposed introducing SimSPPF module and dynamic large convolutional kernel 
attention mechanism LSK-attention into YOLOv8, optimizing the feature pyramid layer and expand-
ing the model’s receptive field to improve the accuracy of object detection. Shahriar Soudeep et al. [16] 
proposed an interpretable Dynamic Graph Neural Network: DGNN-YOLO, for small occluded object 
detection and tracking. The integration of Dynamic Graph Neural Network (DGNN) in YOLOv11 has 
improved detection accuracy and reliability.

From the work of the above researchers it can be seen that YOLO series algorithms have been wide-
ly applied to various object detection tasks, and there is still much room for improvement in specific 
domain detection tasks. This paper proposes a remote sensing image object detection algorithm based 
on improved YOLOv11n: ABS-YOLO (AConv-BiFPN-Swin Transformer-YOLOv11n). AConv (average 
pooling and convolution layer) is introduced in the shallow layer of the Backbone of this model. The 
average pooling operation is used to downsample the input feature map, reducing its size by half while 
retaining important feature information. Bidirectional Weighted Feature Pyramid (BiFPN) is introduced 
to improve the detection accuracy of small targets and complex scenes. Finally, Swin Transformer at-
tention mechanism is integrated to suppress interference from complex backgrounds. On the basis of 
retaining the detection characteristics of YOLOv11n, ABS-YOLO model effectively improves accuracy 
and provides an efficient solution for remote sensing image object detection.

1. YOLOv11 Model. YOLOv11 [17], introduced by Ultralytics in 2024, represents a new genera-
tion of object detection algorithms with breakthrough innovations in architectural design. The backbone 
network utilizes an enhanced CSPDarknet architecture, optimizing cross-stage feature fusion via C3K2 
module. This module employs dual small convolutional kernels instead of a single large kernel, signifi-
cantly reducing computational redundancy. For feature fusion, YOLOv11 incorporates SPPFF (Spatial 
Pyramid Pooling Fusion Module) and C2PSA (Cross-Stage Partial Spatial Attention Module). C2PSA 
integrates a multi-head attention mechanism, enhancing multi-scale target detection in complex scenes. 
A Dynamic Label Assignment strategy adaptively adjusts the positive-to-negative sample ratio, improv-
ing recall for small target detection. The network architecture is illustrated in Figure 1.

Fig. 1. YOLOv11 Network Architecture
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2. ABS-YOLO. This paper presents ABS-YOLO, an enhanced model based on YOLOv11n baseline, 
to address object detection challenges in remote sensing imagery–particularly missed/false detections 
in complex backgrounds, dense scenes, and small targets. While maintaining a lightweight architecture, 
ABS-YOLO significantly improves detection accuracy and robustness through three key innovations:

AConv Module Integration. Deployed at the first backbone layer, this improved convolutional ope
ration balances computational efficiency and feature representation via average pooling prior to convo-
lution. By decomposing and enhancing traditional convolutions, it reduces computational complexity 
while improving key feature capture–critical for processing high-resolution remote sensing images and 
supporting small-target detection.

BiFPN Replacement. Substituting original Concat modules at layers 12 and 15, BiFPN employs bi-
directional (top-down/bottom-up) pathways to fuse multi-scale features. Learnable weights dynamically 
prioritize feature importance, optimizing fusion capability.

Swin Transformer Integration. Added as the 23rd layer, this architecture leverages windowed self-atten-
tion for hierarchical feature extraction. It partitions images into non-overlapping windows for local self-at-
tention with cross-window connections, enhancing multi-scale perception, especially for small targets, while 
controlling computational overhead. The improved model’s network architecture is shown in Figure 2.

