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КЛАССИЧЕСКОЕ РЕШЕНИЕ СМЕШАННОЙ ЗАДАЧИ  
ДЛЯ УРАВНЕНИЯ КОЛЕБАНИЯ СТРУНЫ С ЛИНЕЙНЫМИ 

ДИФФЕРЕНЦИАЛЬНЫМИ ПОЛИНОМАМИ В ГРАНИЧНЫХ УСЛОВИЯХ

Аннотация. Исследовано доказательство корректности постановки смешанной задачи для уравнения колеба-
ния струны в полуполосе с дифференциальными полиномами в граничных условиях. Для данной задачи выводят-
ся условия существования единственного достаточно гладкого решения в полуполосе в целом. Показано, что она 
сводится к решению задач Коши для обыкновенных линейных дифференциальных уравнений с переменными ко-
эффициентами. Изучены случаи, когда гладкость решения задачи с ростом времени ухудшается и когда этого не 
происходит. Для обоих случаев выведены достаточные условия ухудшения (сохранения) гладкости, основанные на 
коэффициентах граничных условий. Также с помощью метода характеристик выведены необходимые и достаточные 
условия согласования на исходные данные при заданной гладкости исходных функций, при которых существует 
единственное классическое решение поставленной задачи. Полученные результаты приведены как для однородного 
исходного уравнения, так и для случая, когда исходное уравнение является неоднородным.
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Abstract. The proof of the well-posedness of the mixed problem for the string oscillation equation in the half-strip with 
differential polynoms in the boundary conditions. The conditions of the existence of the unique and smooth enough solution 
are obtained in the half strip in general. It is shown that it is reduced to the solution of the initial-value problems for the ordi-
nary linear differential equations with variable coefficients. The case when the solution smoothness is reduced during the in-
creasing of the time and the case when it doesn’t happen are studied. For both cases the sufficient conditions for smooth reduc-
tion (conservation) are obtained. These conditions are based on the coefficients in boundary conditions. Also, with the help of 
the characteristics method the necessary and sufficient matching conditions are obtained. These conditions guarantee the ex-
istence and uniqueness of the classical solution of the given problem when given functions are smooth enough. The obtained 
results are given for both homogeneous initial equation and inhomogeneous one.
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Введение. При построении математических моделей большого числа процессов окружающе-
го мира получаются смешанные задачи для гиперболических уравнений второго порядка с раз-
ного типа условиями. Гладкие условия Коши рассматривались, например, в работе [1], негладкие 
условия Коши – в [2]. Условия первого рода типа Дирихле изучались в [3], а в [4, 5] исследовалась 
смешанная задача для уравнения типа Клейна – Гордона – Фока с косыми производными в гра-
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ничных условиях. В [6] была рассмотрена задача с производными высоких порядков в гранич-
ных условиях для гиперболического уравнения, которое может быть факторизовано на компози-
цию операторов первого порядка. В [7] авторы изучали смешанную задачу для волнового урав-
нения с производными высоких порядков в условии на левой границе и с условием типа Дирихле 
на правой границе. Во всех этих задачах были получены необходимые и достаточные условия 
согласования для существования единственного гладкого решения при выполнении некоторых 
требований на гладкость исходных функций.

Возникает вопрос о возможности изучения еще более общей смешанной задачи, а именно: 
смешанной задачи для уравнения колебания струны, где граничные условия представляют собой 
дифференциальные полиномы. Введение данных полиномов в граничные условия существенно 
усложняет исследование смешанной задачи в сравнении со смешанной задачей с условиями пер-
вого рода или с косыми производными в граничных условиях. Особенность рассматриваемой за-
дачи состоит в том, что обыкновенные дифференциальные уравнения, которые возникают в про-
цессе исследования граничных условий, в общем случае не имеют явного решения. Однако, не-
смотря на это, нам удалось доказать существование и единственность решения. В данной работе 
используется метод характеристик, с помощью которого доказывается существование и един-
ственность классического решения поставленной задачи, выводятся условия согласования на за-
данные функции, а также показывается, что гладкость решения может убывать с ростом времен-
ной переменной.

