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Аннотация. Для различных разбиений множества  всех простых чисел исследуются свойства обобщенно ло-
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Введение. Все рассматриваемые группы являются конечными. Мы придерживаемся терми-
нологии и обозначений, принятых в [1–6].

Интенсивное развитие в последнее десятилетие теории σ-свойств групп (т. е. свойств групп, 
связанных с разбиением σ множества всех простых чисел), заложенной в работах А. Н. Скибы 
[4, 5], вызвало необходимость изучения классов групп, определяемых разбиением σ. Среди под-
ходов, которые были найдены и развиты на этом пути, весьма полезными оказались некоторые 
новые аспекты теории формаций, основанные на понятии σ-локальной, или, иначе, обобщен-
но локальной, формации, впервые предложенном А.  Н. Скибой [6]. Так, в работах [6–10] изу-
чен ряд общих свойств σ-локальных формаций, а также даны их приложения при изучении ме-
та-σ-нильпотентных и σ-разрешимых классов групп, замкнутых относительно произведений 
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заданных систем подгрупп. Отметим, что именно σ-локальные формации оказались основным 
инструментом при решении некоторых старых задач теории групп, одной из которых являлась 
задача Л. А. Шеметкова [11, с. 47, проблема 7] о расширении теории Крамера [12], о фактори-
зациях разрешимых групп на классы произвольных групп. Решение данной задачи получено 
З. Чи, А. Н. Скибой [8] методами σ-локальных формаций. Кроме того, в [9, 10] был изучен ряд 
свойств решеток кратно σ-локальных формаций. В частности, доказано, что множество nl σ  всех 
n-кратно σ-локальных формаций конечных групп является полной алгебраической модулярной 
решеткой, а также изучены некоторые свойства полугруппы всех формаций такого типа. Позже 
А. А. Царевым [13] было показано, что каждое тождество решетки всех формаций выполняется 
в решетке ,nl σ  а также что для любого неотрицательного целого числа n решетка nl σ  является 
модулярной, но не дистрибутивной. В [14] была установлена дистрибутивность решетки всех 
тотально σ-локальных формаций. Н. Н. Воробьевым, И. И. Стаселько и А. О. Ходжагулыевым 
изучены свойства прямых разложений n-кратно σ-локальных формаций [15], а также доказана  
G-отделимость решетки таких формаций [16].

Цикл работ И. Н. Сафоновой [17–25] посвящен изучению τ-замкнутых кратно σ-локальных 
формаций, в которых разработаны оригинальные методы исследования и конструирования фор-
маций такого типа и их решеток, позволившие построить теорию функторно замкнутых кратно 
σ-локальных формаций. В частности, изучить основные свойства τ-замкнутых n-кратно σ-ло-
кальных формаций [18]; получить критерии τ-замкнутости n-кратно σ-локальной формации [23] 
и n-кратной σ-локальности непустой τ-замкнутой формации [19, 25]; установить основные свой-
ства (полнота, σ-индуктивность, модулярность, алгебраичность, отделимость) решетки всех 
τ-замкнутых n-кратно σ-локальных формаций [20, 22, 24]; решить проблему Л.  А. Шеметкова 
о классификации критических формаций в классе σ-локальных формаций [17, 21]. В недавних 
работах И.  Н. Сафоновой и В.  В.  Скрундь [26–29] получено описание структурного строения 
приводимых σ-локальных формаций конечного Hσ-дефекта, а также структурного строения при-
водимых σ-локальных формаций конечной lσ-длины, изучены свойства наибольшего τ-замкнуто-
го подкласса n-кратно σ-локальной формации, доказан критерий для Hτ

σ-критических формаций 
и получено описание минимальных τ-замкнутых σ-локальных не σ-разрешимых и не σ-нильпо-
тентных формаций.

В теории классов конечных групп хорошо известен некий параллелизм результатов теории 
формаций, или корадикальных классов групп, и результатов теории радикальных классов, или, 
иначе, классов Фиттинга. В. Го, Л. Чжаном и Н. Т. Воробьевым [30] было введено понятие σ-ло-
кального класса Фиттинга, изучены основные свойства таких классов, способы их задания с по-
мощью специальных функций (функций Хартли), а также свойства радикальных произведений 
классов такого типа. В работе Н. Н. Воробьева и И. И. Стаселько [31] исследовались свойства 
решетки σ-локальных классов Фиттинга. В частности, было установлено, что решетка всех σ-ло-
кальных классов Фиттинга является индуктивной.

Отметим также, что σ-локальные формации и классы Фиттинга используются не только как 
инструмент для изучения σ-свойств групп, алгебры их σ-локальных классов, но и нашли приме-
нение в теории формальных языков в работах А. А. Царева и А. В. Кухарева [13, 32].

В настоящей работе нами исследуются свойства обобщенно локальных классов групп (фор-
маций и классов Фиттинга) при различных разбиениях σ и α множества  всех простых чисел. 
Доказаны критерии σ-локальности α-локального класса групп, изучены свойства произведений 
обобщенно локальных классов, а также их алгебр, получены необходимые и достаточные усло-
вия коммутативности σ-алгебры, порожденной σ-разрешимым σ-локальным классом.

Обобщенно локальные формации. Класс групп F называют формацией, если он замкнут 
относительно гомоморфных образов и конечных подпрямых произведений. Пусть F – непустая 
формация. Тогда для любой группы G через GF обозначают F-корадикал группы G, т.  е. наи-
меньшую нормальную подгруппу G, факторгруппа по которой принадлежит формации F.

Формация F называется (нормально) наследственной, если H ∈F  всякий раз, когда G ∈F  
и H – (нормальная) подгруппа группы G.
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Пусть F и H – некоторые классы групп. Произведение FH классов групп F и H определяется 
условием G ∈FH  тогда и только тогда, когда в G имеется такая нормальная подгруппа N, что 

/G N ∈F.  Если при этом H  – формация, то корадикальное произведение F H  классов F и H 

определяется следующим образом: = ( | ).G G ∈

HF H F
Следующая лемма описывает свойства произведений формаций групп, которые мы будем 

использовать в данной работе, как правило, не ссылаясь явно на данные утверждения.
Л е м м а  1 (см., напр., [1, гл. II; 3, гл. IV.; 33, 2.2.11]). Пусть F, H и M  – формации. Тогда 

справедливы утверждения: (1) ⊆F H FH  и ⊆ H F H,  если F непусто; (2) если формация F 
нормально наследственная, то = ,F H FH  и ⊆ F F H,  если H непусто; (3) F H  – формация;  
(4) = ( )G GF H H F  для всех ;G ∈G  (5) ( ) = ( ).   F H M F H M

Напомним некоторые понятия и обозначения теории σ-свойств групп и их классов [4–6].
Пусть = { | }i i Iσ σ ∈  – некоторое разбиение множества всех простых чисел , G – группа, F – 

класс групп. Тогда ( ) { | ( ) };i iG Gσ = σ σ ∩ π ≠ ∅ ( ) = ( ).G G∈σ ∪ σFF
Группу G называют [4, 5] σ-примарной, если G является σi-группой для некоторого i; σ-ниль-

потентной, если G  – прямое произведение σ-примарных групп; σ-разрешимой, если каждый 
главный фактор группы G является σ-примарным.

Символами σS  и σN  обозначают классы всех σ-разрешимых и σ-нильпотентных групп со-
ответственно, πG  – класс всех π-групп, где .∅ ≠ π ⊆ �

Всякая функция f вида f : σ → {формации групп} называется [6] формационной σ-функцией. 
Для любой формационной σ-функции f класс LFσ( f ) определяется следующим образом: 

 ',( ) = | = 1либо 1и / ( ) ( ) для всех ( ) ,i ii iLF f G G G G O G f G      

где ', ( )i iO Gσ σ  обозначает 'i iσ σG G -радикал группы G.
Если для некоторой формационной σ-функции f имеет место равенство = ( ),LF fσF  то класс 

F называют σ-локальным [6], а f называют σ-локальным определением F.
Если f – формационная σ-функция, то Supp( ) = { | ( ) }i if fσ ∈σ σ ≠ ∅  – носитель f.
Формационную σ-функцию f называют [6] внутренней, если ( ) ( )if LF fσσ ⊆  для всех i; пол-

ной, если ( ) = ( )i iif fσσ σG  для всех i. Полное внутреннее σ-локальное определение формации 
называют ее каноническим σ-локальным определением.

Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈  – некоторые разбиения множества . Тогда, если для 
каждого i I∈  существует = ( )j j i J∈  такое, что ,i jσ ⊆ α  пишут [34, p. 1803], что .σ ≤ α

Для классических разбиений { }1 = {2},{3},{5}, ,   = { , }π ′σ σ π π  (π  – непустое подмноже-
ство ) и { }1

1 2 1 2= { },{ }, ,{ },   ( = { , , } )n np p p p p pπ ′σ π π ⊆    имеет место 1 1 .π πσ ≤ σ ≤ σ
Те о р е м а  1. Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈  – некоторые разбиения множества всех 

простых чисел. Тогда в том и только в том случае всякая α-локальная формация является σ-ло-
кальной, когда σ ≤ α. В частности, поскольку для всякого разбиения σ множества простых чисел 
имеет место σ1 ≤ σ, то всякая σ-локальная формация является локальной.

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Допустим, что ,σ ≤ α  но всякая α-локальная фор-
мация является σ-локальной. Тогда существует такое ,i I∈  что i jσ ⊆ α  для любого .j J∈  Пусть 

kα ∈α такое, что .i kσ ∩ α ≠ ∅  Ввиду [10, пример 1.2 (iii)] формация kαG  является α-локаль-
ной. Значит, по условию теоремы формация kαG  является σ-локальной. Тогда = ( ),k LF gα σG  
где g  – некоторое σ-локальное определение формации .kαG  Не ограничивая общности, вви-
ду [35, лемма 2.4] можем считать, что формационная σ-функция g является внутренней, т.  е. 

( ) ( ) = .i kg LF gσ ασ ⊆ G  Поскольку ,i kσ ∩ α ≠ ∅  то ( )i kασ ∈σ G  и ( )ig σ ≠ ∅ по [35, лемма 2.3 (1)]. 
Так как формация iσG  наследственная, то ( ).ii i gσ σ⊆ σG G  Поэтому по [19, теорема 1.1 (ii)] имеем 

( ) ( ) = .ii i kg LF gσ σ σ α⊆ σ ⊆G G G

Отсюда .i kσ ⊆ α  Противоречие. Поэтому σ ≤ α.
Д о с т а т о ч н о с т ь. Пусть теперь σ ≤ α и = ( )LF fαF  – неединичная α-локальная формация, 

где f – некоторое внутреннее α-локальное определение формации F. Так как σ и α – разбиения 
множества  и σ ≤ α, то для любого αj имеем = .j ii jσ ⊆αα ∪ σ
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Покажем, что F является σ-локальной формацией. Пусть h  – такая формационная 
σ-функция, что ( ) = ( )i jjh fασ αG  для любого .i jσ ⊆ α  В силу [19, теорема 1.1 (ii)] име-
ем ( ) = ( ) .i jjh fασ α ⊆G F  Пусть = ( ).LF hσH  Заметим, что ( ) = { | ( )}.i i jσ σ ∈σ σ ⊆ α ∈αH F  
Действительно, если ( ),jα ∈α F  то в силу [35, лемма 2.3 (1)] ( ) .jf α ≠ ∅  Значит, ( )ih σ ≠ ∅  
для любого ( ).i jσ ⊆ α ∈α F  Поэтому ( )iσ ∈σ H  опять же по [35, лемма 2.3 (1)]. Отсюда 
{ | ( )} ( ).i i jσ ∈σ σ ⊆ α ∈α ⊆ σF H  С другой стороны, если ( ),iσ ∈σ H  то ( )ih σ ≠ ∅  ввиду [35, лем-
ма 2.3 (1)]. Значит, ( )jf α ≠ ∅  и в силу [35, лемма 2.3(1)] ( )jα ∈α F  для любого αj такого, что 

.i jσ ⊆ α  Следовательно, имеет место включение ( ) { | ( )}.i i jσ ⊆ σ ∈σ σ ⊆ α ∈αH F  Таким обра-
зом, ( ) = { | ( )}.i i jσ σ ∈σ σ ⊆ α ∈αH F

Покажем теперь, что F = H. Допустим, что \ ,≠ ∅F H  и пусть G – группа минимального по-
рядка из F \ H. Тогда G – монолитическая группа с монолитом = .P G H

Рассмотрим прежде случай, когда P – α-примарная группа. Тогда P – αj-группа для некоторо-
го ( )jα ∈α F  и , ( ) = ( ).j j jO G O Gα α α′  Поскольку ,G ∈F  то 

,/ ( ) = / ( ) ( ) ( ) = ( )j j ij j j jG O G G O G f f hα α α α′ ∈ α ⊆ α σG

для всякого .i jσ ⊆ α  Следовательно, ( )iG h∈ σ  для всякого ( ).i Pσ ∈σ  Поэтому ,/ ( ) ( ).ii iG O G hσ σ′ ∈ σ 
,/ ( ) ( ).ii iG O G hσ σ′ ∈ σ  Но = .P G H  Последнее противоречит [19, лемма 3.4]. Значит, группа P – не α-примарна. 

Тогда , ( ) = 1j jO Gα α′  для любого ( ).j Pα ∈α  Следовательно, ,/ ( ) ( ) ( ) = ( )j j ij j jG G O G f f hα α α′ ∈ α ⊆ α σG  
,/ ( ) ( ) ( ) = ( )j j ij j jG G O G f f hα α α′ ∈ α ⊆ α σG для всякого .i jσ ⊆ α  Поэтому ( )iG h∈ σ  для всех ( ).i Pσ ∈σ  Но тогда 

,/ ( ) ( )ii iG O G hσ σ′ ∈ σ  для всякого ( ),i Pσ ∈σ  что невозможно в силу [19, лемма 3.4]. Полученное 
противоречие показывает, что данный случай также невозможен. Поэтому .⊆F H

Пусть теперь ⊆H F  и A – группа минимального порядка из H \ F. Тогда A – монолитическая 
группа с монолитом = .R AF  

Допустим, что R – σ-примарная группа. Тогда R – σi-группа для некоторого i и, следователь-
но, ,= ( ) = ( )i i iR O A O Aσ σ σ′ . Поскольку ,A∈H  имеем 

,/ ( ) = / ( ) ( ) = ( ),i ji i i jA O A A O A h fσ σ σ α′ ∈ σ αG

где ( ).i j Rσ ⊆ α ∈α  Значит, ( )( ) = ( ) ( ) = ( ) ,j j ji j i j jA f f fσ α σ α α∈ α α α ⊆G G G G G F  что проти-
воречит выбору A. Следовательно, R – не σ-примарная группа. Тогда , ( ) = 1i iO Aσ σ′  для любого 

( ).i Rσ ∈σ  Поэтому ,/ ( ) ( ) = ( ) .i ji i jA A O A h fσ σ α′ ∈ σ α ⊆G F  И мы снова получаем противоре-
чие с выбором группы A. Значит, ⊆H F,  и поэтому H = F.

Вторая часть утверждения теоремы является следствием ее первой части. Теорема доказана.
Те о р е м а  2. Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈  – некоторые разбиения множества , 

= ( ),LF tαF  где t – внутреннее α-локальное определение F. Тогда:
(1) если σ ≤ α, то F – σ-локальна и = ( ),LF fσF  где f – каноническое σ-локальное определение 

формации F, при этом ( ) = ( )i jjf tασ αG  для любого ;i jσ ⊆ α
(2) если ,σ ≤ α  но для всякого ( )iσ ∈σ F  найдется = ( )j j i J∈  такое, что ,i jσ ⊆ α  то фор-

мация F – σ-локальна и = ( ),LF fσF  где f – каноническое σ-локальное определение F, при этом 
( ) = ( )i jjf tασ αG  для всех ( ),   i i jσ ∈σ σ ⊆ αF  и ( ) =if σ ∅  для всех ( ).iσ ∉σ F

Д о к а з а т е л ь с т в о. (1) Пусть = ( ),LF tαF  где t – внутреннее α-локальное определение фор-
мации F. Поскольку σ ≤ α, то в силу теоремы 1 формация F является σ-локальной. Кроме того 
(см. доказательство теоремы 1), = ( ),LF fσF  где f – такое внутреннее σ-локальное определение 
F, что ( ) = ( )i jjf tασ αG  для любого .i jσ ⊆ α  Так как при этом для любого i 

( )( ) = ( ) = ( ) ( ) = ( ) = ( ),i j j j ii i j i j jf t t t fσ σ α σ α ασ α α α σG G G G G G

то f – каноническое σ-локальное определение F. Следовательно, утверждение (1) верно.
(2) Пусть ,σ ≤ α  но для всякого ( )iσ ∈σ F  найдется = ( )j j i J∈  такое, что .i jσ ⊆ α  Тогда 

( ) .σ ⊂ σF  Пусть f – такая формационная σ-функция, что ( ) = ( )i jjf tασ αG  для всех ( ),iσ ∈σ F  
i jσ ⊆ α  и ( ) =if σ ∅  для всех ( ).iσ ∉σ F  Пусть = ( ).LF fσH  Ввиду [35, лемма 2.3  (1)] имеем 
( ) = ( ).σ σH F
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Покажем, что H = F. Предположим вначале, что \ ,≠ ∅F H  и пусть A – группа минимального 
порядка из F \ H. Тогда A – монолитическая группа с монолитом = .N AH