Fig. 2. ABS-YOLO Network Architecture

2.1. AConv. AConv module is a component of YOLO model. It mainly consists of 
a convolutional layer cv1, which has c1 input channels, c2 output channels, a kernel 
size of 3, a stride of 2, and padding of 1. This configuration enables the convolutional 
operation to downsample the input while extracting features. Prior to the convolu-
tional operation, avg_pool2d function is applied to the input feature map for average 
pooling with a window size of 2 and a stride of 1. This operation reduces the size of 
the feature map while retaining important feature information. The specific structure 
of AConv is shown in Figure 3.

Compared to Conv module, AConv module adds an average pooling operation 
(avg_ pool) on the basis of the basic convolutional layer. This design not only per-
forms feature extraction but also downsamples the input feature map through the ave

Fig. 3. AConv 
Structure
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rage pooling operation, reducing the size of the feature map by half while retaining important feature 
information. The implementation of AConv module can be divided into two steps: average pooling and 
convolution. Combining the pooling and convolution operations, the overall expression of AConv mod-
ule can be represented as:

( )1 _ 2 ( ,2,1) ,y CV avg pool d x=

where x is the input feature map; avg_ pool2d (x,2,1) indicates performing a 2 × 2 average pooling on x 
with a stride of 1; CV1 is the convolutional layer with a kernel size of 3 × 3 a stride of 2, and padding of 1. 
The function of AConv module can be divided into two steps: performing 2 × 2 average pooling on the 
input feature map with a stride of 1; Conducting a 3 × 3 convolution operation on the pooled feature map 
with a stride of 2 and padding of 1. Through these two steps, the AConv module achieves downsampling 
and feature extraction of the feature map.

2.2. BiFPN. To address the detection needs of multi-scale targets in remote sensing images, such 
as small-sized vehicles and large-scale sports fields, ABS-YOLO model introduces BiFPN. BiFPN 
(Bidirectional Feature Pyramid Network) [18] is an efficient multi-scale feature fusion structure. Its core 
objective is to optimize the fusion of features across different levels through bidirectional cross-scale 
connections and dynamic weighting mechanisms, thereby enhancing detection accuracy especially for 
small targets and complex scenes in object detection tasks.

Conventional feature pyramid networks (e. g. FPN) enhance model performance through layer-wise 
consistency supervision, maintaining feature coherence across scales. However, FPN’s [19] unidirec-
tional top-down propagation (Figure 4, a) limits low-level feature utilization in final layers. PANet [20] 
introduces a bottom-up path (Figure 4, b) to augment low-level feature integration, while NAS-FPN 

[21] enhances FPN via additional layers (Figure 4, c), yet suffers from imbalanced feature contribution. 
BiFPN addresses these limitations through three key innovations (Figure 4, d), Node Pruning: removal 
of single-input nodes eliminates non-feature-fusion pathways; Skip Connections: direct links between 
same-level inputs/outputs enhance feature fusion without significant cost overhead; Layer Stacking: 
multiple bidirectional stages enable progressive feature refinement.

The core innovation of BiFPN lies in its weighted bi-directional feature fusion mechanism, which 
dynamically adjusts the contribution of different resolution features by introducing learnable weighting 
parameters. Its core formula contains the following two parts: 

Fast Normalised Fusion (FNF). The formula is as follows: 

,i ii

ii

w l
O

w



 



where wi is a learnable weight parameter, which ensures non-negativity through ReLU activation to 
avoid interference from negative weights; li is the input multi-scale features; ε is a minimal value to pre-
vent division by zero. Through the learnable weight wi, the network can adaptively distinguish the im-
portance of features from different levels.

а b c d

Fig. 4. Feature Network Design
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Feature fusion through bidirectional paths. BiFPN achieves cross-scale feature interaction through 
top-down and bottom-up bidirectional paths. Take the output of a certain level l in the top-down path as 
an example.