Постановка задачи. Задача рассматривается на плоскости двух независимых переменных 
0 1= ( , ).x xx

В области = (0; ) (0; ), (0; )Q T l l× ∈ +∞  задается уравнение колебания струны 

	 0 1
2 2 2 ,x xLw a w fw= ∂ − ∂ =

	
(1)

где f – некоторая заданная функция, 0= ( 1) / , .T s l a s+ ∈� К уравнению (1) присоединяются ус-
ловия Коши 

	 1 1 1 1 10(0, ) = ( ),     (0, ) = ( ),     [0; ],xw x x w x x x lϕ ∂ ψ ∈ 	 (2)

и граничные условия с дифференциальными полиномами 
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Общее решение неоднородного уравнения. Следуя [8; 9, c. 136–138], общее решение уравне-
ния (1) представимо в виде 

	 ( ) = ( ) ( ),pw u w+x x x 	 (5)

где u(x)  – общее решение однородного уравнения 2 2 2
0 1

= = 0,x xLu u a u∂ − ∂  a wp(x)  – некоторое 
частное решение уравнения (1). В работе [8] доказано утверждение о существовании решения 
задачи (1) с однородными начальными условиями без продолжения функции f за границу обла-
сти Q. Сформулируем его в виде леммы.

Л е м м а  1. Пусть 1( ) ( ).nf C Q−∈x  Тогда решение задачи (1)–(3) существует в классе ( ).nC Q
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Исходя из вида (5), задача (1)–(3) сводится к решению задачи для однородного уравнения 
Lu = 0, т. е. задачи 

	
2 2 2

0 1
= 0,x xu a u∂ − ∂

	
(6)

с начальными условиями 

	 1 1 1 1 10(0, ) = ( ), (0, ) = ( ),      [0; ]xu x x u x x x lϕ ∂ ψ ∈ 	 (7)

и граничными условиями 
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Общее решение уравнения (6) записывается как 

	 1 0 1 0( ) ( ) ( ),u p x ax g x ax= − + +x 	 (9)

где p, g – некоторые произвольные достаточно гладкие функции. Суть метода характеристик за-

ключается в их нахождении на каждом из подмножеств ( , ) , 1,4,k jQ j =  где 
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Разбиение множества Q  приведено на рисунке.

Решение на множестве ( )kQ  будем обозначать u(k)(x), и ( ) ( ) ( )
1 0 1 0( ) ( ) ( ),k k ku p x ax g x ax= − + +x  

где p(k), g(k) – некоторые произвольные достаточно гладкие функции. 
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 из класса 

( ),  ,mC Q m n≥  будем называть решением задачи (6)–(8), если при ее подстановке в уравнение (6) 
и условия (7), (8) они обращаются в тождества.

В дальнейшем смысл термина «решение» будем понимать в смысле данного определения.

x1

x0

Разбиение множества Q

Splitting of Q  set
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Задача (6)–(8) на ( ) .kQ  Рассмотрим условия Коши в области Q(k): 

	
( ) ( )

= / 1 = / 1 10 0 0( ) | = ( ),  ( ) | = ( ),  [0; ].k k
x kl a x x kl au x u x x lϕ ∂ ψ ∈x x 	 (10)

Изначально заданы только φ(0) = φ и ψ(0) = ψ, остальные функции мы получаем из решения в об-
ласти ( 1,4)kQ −  для = 1,2,... .k

Л е м м а  2. Решение u(k)(x) задачи (6), (10) существует единственно в классе ( ,1)( ),n kC Q  не-
прерывно зависит от функций φ(k)(x1), ψ