Допустим, что N  – α-примарная группа. Тогда N  – αj-группа для некоторого ( )jα ∈α F  
и , ( ) = ( ).j j jO A O Aα α α′  Поскольку ,A∈F  то ,/ ( ) = / ( ) ( ) ( ) = ( )j j ij j j jA O A A O A t t fα α α α′ ∈ α ⊆ α σG  
для всякого .i jσ ⊆ α  Значит, ( )iA f∈ σ  для всякого ( ).i Nσ ∈σ  Поэтому ,/ ( ) ( ).ii iA O A fσ σ′ ∈ σ  
Получили противоречие с [19, лемма 3.4], поскольку = .N AH  Следовательно, N – не α-примар-
ная группа. Поэтому , ( ) = 1j jO Aα α′  для любого ( ).j Nα ∈α  Но тогда имеем 

,/ ( ) ( ) ( ) = ( )j j ij j jA A O A t t fα α α′ ∈ α ⊆ α σG

для всякого .i jσ ⊆ α  Следовательно, ( )iA f∈ σ  для всех ( ),i Nσ ∈σ  и мы снова получаем, что 
,/ ( ) ( )ii iA O A fσ σ′ ∈ σ  для всякого ( ).i Nσ ∈σ  Последнее противоречит [19, лемма 3.4]. Поэтому 

данный случай невозможен и .⊆F H
Пусть теперь ,⊆H F и B – группа минимального порядка из H \ F. Тогда B – монолитическая 

группа с монолитом = .R BF  Допустим, что R – σ-примарная группа. Тогда R – σi-группа для не-
которого i, и, следовательно, ,= ( ) = ( ).i i iR O B O Bσ σ σ′  Поскольку ,B ∈H  то 

,/ ( ) = / ( ) ( ) = ( ),i ji i i jB O B B O B f tσ σ σ α′ ∈ σ αG

где ( ).i j Rσ ⊆ α ∈α  Значит, ( )( ) = ( ) ( ) = ( ) ,j j ji j i j jB t t tσ α σ α α∈ α α α ⊆G G G G G F  что противо-
речит выбору группы B. Следовательно, группа R – не σ-примарна. Тогда , ( ) = 1i iO Bσ σ′  для лю-
бого ( ).i Rσ ∈σ  Поэтому ,/ ( ) ( ) = ( ) .i ji i jB B O B f tσ σ α′ ∈ σ α ⊆G F  И мы снова получаем проти-
воречие с выбором группы B. Значит, ⊆H F  и = .H F  Поскольку при этом для любого i 

 ( ) = ( ) = ( ) ( ) = ( ) = ( ),i j j j ii i j i j jf t t t f         G G G G G G

то f – каноническое σ-локальное определение F и, следовательно, утверждение (2) теоремы вер-
но. Теорема доказана.

Те о р е м а  3. Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈  – некоторые разбиения множества  
и пусть = ( ),   = ( ),LF m LF hα σM H  где m – внутреннее α-локальное определение формаций M, h – 
внутреннее σ-локальное определение H. Тогда, если σ ≤ α, произведения = F M H  и = L H M  – 
σ-локальные формации и = ( ),   = ( ),LF f LF lσ σF L  где f и l – такие внутренние формационные 
σ-функции, что 

( ) ,    если ( ) и ,
( ) =

( ),   если \ ( ),  
( ) ,    если ( ),

( ) = ( ),   если \ ( ) и . 

j i i jj
i

i i

i i
i

j i i jj

m
f

h
h

l m





      
   
          

G H M

M

M H

G H





Д о к а з а т е л ь с т в о. Пусть σ  ≤  α. Ввиду теоремы 2 формация M является σ-локаль-
ной и = ( ),LF tσM  где t  – каноническое σ-локальное определение формации M, при 
этом ( ) = ( )i jjt mασ αG  для любого .i jσ ⊆ α  Применяя теперь [10, теорема 1.14], имеем 

= ( ),LF fσM H  = ( ),LF lσH M  где f и l – такие формационные σ-функции, что 

j( ) = ( ) ,   если ( ) и ,
( ) =

( ),    если \ ( ),  
( ) ,    ( ) ,

( ) ( ) ( ),    если \ ( )  . 

i j i ij
i

i i

i i
i

i j i i jj

t m
f

h
h h

l t m и





       
   
            

H G H M

M

M M

G H

 

 

Поскольку формационные σ-функции h и t являются внутренними, то ( ) = ( )i if tσ σ ⊆ H M H 
при всех ( )iσ ∈σ M  и ,i jσ ⊆ α  а также ( ) = ( )i if hσ σ ⊆ ⊆ H M H  при всех \ ( ).iσ ∈σ σ M  
Аналогично, ( ) = ( )i il hσ σ ⊆ M H M  при всех ( ),iσ ∈σ H  а также ( ) = ( )i il tσ σ ⊆ ⊆ M H M  
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при всех \ ( )iσ ∈σ σ H  и .i jσ ⊆ α  Поэтому внутренними являются и формационные σ-функции f 
и l. Таким образом, = ( )LF fσF  и = ( ),LF lσL  где f и l – внутренние формационные σ-функции, 
удовлетворяющие условию теоремы. Теорема доказана.

Частичные σ-алгебры формаций. Пусть θ – полная решетка формаций, σ – некоторое раз-
биение множества простых чисел , ( ) = ( ).∈θσ θ ∪ σF F  Формации из θ называют θ-формациями.

Формационную σ-функцию f называют θ-значной, если ( )if σ ∈θ  для всех Supp( ).i fσ ∈
Через θσ будем обозначать множество всех σ-локальных формаций, которые имеют хотя бы од-

но θ-значное σ-локальное определение, т. е. = { = ( ) | ( )  для любого Supp( )}.i iLF f f f     F
По определению формация всех единичных групп (1) = ( ),LF nσ  где ( ) =in σ ∅  для всех i, 

принадлежит θσ.
Следуя [2, с. 12], полную решетку формаций θ будем называть: 1) частичной σ-алгеброй форма-

ций, если iσ ∈θG  для любого ( )iσ ∈σ θ  и для всякой формации ∈θF  имеет место ;iσ ∈θG F  2) σ-ал-
геброй формаций, если θ – такая частичная σ-алгебра формаций, что ∈θF H  для любых .∈θF,H

П р е д л о ж е н и е  1. Пусть θ – такая полная решетка формаций, что .σθ ⊆ θ  Тогда: (1) если 
θ  – частичная σ-алгебра формаций, то θσ также является частичной σ-алгеброй формаций; 
(2) если θ – σ-алгебра формаций, то θσ также является σ-алгеброй формаций. 

Д о к а з а т е л ь с т в о. (1) Поскольку θ – решетка формаций, то в силу [10, лемма 2.2] пересе-
чение любой совокупности формаций из θσ снова принадлежит θσ. Пусть F – такая θ-формация, 
что для любой θ-формации M имеет место ⊆M F.  И пусть f  – такая формационная σ-функ-
ция, что ( ) =if σ F  для любого .iσ ∈σ  Тогда ( ) .LF fσ σ∈θ  Пусть H – произвольная θσ-формация. 
Тогда, очевидно, ( ).LF fσ⊆H  Следовательно, θσ – полная решетка формаций.

Пусть теперь iσ ∈σ и = ( ),LF fσF  где f  – θ-значное σ-локальное определение формации F. 
Поскольку θ – решетка формаций и σθ ⊆ θ по условию, то ввиду [35, лемма 2.4] мы можем считать, 
что f – внутренняя формационная σ-функция. Покажем, что = .iσ σ∈θH G F  Действительно, ввиду 
[21, лемма 2.1] имеем = ( ),i LF mσ σG  где m – такое σ-локальное определение ,iσG  что ( ) = (1)im σ  
и ( ) =jm σ ∅ для любого j ≠  i. Так как (1) ,∈θ  то m является θ-значным σ-локальным определе-
нием .iσG  По [10, теорема 1.14] имеем = ( ),LF hσH  где h – такое σ-локальное определение H, что 

( ) = ( ) = (1) =i ih m σσ σ ∈θ ⊆ θF F F  и ( ) = ( )j jh fσ σ ∈θ для любого ( ) \{ }.j iσ ∈σ σF  Отсюда 
= .iσ σ∈θH G F  Таким образом, θσ является частичной σ-алгеброй формаций, т. е. имеет место (1).