The formula for the top-down path is:

 in in
1 2 1td

1 2

Resize
Conv .

l l
l

w P w P
P

w w
   

 
   
 

The formula for the bottom-up path is:

( )in td out
1 2 3 1out

1 1 1

Resize
Conv ,

l l l
l

w P w P w P
P

w w w
−

 ′ ′ ′⋅ + ⋅ + ⋅
 =
 ′ ′ ′+ + + ε
 

where in
lP  is the original input feature, and Resize is an upsampling or downsampling operation used 

for resolution alignment; 1 2 3, ,w w w′ ′ ′  are the weight parameters for different input paths. The top-down 
path conveys high-level semantic features to lower levels, providing semantic guidance for detail 
representation; the bottom-up path, in turn, strengthens the spatial localization capability of low-level 
features. The output of each node fuses the same-level input in( ),lP  the features passed from the upper 
layer td out

1 1(   or  ),l lP P+ +  and residual connection information, forming a closed-loop feature enhancement.
2.3. Swin Transformer. In remote sensing object detection tasks, high-resolution images in datasets 

contain a large number of small targets and complex background interferences. Traditional Convolutional 
Neural Networks (CNNs) are limited by their receptive fields and struggle to capture long-range contex-
tual dependencies. Meanwhile, the global self-attention mechanism of the standard Vision Transformer 
(ViT) lacks hierarchical feature representation capabilities. To address these issues, this study integrates 
Swin Transformer to improve the attention mechanism of YOLOv11. Swin Transformer [22] is a visual 
model based on the Transformer architecture, proposed by researchers at Microsoft Research in 2021. Its 
full name is “Shifted Window Transformer”. This model employs a novel window partitioning strategy 
to process images, enabling the Transformer to be more effectively applied to computer vision tasks. 
Swin Transformer adopts a hierarchical structure similar to CNNs, increasing the receptive field by 
reducing resolution layer by layer while reducing computational load. This makes it capable of effective 
handling high-resolution images. The core architecture of Swin Transformer is shown in the Figure 5.

The core advantages of Swin Transformer include. Hierarchical Feature Pyramid: by merging image 
patches (Patch Merging), it generates multi-scale feature maps (H/4 → H/32), which are well-suited for 
remote sensing scenes with significant variations in target sizes. Local Window Self-Attention: the input 
image is divided into non-overlapping windows (e. g., 7×7), and self-attention is computed within each 
window. This reduces the computational complexity to a linear level (O(n)), supporting high-resolution 
inputs. Window Shift Mechanism: in adjacent Transformer layers, the window positions are shifted to 
enable cross-window information interaction, enhancing the localization capability for small targets.

а b

Fig. 5. Core Architecture of Swin Transformer
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The window self-attention computation in Swin Transformer is as follows:

( ) ( )Attention , , SoftMax / ,TQ K V QK d B V= +

where Q, K, and V are the query, key, and value matrices, respectively; d is the dimension; B is the rela-
tive position bias encoding, which is used to model the spatial relationships between pixels within  
a window.

The hierarchical window self-attention mechanism of Swin Transformer reduces the computational 
complexity of high-resolution images by computing within local windows (e.g., 7 ×7), while the window 
shifting strategy enables cross-region context modeling. This enhances the feature capture capability 
for small and densely packed targets. Its multi-scale pyramid structure (feature maps from H/4 to H/32), 
combined with BiFPN, efficiently fuses shallow details (such as ship edges) with deep semantic infor-
mation (such as airport layouts). This addresses the issues of large target size variations and complex 
backgrounds in remote sensing scenes, ultimately reducing false detections while improving the recall 
rate and localization accuracy of small target detection.

3. Experimental Results and Analysis.
3.1. Experimental Environment and Datasets. All experiments in this study were completed in 

a unified hardware and software environment to ensure the reliability of the experimental results and 
the accuracy of the data. The specific environment configuration parameters of the experiment are 
shown in Table 1 below. The parameters not provided in this article use the official default parameters of 
YOLOv11n.