(2) Ввиду утверждения (1) достаточно доказать, что для любых формаций M и F из θσ их 
произведение M F  принадлежит θσ. Пусть = ( )LF mσM  и = ( ),LF fσF  где m и f  – внутрен-
ние θ-значные σ-локальные определения формаций M и F соответственно, = .H M F  Тогда по 
[10, теорема 1.14] имеем = ( ),LF hσH  где h  – такое σ-локальное определение формации H, что 

( ) = ( )i ih mσ σ F  для любого ( )iσ ∈σ M  и ( ) = ( )i ih fσ σ  для любого ( ) \ ( ).iσ ∈σ σF M  Так как 
по условию ,σθ ⊆ θ  то ( ) = ( ) .i ih mσ σ ∈θF  Значит, h – θ-значное σ-локальное определение фор-
мации H. Следовательно, .σ∈θH  Поэтому θσ  – σ-алгебра формаций и утверждение (2) верно. 
Предложение доказано.

С л е д с т в и е  1 . При всяком разбиении σ множества  полная решетка lσ всех σ-локальных 
формаций является σ-алгеброй формаций.

Пусть σ – некоторое разбиение множества , θ – σ-алгебра формаций, .σ∈θM  Через ( )σθ M  
будем обозначать множество всех θσ-формаций из M. В частности, если θ – решетка всех фор-
маций, то вместо символа ( )σθ M  будем использовать символ ( ),Aσ M  т. е. ( )Aσ M  – множество 
всех σ-локальных формаций из .lσ∈M

Напомним (см. [36] и [1, с. 57]), что умножение формаций в M определяется следующим об-
разом: = .∩





M
F H F H M

Л е м м а  2. Пусть σ – некоторое разбиение множества , θ – σ-алгебра формаций, .σ∈θM  
Тогда справедливы следующие утверждения: (1) ( )σθ M  является σ-алгеброй формаций; (2) если 

= ( )LF fσF  и = ( )LF hσH  – формации из ( ),σθ M  где f и h – некоторые внутренние θ-значные
σ-локальные определения формаций F и H соответственно, то = ( ),LF lσ

M
F H  где l – такая вну-

тренняя θ-значная формационная σ-функция, что 
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 ( ) ( ),     если ( ),
( ) =

 ( ) ( ),      если \ ( ).
j i j

i
j i j

f m
l

h m

      
     

H F

F



Д о к а з а т е л ь с т в о. (1) Поскольку формация iσG  является наследственной, то с учетом [19, 
теорема 1.1] iσ ⊆G M  для любого ( ).iσ ∈σ M  Так как при этом формация iσG  σ-локальна [10, при-
мер 1.2 (iii)] и = ( ),i LF gσ σG  где ( ) =i ig σσ ∈θG  и ( ) =kg σ ∅  для любого k ≠ j, то ( ).iσ σ∈θG M  
Ввиду предложения 1(2) θσ является σ-алгеброй формаций. Поэтому для любой формации 

( )σ∈θL M  имеем ,iσ σ∈θG L  и, следовательно, = = ( ).i i iσ σ σ σ∩ ∩ ∈θ




M
G L G L M G L M M

Пусть = ( )LF fσF  и = ( )LF hσH  – формации из ( ),σθ M  где f и h – некоторые внутренние 
θ-значные σ-локальные определения формаций F и H соответственно. Тогда в силу [10, теоре-
ма 1.14] имеем = ( ),LF xσF H  где x – такая формационная σ-функция, что 

( ) ,     если ( ),
( ) =

( ),     если \ ( ).
j j

i
j j

f
x

h
       

H F

F



Заметим, что x является внутренним θ-значным σ-локальным определением формации .F H  
Пусть m  – некоторое внутреннее θ-значное σ-локальное определение формации M. И пусть 

= ( ) .LF xσ ∩L M  В силу [35, лемма 2.2] имеем = ( ),LF lσL  где ( ) = ( ) ( )i i il x mσ σ ∩ σ  для любого j.  
Значит, l – внутреннее θ-значное σ-локальное определение формации L, при этом 

 ( ) ( ),     если ( ),
( ) =

 ( ) ( ),      если \ ( ).
j i j

i
j i j

f m
l

h m

      
     

H F

F



Следовательно, = = ( ).σ∩ ∈θ




M
L F H M F H M  Таким образом, ( )σθ M  – σ-алгебра.

(2) См. доказательство (1). Лемма доказана.
Те о р е м а  4. Пусть σ и α – некоторые разбиения множества , θ – α-алгебра формаций, 

.α∈θM  Тогда, если θ – σ-алгебра формаций и σ ≤ α, то ( )αθ M  – σ-подалгебра в ( ).σθ M
Д о к а з а т е л ь с т в о. Пусть = ( )s sLF fαF  – формация из ( ),αθ M  где fs – некоторое внутрен-

нее θ-значное α-локальное определение формации ,   = 1,2.s sF  По теореме 2 (1) формация Fs яв-
ляется σ-локальной и = ( ),s sLF tσF  где ts – каноническое σ-локальное определение Fs, при этом 

( ) = ( )s i s jjt fασ αG  для любого .i jσ ⊆ α  Поскольку по условию теоремы θ – α-алгебра форма-
ций, то произведение ( )s jj fα αG  является θ-формацией. Значит, t – θ-значное σ-локальное опре-
деление формации .sF  Следовательно, ( ).s σ∈θF M  Поэтому ( ) ( ).α σθ ⊆ θM M

В силу леммы 2 (2) имеем 1 2 = ( ),LF xσ

M
F F  где x – такая внутренняя θ-значная формационная 

σ-функция, что 
 1

2

( ) ( ),     если ( ),
( ) =

( ) ( ),     если \ ( ). 
i i i

i
i i i

t m
x

t m
      

     

H F

F



Поэтому 1 2 ( )σ∈θ


M
F F M  и ( )αθ M  – σ-подалгебра в ( ).σθ M  Теорема доказана.

С л е д с т в и е  2. Пусть σ и α – некоторые разбиения множества . Тогда, если σ ≤ α, полу-
группа ( )Aα M  всех α-локальных формаций является подполугруппой полугруппы ( )Aσ M  всех 
σ-локальных формаций.

Напомним понятие прямого разложения класса групп (см. [2, с. 171]). Пусть { | }j j J∈F  – не-
который непустой набор подклассов j ⊆F F  такой, что 1 2 = (1)j j∩F F  для любого j1 ≠  j2 из J. 
Если, кроме того, каждая группа G ∈F  имеет вид 1= ,j jtG A A× ×  где 1 1 , ,j j j jt tA A∈ ∈F F  
для некоторого 1, , ,tj j J∈

 то пишут, что = j J j∈⊕F F  (в частности, 1= ,t⊕ ⊕F F F  если 
= {1, , }J t ).

Л е м м а  3. Пусть = ( ),   = ( ).LF fσ Π σF F  Тогда =σ Π∩F N N  и = { | ( ) }.i ifΠ σ σ ≠ ∅
Д о к а з а т е л ь с т в о. Ввиду [35, лемма 2.3(1)] имеем = { | ( ) }.i ifΠ σ σ ≠ ∅  Поскольку форма-

ция iσG  является наследственной, то ( ( ) )ii i fσ σ⊆ σ ∩G G F  и по [35, лемма 2.3 (5)] имеем 
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( ( ) )ii i fσ σ⊆ σ ∩ ⊆G G F F

для всякого .iσ ∈Π  Поэтому = .iiΠ σ ∈Π⊕ ⊆N G F  С другой стороны, поскольку ,σ Π∩ ⊆F N N  
то мы имеем искомое равенство = .σ Π∩F N N  Лемма доказана.

Те о р е м а  5. Пусть θ – σ-алгебра формаций, σ∈θM  – некоторая σ-разрешимая формация. 
Тогда и только тогда σ-алгебра ( )σθ M  является коммутативной полугруппой, когда M σ-ниль-
потентна.

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Пусть выполняются условия теоремы и σ-алге-
бра ( )σθ M  является коммутативной полугруппой. Покажем, что в этом случае формация M 
σ-нильпотентна. Действительно, если ,σ⊆M N  то по [26, следствие 3.9] в формацию M вхо-
дит по меньшей мере одна минимальная σ-локальная не σ-нильпотентная подформация L. 
В силу [21, следствие 2.9] имеем = form( )l GσL  и выполняется одно из следующих условий: 
1) G – простая не σ-примарная группа; 2) = ,G P K  где = ( )GP C P  – p-группа, ,ip ∈σ  а K – 
простая σj-группа, j ≠ i. Поскольку формация ,⊆L M  то L – σ-разрешима. Следовательно, груп-
па G удовлетворяет условию 2) и ( ) = { , } ( ).i jσ σ σ ⊆ σL M  Значит, iσG  и jσG   – σ-локальные 
подформации из M в силу [10, пример 1.2  (iii)] и, очевидно, , ( ).i jσ σ σ∈θG G M  Значит, имеет 
место = .i j j iσ σ σ σ 

M M
G G G G  Поскольку = ,i j i jσ σ σ σ⊆ ∩



M
L G G M G G  то .j iσ σ⊆



M
L G G  

Следовательно, .j iσ σ⊆L G G  Поэтому группа G принадлежит формации .j iσ σG G  Значит, 
.i

jG σ
σ∈

G
G  Из описания группы G следует, что =iG GσG  и .jG σ∉G  Полученное противоре-

чие показывает, что .σ⊆M N
Д о с т а т о ч н о с т ь. Пусть теперь формация σ⊆M N  и пусть F и H – некоторые σ-локаль-

ные подформации из ( ).σθ M  Полугруппой σ-алгебра ( )σθ M  является в силу [10, теорема 1.13)]. 
Покажем, что ( )σθ M  коммутативна. Действительно, ввиду леммы 3 имеем 

( ) ( )= и = .      F H H FF H N N H F N N 

Следовательно, поскольку σ∩ ⊆F H M N  и ,σ∩ ⊆H F M N  то 

( )= = = ( ) = =σ σ σ ∪∩ ∩ ∩ ∩ ∩ ∩


   F H
M

F H F H M F H M N F H N M N M
 

( )= = ( ) = = = .σ ∪ σ σ∩ ∩ ∩ ∩ ∩ ∩


  H F
M

N M H F N M H F M N H F M H F

Таким образом, =
 

M M
F H H F  и ( )σθ M  – коммутативная полугруппа. Теорема доказана.

С л е д с т в и е  3 [37, теорема 3.2]. Пусть M – разрешимая локальная формация. Тогда и толь-
ко тогда ( )lA M  является коммутативной полугруппой, когда M нильпотентна.

Обобщенно локальные классы Фиттинга. Напомним, что класс групп H называется клас-
сом Фиттинга, если он замкнут относительно взятия нормальных подгрупп и произведения 
нормальных H-подгрупп. Для непустого класса Фиттинга H каждая группа G имеет наиболь-
шую нормальную H-подгруппу GH, которая называется H-радикалом группы G.

Пусть F – класс Фиттинга и H – класс групп. Тогда радикальное произведение ◊F H  классов F 
и H определяется следующим образом: = ( | / ).G G G◊ ∈FF H H

Свойства радикальных произведений классов групп описывает лемма 4. Используя их в дан-
ной работе, мы, как правило, не будем явно ссылаться на утверждения данной леммы.

Л е м м а  4 ([3, гл. IX, 1.12; 33, предложение 2.2.11]). Пусть F, H и M – классы Фиттинга. 
Тогда справедливы утверждения: (1) ◊ ⊆F H FH  и ⊆ ◊F F H , если H непусто; (2) если класс H – 
гомоморф, то =◊F H FH  и ,⊆ ◊H F H  если F непусто; (3) ◊F H  – класс Фиттинга; (4) для всех 

,G ∈G  H-радикал группы /G GF  равен / ;G G◊F H F  (5) ( ) = ( ).◊ ◊ ◊ ◊F H M F H M
Напомним [30], что всякую функцию f вида f : σ → {классы Фиттинга} называют σ-функцией 

Хартли, или Hσ-функцией. Для любой Hσ-функции f класс LRσ( f ) определяют следующим обра-
зом: ( ) = ( | = 1либо 1и ( ) для всех ( )),i i i iLR f G G G G f G  

     
G G  где i iG σ σ ′G G  – i iσ σ ′G G - 

корадикал группы G.
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Пусть F – класс Фиттинга. Если найдется такая Hσ-функция f, что = ( ),LR fσF  то говорят 
[30], что класс Фиттинга F является σ-локальным, а f – σ-локальное задание класса F.

Hσ-функцию h называют [30, определение 1.3] внутренней, если ( ) ( )ih LR hσσ ⊆  для всех i; 
полной, если ( ) = ( )i i ih h σσ σ G  для всех i; полной внутренней, если h является полной и внутрен-
ней Hσ-функцией.

Доказательство следующей леммы осуществляется прямой проверкой.
Л е м м а  5. Пусть = ( )LR hσH  и t – такая Hσ-функция, что ( ) = ( )i it hσ σ ∩ H  для всех i. Тогда 

t – внутреннее σ-локальное задание класса Фиттинга H.
Л е м м а  6. Пусть = ( )LR hσH  – σ-локальный класс Фиттинга, G – группа и .G G≠H  Тогда 

найдется такое ( / ),i G Gσ ∈σ H  что ( ).i i iG hσ σ ′ ∉ σ
G G

Д о к а з а т е л ь с т в о. Пусть ( )i Gσ ∈σ  такое, что ( )i i iG hσ σ ′ ∉ σ
G G  и = .H GH  Тогда, посколь-

ку ,H ∈H  то ( )j j
jH hσ σ ′ ∈ σ

G G
 при всяком ( ).j Hσ ∈σ  Пусть ( ) \ ( / ).j H G Hσ ∈σ σ  Тогда в си-

лу [30, лемма 2.9] имеет место = .j j j jG Hσ σ σ σ′ ′G G G G
 Значит, ( )j j

jG hσ σ ′ ∈ σ
G G

 для любого 
( ) \ ( / ).j H G Hσ ∈σ σ  Поэтому ( / ).i G Hσ ∈σ  Лемма доказана.

Те о р е м а  6. Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈  – некоторые разбиения множества . 
Тогда в том и только в том случае всякий α-локальный класс Фиттинга является σ-локальным, 
когда σ ≤ α. В частности, поскольку для всякого разбиения σ имеет место σ1 ≤ σ, то любой σ-ло-
кальный класс Фиттинга является локальным.

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Допустим, что ,σ ≤ α  но всякий α-локальный 
класс Фиттинга является σ-локальным. Тогда найдется такое ,i I∈  что i jσ ⊆ α  для любого .j J∈  
Пусть kα ∈α такое, что .i kσ ∩ α ≠ ∅  Ввиду [30, пример 1.2] класс Фиттинга kαG  является α-ло-
кальным. Поэтому по условию теоремы класс Фиттинга kαG  является также и σ-локальным. 
Тогда = ( ),k LR gα σG  где g  – некоторое σ-локальное задание класса Фиттинга .kαG  Учитывая 
лемму 5, мы можем считать, что Hσ-функция g является внутренней, т. е. ( ) ( ) = .i kg LR gσ ασ ⊆ G  
Поскольку ,i kσ ∩ α ≠ ∅  то ( )i kασ ∈σ G  и ( )ig σ ≠ ∅  по [30, лемма  3.1  (a)]. Так как класс 
Фиттинга iσG  является наследственным, то ( ) .ii igσ σ⊆ σG G  Тогда, в силу [30, лемма 3.2], имеем 

( ) ( ) = .ii i kg LR gσ σ σ α⊆ σ ⊆G G G

Отсюда .i kσ ⊆ α  Противоречие. Следовательно, σ ≤ α.
Д о с т а т о ч н о с т ь. Пусть σ ≤ α и = ( )LR fαF  – неединичный α-локальный класс Фиттинга, 

где f – некоторое внутреннее α-локальное задание F. Покажем, что класс Фиттинга F σ-локален. 
Пусть h – такая Hσ-функция, что ( ) = ( )i j jh f ασ α G  для любого .i jσ ⊆ α  Ввиду [30, лемма 3.2] 
имеем ( ) = ( ) .i j jh f ασ α ⊆G F  Так как σ и α – разбиения множества  и σ ≤ α, то для любого αj 
имеем = .j ii jσ ⊆αα ∪ σ

Пусть = ( ).LR hσH  Заметим, что ( ) = { | ( )}.i i jσ σ ∈σ σ ⊆ α ∈αH F  Действительно, если 
( ),jα ∈α F  то в силу [30, лемма 3.1 (a)] имеем ( ) .jf α ≠ ∅  Следовательно, ( )ih σ ≠ ∅  для любого 

( ).i jσ ⊆ α ∈α F  Тогда ( )iσ ∈σ H  по [30, лемма 3.1 (a)]. Значит, { | ( )} ( ).i i jσ ∈σ σ ⊆ α ∈α ⊆ σF H  
Обратно, если ( ),iσ ∈σ H  то, применяя [30, лемма 3.1  (a)], имеем ( ) .ih σ ≠ ∅  Следовательно, 

( )jf α ≠ ∅  для всякого αj такого, что .i jσ ⊆ α  Тогда ( )jα ∈α F  в силу [30, лемма 3.1 (a)]. Поэтому 
( ) { | ( )}.i i jσ ⊆ σ ∈σ σ ⊆ α ∈αH F  Таким образом, ( ) = { | ( )}.i i jσ σ ∈σ σ ⊆ α ∈αH F