Table 1. Experimental Parameter Settings

Environment Parameter

Operating System Windows 11 64-bit Learning Rate 0.01
GPU NVIDIA GeForce RTX 4060 Iterations 300
Memory 16G Batchsize 16
Python Python 3.9 Workers 0
Framework PyTorch 2.4.0 Image Input Size 640×640
Environment CUDA 12.41 Optimizer Auto

The dataset used in the experiments is NWPU VHR-10 dataset [23, 24]. NWPU VHR-10 dataset is 
a challenging ten-category geospatial object detection dataset. It contains a total of 800 very high-re
solution (VHR) optical remote sensing images, 715 color images of which were obtained from Google 
Earth with spatial resolutions ranging from 0.5 to 2 meters. Additionally, 85 sharpened color infrared 
images were acquired from the Vaihingen dataset with a spatial resolution of 0.08 meters. The dataset 
is divided into two groups: a) the positive image set, which contains at least one target in the image, 
consists of 650 images; b) the negative image set, which contains 150 images and does not include 
any targets. Consequently, the positive image set includes 757 airplanes, 302 ships, 655 storage tanks, 
390  baseball diamonds, 524 tennis courts, 159 basketball courts, 163 ground tracks, 224 harbors, 
124 bridges and 477 vehicles, all manually annotated with bounding boxes and used for ground truth 
instances. 

3.2. Cross-Model Comparison Experiments. To validate the performance advantages of the pro-
posed ABS-YOLO model in the remote sensing image object detection, we compared it with main-
stream lightweight versions of YOLO series, including YOLOv5n [25], YOLOv6n [26], YOLOv8n [27], 
YOLOv10n [28], and YOLOv11n. The experimental results are shown in Table 2.

Through the experiments, we found that mAP50-95 of ABS-YOLO model is 0.551, which is a 2.6 % 
improvement over the baseline model’s 0.537 and significantly better than YOLOv5n by + 3.8 % and 
YOLOv8n by 1.1 %. Although slightly lower than YOLOv6n’s 0.557, the parameter count is reduced by 
29.8 %, indicating that ABS-YOLO model has a greater advantage in parameter efficiency. mAP50 of 
the improved model reaches 0.901, surpassing all comparison models, which validates its precision in 
target localization and demonstrates stronger bounding box regression capabilities for small targets such 



260	  Proceedings of the National Academy of Sciences of Belarus. Рhysics and Mathematics series, 2025, vol. 61, no. 3, рр. 253–264

as airplanes and ships. The inference time of the improved model is 1.8 ms, which, although slightly 
slower than YOLOv8n (1.4 ms), still meets the real-time requirement (>30 FPS) and is suitable for offline 
high-precision detection scenarios. Figure 6 shows the detection effect of the algorithm before and after 
improvement on complex scene images in NWPU VHR-10 dataset. As it can be seen from the figure, 
the improved ABS-YOLO algorithm effectively reduces the problem of false detection of targets in com-
plex scenes, and also verifies that ABS-YOLO has good accuracy.

Table 2. Comparison of Different Models on NWPU VHR-10 Dataset

Parameters / Models YOLO11n YOLOv10n YOLOv8n YOLOv6n YOLOv5n ABS-YOLO

P 0.911 0.883 0.9 0.932 0.889 0.932
R 0.812 0.772 0.826 0.804 0.825 0.84
mAP50 0.881 0.858 0.886 0.892 0.892 0.901
mAP50-95 0.537 0.522 0.545 0.557 0.531 0.551
Parameters / (million) 2.46 2.57 2.56 3.96 2.08 2.78
GFLOPs 6.3 8.2 6.8 11.5 5.8 16.6
Preprocess / (ms) 0.1 0.1 0.1 0.1 0.1 0.3
Inference / (ms) 1.5 1.5 1.4 1.7 1.6 1.8
Postprocess / (ms) 0.6 0.1 0.5 0.6 0.6 0.6

a b c

Fig. 6. Comparison diagram of NWPU-VHR-10 remote sensing dataset: a is the original image;  
b is YOLOv11n; c is ABS-YOLO
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3.3. Comparison of Different Attention Mechanisms and Analysis of Results. To demonstrate 
the superiority of the proposed algorithm over some currently popular modules, a set of comparative ex-
periments was conducted under the same experimental environment and parameters. The experimental 
results are shown in Table 3.

Table 3. Comparison of Different Attention Mechanisms on NWPU VHR-10 Dataset

Parameters / Models YOLO11nbaseline SimAM SE CAFMAttention EMAAttention DASI ABS-YOLO

P 0.911 0.872 0.912 0.885 0.89 0.899 0.932
R 0.812 0.856 0.803 0.823 0.844 0.841 0.84
mAP50 0.881 0.897 0.896 0.887 0.902 0.894 0.901
mAP50-95 0.537 0.546 0.545 0.543 0.549 0.544 0.551
Parameters / (million) 2.46 2.46 2.46 2.8 2.47 3 2.78
GFLOPs 6.3 6.3 6.3 6.6 6.3 6.5 16.6
Preprocess / (ms) 0.1 0.1 0.1 0.1 0.1 0.1 0.3
Inference / (ms) 1.5 1.7 1.7 1.6 1.5 1.6 1.8
Postprocess / (ms) 0.6 0.5 0.5 0.6 0.6 0.7 0.6

EMA Attention [29] is an efficient multi-scale attention mechanism that balances accuracy and ef-
ficiency through local feature focusing and lightweight design, making it suitable for real-time edge 
detection. In this experiment, although the parameter count only increased by 0.04 % (258.5 thousand), 
and the inference speed remained consistent with the baseline at 1.5 ms, mAP50-95 improved by 2.2 %, 
especially with a significant increase in the recall rate for small targets to 0.844. SimAM [30] is a pa-
rameter-free attention mechanism that enhances feature representation by normalizing the feature map, 
without adding any parameters. In this experiment, SimAM maintained the baseline parameter count, 
achieved the highest recall rate of 0.856, and improved both mAP50 and mAP50-95. However, P va
lue decreased slightly. CAFM Attention [31] is a cross-scale fusion attention mechanism that optimizes 
multi-scale features through multi-branch interaction. In this experiment, mAP50 and mAP50-95 im-
proved by 1.6 and 1.5 %, respectively, but the recall rate was relatively low, and P value decreased. DASI 
[32] is a dynamic adaptive spatial attention mechanism that adjusts weights based on the input content. 
In this experiment, DASI achieved a recall rate improvement to 0.841.SE [33] is a channel attention mo
dule that enhances model performance by strengthening the overall channel features. In this experiment, 
mAP50 and mAP50-95 were increased by 1.7 and 1.5 % respectively. In summary, the above different 
attention mechanisms did not surpass ABS-YOLO in the results of mAP50 and mAP50-95.

3.4. Ablation Study Analysis. To verify the effectiveness of the proposed modules (AConv, 
BiFPN, Swin Transformer) for remote sensing image object detection tasks, we incrementally in-
troduced different modules on YOLOv11n baseline model and designed the following ablation study 
variants:YOLOv11n – the baseline model without any improvement modules; YOLOv11n + AConv – 
introducing the adaptive convolution AConv in the backbone; YOLOv11n + BiFPN – replacing the ori
ginal connections in the Neck part with BiFPN; YOLOv11n + Swin Transformer – introducing the Swin 
Transformer dynamic adaptive fusion module in the Neck part; ABS-YOLO – jointly using the AConv, 
BiFPN and Swin Transformer modules. The experimental results are shown in Table 4.