Докажем, что = .F H  Допустим, что \ ≠ ∅F H  и пусть G – группа минимального порядка из 
F \ H. Тогда G – комонолитическая группа с комонолитом = .P GH

Пусть G/P  – α-примарная группа. Тогда G/P  – αj-группа для некоторого ( )jα ∈α F  

и = .j j jG Gα α α′G G G
 Поскольку ,G ∈F  то = ( ) ( ) = ( )j j j

j j ijG G f f hα α α ′
α∈ α ⊆ α σ

G G G
G  для вся-

кого .i jσ ⊆ α  Значит, ( )iG h∈ σ  для всякого ( / ).i G Pσ ∈σ  Поэтому ( ).i i iG hσ σ ′ ∈ σ
G G  Но = .P GH  

Последнее противоречит лемме 6. Значит, группа G/P  – не α-примарна. Тогда =j jG Gα α ′G G
 

для любого ( / ).j G Pα ∈α  Следовательно, = ( ) ( ) = ( )j j
j j ijG G f f hα α ′

α∈ α ⊆ α σ
G G

G  для всяко-
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го .i jσ ⊆ α  Поэтому ( )iG h∈ σ  для всех ( / ).i G Pσ ∈σ  Но тогда ( )i i iG hσ σ ′ ∈ σ
G G  для всякого 

( / ),i G Pσ ∈σ  и мы снова получаем противоречие с леммой 6. Поэтому .⊆F H
Предположим теперь ⊆H F  и A  – группа минимального порядка из H \ F. Тогда A  – ко-

монолитическая группа с комонолитом = .R AF  Допустим, что A/R  – σ-примарная груп-
па. Тогда A/R  – σi-группа для некоторого i и, следовательно, = = .i i iR A Aσ σ σ ′G G G  Поскольку 

,A∈H  то = ( ) = ( ) ,i i i i j jA A h fσ σ σ ′
α∈ σ α

G G G
G  где ( / ).i j A Rσ ⊆ α ∈α  Следовательно, 

( )( ) = ( )( ) = ( ) ,j j jj i j i jA f f fα σ α σ α∈ α α α ⊆G G G G G F  что противоречит выбору A. Зна
чит, A/R  – не σ-примарная группа. Тогда =i iA Aσ σ ′G G  для любого ( / ).i A Rσ ∈σ  Поэтому 

= ( ) = ( ) .i i i j jA A h fσ σ ′
α∈ σ α ⊆

G G
G F  И мы снова получаем противоречие с выбором группы A. 

Поэтому ⊆H F и H = F.
Вторая часть утверждения теоремы является следствием первой ее части. Теорема доказана.
Те о р е м а  7. Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈  – некоторые разбиения , = ( ),LR tαF  

где t – внутреннее α-локальное задание F. Тогда: (1) если σ ≤ α, то класс Фиттинга F – σ-локален 
и = ( ),LR fσF  где f – полное внутреннее σ-локальное задание F, при этом ( ) = ( )i j jf t ασ α G  для 
любого ;i jσ ⊆ α  (2) если ,σ ≤ α  но для всякого ( )iσ ∈σ F  найдется = ( )j j i J∈  такое, что ,i jσ ⊆ α  
то класс Фиттинга F – σ-локален и = ( ),LR fσF  где f – полное внутреннее σ-локальное зада-
ние F, при этом ( ) = ( )i j jf t ασ α G  для всех ( ),   i i jσ ∈σ σ ⊆ αF  и ( ) =if σ ∅  для всех ( ).iσ ∉σ F

Д о к а з а т е л ь с т в о. (1) Пусть = ( ),LR tαF  где t  – внутреннее α-локальное задание класса 
Фиттинга F. Поскольку σ  ≤  α, то в силу теоремы 6 класс Фиттинга F является σ-локальным. 
Кроме того (см. доказательство теоремы 6), = ( ),LR fσF  где f – такая внутренняя Hσ-функция, 
что ( ) = ( )i j jf t ασ α G  для любого .i jσ ⊆ α  Так как при этом для любого i 

( )( ) = ( ) = ( )( ) = ( ) = ( ),i j j j ii j i j i jf t t t fσ α σ α σ ασ α α α σG G G G G G

то f – полное внутреннее σ-локальное задание F. Значит, утверждение (1) верно.
(2) Пусть ,σ ≤ α  но для всякого ( )iσ ∈σ F  найдется = ( )j j i J∈  такое, что .i jσ ⊆ α  Тогда 

( ) .σ ⊂ σF  Пусть f  – такая Hσ-функция, что ( ) = ( )i j jf t ασ α G  для всех ( ),   i i jσ ∈σ σ ⊆ αF  
и ( ) =if σ ∅  для всех ( ).iσ ∉σ F  Пусть = ( ).LR fσH  Ввиду [30, лемма 3.1 (a)] имеем ( ) = ( ).σ σH F

Покажем, что = .H F  Предположим вначале, что \ ≠ ∅F H  и пусть A – группа минимального 
порядка из \ .F H  Тогда A – комонолитическая группа с комонолитом = .N AH

Допустим, что A/N  – α-примарная группа. Тогда A/N  – αj-группа для некоторого ( )jα ∈α F  

и = .j j jA Aα α α′G G G
 Поскольку ,A∈F  то = ( ) ( ) = ( )j j j

j j ijA A t t fα α α ′
α∈ α ⊆ α σ

G G G
G  для всяко-

го .i jσ ⊆ α  Значит, ( )iA f∈ σ  для всякого ( / ).i A Nσ ∈σ  Поэтому ( ).i i iA fσ σ ′ ∈ σ
G G  Но посколь-

ку = ,N AH  то последнее противоречит лемме 6. Следовательно, A/N – не α-примарная группа. 

Поэтому =j jA Aα α ′G G
 для любого ( / ).j A Nα ∈α  Значит, 

= ( ) ( ) = ( )j j
j j ijA A t t fα α ′

α∈ α ⊆ α σ
G G

G

для всякого .i jσ ⊆ α  Поэтому ( )iA f∈ σ  для всех ( / ),i A Nσ ∈σ  и мы снова получаем, что 
( )i i iA fσ σ ′ ∈ σ

G G  для всякого ( / ).i A Nσ ∈σ  Последнее противоречит лемме 6. Поэтому данный 
случай невозможен и .⊆F H

Пусть теперь ⊆H F  и B – группа минимального порядка из H \ F. Тогда B – комонолити-
ческая группа с комонолитом = .R BF  Допустим, что B/R  – σ-примарная группа. Тогда B/R  – 
σi-группа для некоторого i и, следовательно, = = .i i iR B Bσ σ σ ′G G G  Поскольку ,B ∈H  то 

= ( ) = ( ) ,i i i i j jB B f tσ σ σ ′
α∈ σ α

G G G
G

где ( / ).i j B Rσ ⊆ α ∈α  Значит, ( )( ) = ( )( ) = ( ) ,j j jj i j i jB t t tα σ α σ α∈ α α α ⊆G G G G G F  что проти-
воречит выбору группы B. Следовательно, группа B/R – не σ-примарна. Тогда =i iB Bσ σ ′G G  для 
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любого ( / ).i B Rσ ∈σ  Поэтому = ( ) = ( ) .i i i j jB B f tσ σ ′
α∈ σ α ⊆

G G
G F  И мы снова получаем про-

тиворечие с выбором группы B. Значит, ⊆H F  и H = F. Поскольку при этом для любого i 

( )( ) = ( ) = ( )( ) = ( ) = ( ),i j j j ii j i j i jf t t t fσ α σ α σ ασ α α α σG G G G G G

то f – полное внутреннее σ-локальное задание F. Следовательно, утверждение (2) теоремы верно. 
Теорема доказана.

Те о р е м а  8. Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈   – некоторые разбиения множества 
всех простых чисел  и пусть = ( ),   = ( ),LR x LR hα σX H  где x – внутренняя Hα-функция класса 
Фиттинга X, h – внутренняя Hσ-функция класса Фиттинга H. Тогда, если σ ≤ α, то произведения 

= ◊F X H  и = ◊M H X  являются σ-локальными классами Фиттинга и = ( ),   = ( ),LR m LR fσ σM F  
где f и m – такие внутренние Hσ-функции, что 

,

( ),    если ( ),
( ) = ( ) ,     если \ ( ) и 

( ) ,      если ( ) и ,
( ) =

( ),      если \ ( ).

i i
i

j i i jj

j i i jj
i

i i

h
f x

x
m

h





           
       
   

X H

G H

H G X

X

Д о к а з а т е л ь с т в о. Пусть σ ≤ α. Ввиду теоремы 7 (1) класс Фиттинга X является σ-локаль-
ным и = ( ),LR tσX  где t – полное внутреннее σ-локальное задание класса Фиттинга X, при этом 
( ) = ( )i j jt x ασ α G  для любого .i jσ ⊆ α  Применяя теперь [30, теорема 1.2], имеем = ( ),LR fσF  

= ( ),LR mσM  где f и m – такие Hσ-функции, что 

( ),      если ( ),
( ) = ( ) = ( ) ,      если \ ( ) и ,

( ) = ( ) ,     если ( ) и ,
( ) =

( ),      если \ ( ).

i i
i

i j i i jj

i j i i jj
i

i i

h
f t x

t x
m

h





            
         
   

X H

G H

H H G X

X

Поскольку Hσ-функции h и t являются внутренними, то, очевидно, внутренними являются 
и Hσ-функции f и m. Теорема доказана.

Частичные σ-алгебры классов Фиттинга. Пусть θ  – полная решетка классов Фиттинга 
и пусть σ – некоторое разбиение множества простых чисел . Классы Фиттинга из θ будем назы-
вать θ-классами Фиттинга.

Для всякой Hσ-функции h символ Supp(h) обозначает носитель h, т.  е. Supp(h) =
Supp( ) = { | ( ) }.i ih hσ ∈σ σ ≠ ∅  Hσ-функцию h называют θ-значной, если ( )ih σ ∈θ  для всех Supp( ).i hσ ∈

Через θσ будем обозначать множество всех σ-локальных классов Фиттинга, которые имеют 
хотя бы одно θ-значное σ-локальное задание, т. е. 

= { = ( ) | ( )  для любого Supp( )}.i iLR h h h
    H

Класс (1) всех единичных групп является σ-локальным классом Фиттинга [30, пример 1.2 (i)] 
и (1) = ( ),LR nσ  где ( ) =in σ ∅  для всех i. По определению класс (1) принадлежит θσ.

Полную решетку классов Фиттинга θ будем называть: 1) частичной σ-алгеброй классов 
Фиттинга, если iσ ∈θG  для любого ( )iσ ∈σ θ  и для любого класса Фиттинга ∈θH  имеет ме-
сто ;iσ◊ ∈θH G  2) σ-алгеброй классов Фиттинга, если θ – такая частичная σ-алгебра классов 
Фиттинга, что ◊ ∈θH X  для любых , .∈θH X

Л е м м а  7. Пусть = iσH G  – класс всех σi-групп. Тогда = ( ),LR hσH  где h – такая Hσ-функция, 
что ( ) = (1)im σ  и ( ) =jm σ ∅  для любого j ≠ i. 

Д о к а з а т е л ь с т в о  осуществляется прямой проверкой.
П р е д л о ж е н и е  2. Пусть θ – такая полная решетка классов Фиттинга, что .σθ ⊆ θ  Тогда 

имеют место утверждения: (1) если θ – частичная σ-алгебра классов Фиттинга, то θσ также 
является частичной σ-алгеброй классов Фиттинга; (2) если θ – σ-алгебра классов Фиттинга, 
то θσ также является σ-алгеброй классов Фиттинга. 



282	  Proceedings of the National Academy of Sciences of Belarus. Рhysics and Mathematics series, 2025, vol. 61, no. 4, рр. 271–287

Д о к а з а т е л ь с т в о. Поскольку θ  – решетка классов Фиттинга, то в силу [30, предложе-
ние 7.3] пересечение любой совокупности классов Фиттинга из θσ снова принадлежит θσ. Пусть 
F  – такой класс Фиттинга из θ, что для любого θ-класса Фиттинга M имеет место ⊆M F. 
И пусть f – такая Hσ-функция, что ( ) =if σ F  для любого .iσ ∈σ  Тогда ( ) .LR f σ

σ ∈θ  Пусть H – 
произвольный θσ-класс Фиттинга. Тогда, очевидно, ( ).LR fσ⊆H  Значит, θσ  – полная решетка 
классов Фиттинга.

Пусть iσ ∈σ  и .σ∈θF  Пусть = ( ),LR fσF  где f  – θ-значное σ-локальное задание класса 
Фиттинга F. Поскольку θ – решетка классов Фиттинга, то ввиду леммы 5 мы можем считать, что 
f – внутренняя Hσ-функция. Покажем, что = .i

σ
σ ∈θH FG  Действительно, ввиду леммы 7 имеем 

= ( ),i LR mσ σG  где m – такое σ-локальное задание iσG , что ( ) = (1)im σ  и ( ) =jm σ ∅  для любого 
j ≠ i. Так как (1) ,∈θ  то m является θ-значным σ-локальным заданием .iσG  По [30, теорема 1.2] 
имеем = ( ),LR hσH  где h  – такое σ-локальное задание H, что ( ) = ( ) = (1) =i ih mσ ◊ σ ◊ ∈θF F F  
и ( ) = ( )j jh fσ σ ∈θ  для любого ( ) \{ }.j iσ ∈σ σF  Отсюда = .i

σ
σ ∈θH FG  Таким образом, θσ яв-

ляется частичной σ-алгеброй формаций, т. е. имеет место утверждение (1).
(2) Ввиду утверждения (1) θσ является частичной σ-алгеброй классов Фиттинга. Пусть 
= ( )LR mσM  и = ( ),LR fσF  где m и f  – внутренние θ-значные σ-локальные задания клас-

сов Фиттинга M и F соответственно, = .◊H M F  По [30, теорема 1.14] имеем = ( ),LR hσH  где 
h – такое σ-локальное задание класса Фиттинга H, что ( ) = ( )i ih fσ ◊ σM  для любого ( )iσ ∈σ F  
и ( ) = ( )i ih mσ σ  для любого ( ) \ ( ).iσ ∈σ σM F  Так как по условию ,σθ ⊆ θ  то ( ) = ( ) .i ih fσ ◊ σ ∈θM  
Значит, h – θ-значное σ-локальное задание класса Фиттинга H. Следовательно, .σ∈θH  Поэтому 
θσ является σ-алгеброй классов Фиттинга и утверждение (2) верно. Предложение доказано.

Пусть σ – некоторое разбиение множества , θ – σ-алгебра классов Фиттинга, .σ∈θM  Через 
( )σθ M  будем обозначать множество всех θσ-классов Фиттинга из M. В частности, если θ – ре-

шетка всех классов Фиттинга, то вместо символа ( )σθ M  будем использовать символ ( ),Aσ M  
т. е. ( )Aσ M  – множество всех σ-локальных классов Фиттинга из .l σ∈M

Умножение классов Фиттинга в M определим следующим образом: =◊ ◊ ∩
M

F H F H M.

Л е м м а  8. Пусть σ – некоторое разбиение множества , θ – σ-алгебра классов Фиттинга, 
.σ∈θM  Тогда: (1) ( )σθ M  является σ-алгеброй классов Фиттинга; (2) если = ( )LR fσF  

и = ( )LR hσH  – классы Фиттинга из ( ),σθ M  где f и h – некоторые внутренние θ-значные σ-ло-
кальные задания классов Фиттинга F и H соответственно, то = ( ),LR l◊ σ

M
F H  где l  – такая 

внутренняя θ-значная Hσ-функция, что 
 ( ) ( ),     если ( ),

( ) =
( ) ( ),     если \ ( ).

i i i
j

i i i

h m
l

f m
       

     

F H

H

Д о к а з а т е л ь с т в о. (1) Поскольку для любого σi класс Фиттинга iσG  является наслед-
ственным, то ввиду [30, лемма 3.2] для любого ( )iσ ∈σ M  имеем .iσ ⊆G M  Так как при этом 
класс Фиттинга iσG  σ-локален и ввиду [30, пример 1.2 (ii)] = ( ),i LR gσ σG  где ( ) =i ig σσ ∈θG  
и ( ) =kg σ ∅  для любого k ≠ i, то ( ).i

σ
σ ∈θG M  В силу предложения 2 (2) θσ является σ-алгеброй 

классов Фиттинга. Поэтому для любого класса Фиттинга ( )σ∈θL M  имеем i
σ

σ ∈θLG  и, следо-
вательно, = = ( ).i i i

σ
◊ σ σ σ◊ ∩ ∩ ∈θ
M

L G L G M LG M M  Пусть = ( )LR fσF  и = ( )LR hσH  – классы 

Фиттинга из ( ),σθ M  где f и h – некоторые внутренние θ-значные σ-локальные задания классов 
Фиттинга F и H соответственно. Тогда в силу [30, теорема 1.2] имеем = ( ),LR xσ◊F H  где x – такая 
Hσ-функция, что 

( ),      если ( ),
( ) =

( ),     если \ ( ).
i i

i
i i

h
x

f
   

     

F H

H

Заметим, что x является внутренним θ-значным σ-локальным заданием класса Фиттинга .◊F H  
Пусть m  – некоторое внутреннее θ-значное σ-локальное задание класса Фиттинга M. И пусть 
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= ( ) .LR xσ ∩L M  Ввиду [30, предложение 7.3] имеем = ( ),LR lσL  где ( ) = ( ) ( )i i il x mσ σ ∩ σ  для 
любого i. Значит, l – внутреннее θ-значное σ-локальное задание класса L, при этом 

 ( ) ( ),      если ( ),
( ) =

( ) ( ),      если \ ( ).
i i i

i
i i i

h m
l

f m
       

     

F H

H

Следовательно, = = ( ).σ
◊◊ ∩ ∈θ
M

L F H M F H M  Таким образом, ( )σθ M  – σ-алгебра.