Table 4. Ablation Study Results on NWPU VHR-10 Dataset

Parameters / Models YOLO11n ACONV BiFPN SwinTransformer ABS-YOLO

P 0.911 0.913 0.924 0.921 0.932
R 0.812 0.823 0.834 0.827 0.84
mAP50 0.881 0.893 0.905 0.893 0.901
mAP50-95 0.537 0.535 0.547 0.542 0.551
Parameters / (million) 2.46 2.46 2.46 2.78 2.78
GFLOPs 6.3 6.3 6.3 16.6 16.6
Preprocess / (ms) 0.1 0.1 0.1 0.1 0.3
Inference / (ms) 1.5 1.8 1.6 1.6 1.8
Postprocess / (ms) 0.6 0.6 0.5 0.6 0.6
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In this experiment, AConv module slightly decreased mAP50-95 but increased the recall rate to 
0.823 (+1.1 %). This indicates that AConv enhances local feature extraction by dynamically adjusting 
the convolutional kernel, but when used alone, it may introduce redundant computations, leading to 
a slight drop in accuracy. BiFPN significantly improved mAP50-95 to 0.547 (+1.0 %) and increased 
the recall rate to 0.834 (+2.2 %), demonstrating that the bidirectional weighted fusion mechanism ef-
fectively integrates multi-scale features, especially enhancing the detection capability for small targets. 
Swin Transformer achieved mAP50-95 of 0.542 (+0.5 %), but the parameter count surged to 2.91 million 
(+12.8 %) and the computational load increased to 16.6 GFLOPs (+163 %). This shows that the global 
attention modeling capability comes at a high computational cost, and using it alone is not cost-effective. 
The combined model ABS-YOLO reached mAP50 of 0.901, a 2.3 % improvement over the baseline, and 
mAP50-95 of 0.551, a 2.6 % improvement over the baseline, with a recall rate of 0.840, a 3.5 % increase 
over the baseline. However, due to the integration of Swin Transformer module, GFLOPs increased 
to 16.6. The model maximizes accuracy through the synergy of the modules. The experiments demon-
strate the necessity of the synergy among the three modules; the effect of a single module is limited, but 
their combination significantly optimizes accuracy (ΔmAP = +2.6 %). In conclusion, the proposed mo
del is better suited for object detection tasks in remote sensing data.

Conclusion. Aiming at the issue of limited detection accuracy in remote sensing images due to large 
target scale variations and numerous background interferences, this paper proposes a remote sensing 
image object detection model based on improved YOLOv11 – ABS-YOLO. By integrating adaptive con-
volution (AConv) into YOLOv11 model to replace standard convolutions in the shallow network, the ini-
tial feature extraction capability is enhanced. The bidirectional cross-scale connections (top-down  + 
bottom-up) and weighted feature fusion mechanism optimize the transmission of multi-scale features, 
reducing the information loss associated with traditional FPN. The addition of Swin Transformer mo
dule enables hierarchical feature extraction to capture global context information, effective modeling 
large-scale spatial dependencies and enhancing local receptive fields, thereby significantly improving 
detection performance in complex remote sensing scenes. Experiments show that this method increases 
mAP50-95 to 0.551 on NWPU VHR-10 dataset, an absolute improvement of 2.6 % over the baseline 
model, with precision (0.932) and recall (0.84) both reaching optimal levels, thus verifying its effective-
ness in addressing the core challenges of remote sensing detection. Although the single-image inference 
time of ABS-YOLO model is 1.8 ms, meeting real-time requirements and demonstrating the feasibility 
of prioritizing accuracy in remote sensing detection tasks, there is still room for optimization in terms of 
GFLOPs (16.6) and parameter scale (2.91 million). This study indicates that the synergistic design of lo-
cal feature optimization (AConv), multi-scale fusion (BiFPN), and global modeling (Swin Transformer) 
can effectively break through the performance bottleneck of traditional YOLO series models in remote 
sensing image detection, providing a high-precision and high-efficiency solution for high-resolution 
remote sensing target detection. Future work will investigate the engineering feasibility of dynamic 
computational pruning and multi-modal fusion, as well as explore the collaborative optimization path 
of NAS and edge deployment, to advance remote sensing detection technology towards real-time and 
intelligent directions.
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