(2) См. доказательство (1). Лемма доказана.
Те о р е м а  9. Пусть σ и α  – некоторые разбиения множества , θ  – α-алгебра классов 

Фиттинга, .α∈θM  Тогда если θ – σ-алгебра классов Фиттинга и σ ≤ α, то ( )αθ M  – σ-подал-
гебра в ( ).σθ M

Д о к а з а т е л ь с т в о. Пусть = ( )s sLR fαF   – класс Фиттинга из ( ),αθ M  где fs  – некоторое 
внутреннее θ-значное α-локальное задание класса Фиттинга Fs, s = 1, 2. По теореме 2 (1) класс 
Фиттинга Fs является σ-локальным и = ( ),s sLR tσF  где ts – полное внутреннее σ-локальное за-
дание класса Фиттинга Fs, при этом ( ) = ( )s i s j jt f ασ α G  для любого .i jσ ⊆ α  Поскольку по ус-
ловию теоремы θ – α-алгебра классов Фиттинга, то произведение ( )s j jf αα G  является θ-клас-
сом Фиттинга. Значит, t  – θ-значное σ-локальное задание класса Фиттинга Fs. Следовательно, 

( ).s
σ∈θF M  Поэтому ( ) ( ).α σθ ⊆ θM M

Пусть m – некоторое внутреннее θ-значное σ-локальное задание класса Фиттинга M. В силу 
леммы 8(2) имеем 1 2 = ( ),LR x◊ σ

M
F F  где x – такая внутренняя θ-значная Hσ-функция, что 

 1 2 2

1 2

( ) ( ),      если ( ),
( ) =

( ) ( ),      если \ ( ).
i i i

i
i i i

f m
x

f m
       

     

F F

F

Поэтому 1 2 ( )σ
◊ ∈θ
M

F F M  и ( )αθ M  – σ-подалгебра в ( ).σθ M  Теорема доказана.

С л е д с т в и е  4. Пусть σ и α – некоторые разбиения множества . Тогда, если σ ≤ α, то 
полугруппа ( )Aα M  всех α-локальных классов Фиттинга является подполугруппой полугруппы 

( )Aσ M  всех σ-локальных классов Фиттинга.
Л е м м а  9. Пусть = ( ).LR hσH  Если ( )i iG hσ ∈ σ ∩

G
H  для некоторого ( ),i Gσ ∈σ  то .G ∈H

Д о к а з а т е л ь с т в о. Поскольку ,i i iσ σ σ ′⊆G G G  то .i i iG Gσ σ σ′ ⊆
G G G  Значит, ( ).i i iG hσ σ ′ ∈ σ

G G  
Далее, так как / iG G σG   – σj′-группа для любого j  ≠  i, то в силу [30, лемма 2.9] имеем 

( ) = .j j j jiG Gσ σ σ σ′ ′σ G G G GG  Теперь поскольку ,iG σ ∈
G

H  то ( )j j
jG hσ σ ′ ∈ σ

G G
 для любого j  ≠  i. 

Поэтому .G ∈H  Лемма доказана.
Л е м м а  10. Пусть = ( ),   = ( ).LR fσ Π σF F  Тогда =σ Π∩F N N  и = { | ( ) }.i ifΠ σ σ ≠ ∅
Д о к а з а т е л ь с т в о. Ввиду [30, лемма 3.1 (a)] имеем = { | ( ) }.i ifΠ σ σ ≠ ∅  Поскольку iσG  – 

наследственный класс Фиттинга, то ( ( ) )ii ifσ σ⊆ σ ∩G F G  и с учетом [30, лемма 3.2] имеем 

( ( ) )ii ifσ σ⊆ σ ∩ ⊆G F G F

для всякого .iσ ∈Π  Поэтому = .iiΠ σ ∈Π⊕ ⊆N G F  С другой стороны, поскольку ,σ Π∩ ⊆F N N  
то = .σ Π∩F N N  Лемма доказана.

Те о р е м а  10. Пусть M  – некоторый σ-локальный класс Фиттинга σ-разрешимых групп. 
Тогда и только тогда σ-алгебра ( )σθ M  является коммутативной полугруппой σ-локальных 
классов Фиттинга, когда M содержится в классе всех σ-нильпотентных групп.

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Пусть σ-алгебра ( )σθ M  является коммутатив-
ной полугруппой. Покажем, что тогда класс Фиттинга M σ-нильпотентен.

Пусть m  – некоторое внутреннее θ-значное σ-локальное задание класса Фиттинга M. 
Допустим, что σ⊆M N  и пусть G – группа минимального порядка из \ .σM N  Тогда G – ко-
монолитическая группа с комонолитом R = GNσ. Поскольку M  – σ-разрешимый класс, то 
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G/R  – σ-примарная группа, т.  е. G/R  – σi-группа для некоторого ( ).iσ ∈σ M  Понятно, что 
1 : = = .i i iR H G G    

G G G  Пусть σj ∈ σ(H), где j ≠  i, и X – холлова σj-подгруппа группы Н. 
Поскольку ,G ∈M  то Н = ( ).i i iR G mσ σ ′ ∈ σ

G G  Ввиду σ-нильпотентности Н подгруппа X нормаль-
на в Н, следовательно, ( ).iX m∈ σ

Пусть P – неединичная σi-группа и = =B X P K P   – регулярное сплетение групп X и P, где 
K – база сплетения B. Тогда, очевидно, = = .i i iK B Bσ σ σ′G G G  Поскольку ( ),iX m∈ σ  то ( )iK m∈ σ  
как прямое произведение групп, изоморфных X. Поэтому = ( ) .i iB K mσ ∈ σ ⊆

G
M  Применяя те-

перь лемму 9 заключаем, что .B ∈M  Кроме того, в силу [30, лемма 3.1] имеем , ( )i jσ σ ∈σ M  
и, значит, , ( ).i j

σ
σ σ ∈θG G M  По условию теоремы имеем = .j i i jσ ◊ σ σ ◊ σ

M M
G G G G  Поскольку

= ,j i j iB σ σ σ ◊ σ∈ ◊ ∩
M

G G M G G  то В .i jG σ ◊ σ∈
M

G G  Поэтому группа B принадлежит классу 

Фиттинга .i jσ σ◊G G  Значит, / .ji
B B σσ ∈G G  Из построения группы B следует, что = 1

i
B σG  

и / .ji
B B B σσ ∉G G  Полученное противоречие показывает, что .σ⊆M N

Д о с т а т о ч н о с т ь. Пусть теперь класс Фиттинга σ⊆M N  и пусть F и H  – некоторые 
σ-локальные классы Фиттинга из ( ).σθ M  Понятно, что σ-алгебра ( )σθ M  является полугруппой. 
Покажем, что ( )σθ M  коммутативна. Действительно, ввиду леммы 10 имеем ( )=σ σ ∪◊ ∩ F HF H N N  
и ( )= .σ σ ∪◊ ∩ H FH F N N  Значит, поскольку σ◊ ∩ ⊆F H M N  и ,σ◊ ∩ ⊆H F M N  то 

( )= = = ( ) = =◊ σ σ σ ∪◊ ∩ ◊ ∩ ∩ ◊ ∩ ∩ ∩F H
M

F H F H M F H M N F H N M N M
 

( )= = ( ) = = = .σ ∪ σ σ ◊∩ ◊ ∩ ∩ ◊ ∩ ∩ ◊ ∩H F
M

N M H F N M H F M N H F M H F

Поэтому =◊ ◊
M M

F H H F  и ( )σθ M  – коммутативная полугруппа. Теорема доказана.

С л е д с т в и е  5 [37, теорема 3.2]. Пусть M – разрешимый локальный класс Фиттинга. Тогда 
и только тогда ( )lA M  является коммутативной полугруппой, когда M нильпотентна.
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