(k)(x1) и задается формулой Даламбера
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тогда и только тогда, когда ( ) ( ) 1([0; ]),   ([0; ]).k n k nC l C l−ϕ ∈ ψ ∈
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Д о с т а т о ч н о с т ь. Пусть ( ) ( ) 1([0; ]),   ([0; ]).k n k nC l C l−ϕ ∈ ψ ∈  Найдем решение задачи (6), 
(10) в области Q(k,1). Функции p(k)(z) и g(k)(y), где [ ; ( 1) ],   [ ;( 1) ],z kl k l y kl k l∈ − − − ∈ +  имеют вид
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Исходя из формул (12), (13), получаем решение задачи на множестве ( ,1) ,kQ  задаваемое фор-

мулой (10) (хорошо известная формула Даламбера [9, c. 138–140]). Принадлежность решения u(k)(x)  
классу ( ,1)( )n kC Q  следует из того, что сумма двух функций из класса ( ,1)( )n kC Q  будет также 

функцией из класса ( ,1)( ).n kC Q  Непрерывная зависимость u(k)(x) от начальных функций следует 
из формулы Даламбера как сумма непрерывных на компакте функций. Лемма доказана. 

Рассмотрим решение задачи (6)–(8) в области Q(k,2). В области Q(k,2) функция g(k) будет опре-
деляться по формуле (13), а функция p(k) будет неопределена на [ ( 1) , ].z k l kl∈ − + −  Воспользуемся 
условием на левой границе: 
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С учетом того, что ( ) ( ) ( )
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где 
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0n ∈  – максимальный порядок производной функции p(k) в уравнении такой, что .n n≤  
Л е м м а  3. Пусть выполняются условия (4) и (0) ([0; ]),n nC T−µ ∈ ( )

0 ([0; ]).nr C Tα ∈  Тогда реше-

ние задачи (6), (14) существует и единственно в классе ( ,1) ( ,2)( )n k kC Q Q
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а n   – максимальный порядок производной функции g(k), которая входит в правую часть P(k), 
а константы (0)Cν  выбираются из условий
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а (0) (0)
0 1( ),..., ( )nz z

−
β β  – фундаментальная система решений уравнения (15).

Д о к а з а т е л ь с т в о. Д о с т а т о ч н о с т ь. Уравнение (15) является обыкновенным линей-
ным дифференциальным уравнением относительно неизвестной функции p(k)(z). Пусть коэффи-
циенты 0 ( )R zν  этого уравнения достаточно гладкие, тогда справедлива теорема о существовании 
фундаментальной системы решений: 
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Общее решение уравнения (15) записывается в виде [10, c. 367] 
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где γ(z) – решение специальной задачи Коши для уравнения (15) при нулевой правой части с ус-
ловиями 

	
1(0) = 0,     = 0, 2,     (0) = 1,i nd i n d −γ − γ 	 (22)

(0)Cν  – некоторые константы. В силу условий (4) порядок уравнения (21) постоянен на всем отрез-
ке [ ( 1) , ].z k l kl∈ − + −  Для нахождения свободных переменных (0)Cν  потребуем выполнения усло-
вий гладкости функции p(k) в точке z = –kl, которая определена по формулам (12) и (21), а также 
их производных. Данные условия задаются формулой (19). Более того, только при таком выборе 
констант (0)Cν  полученная функция p(k) будет из класса ([ ( 1) ; ( 1) ].nC k l k l− + − −  Отметим, что при 
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= 1n  будет только первое условие. Задача Коши (15), (19) имеет единственное решение, если вы-
полнены условия на непрерывность коэффициентов уравнения (15).

Докажем, что ( ) ( )= ,
2

k k Cp p −  где функция ( )kp  не содержит свободной постоянной C. 

Заметим, что в функции p(k)(z) из выражения (16) свободная константа C содержится только в од-

ном слагаемом при | |= 0,α  тогда  (0,0)( ) ( )
0( ) = ( ) ( ) ,

2
k k CP z P z r z−  где функция ( ) ( )kP z  не содержит 

свободной постоянной C.
Задачу Коши (15), (19) можно представить в виде суммы следующих двух задач: 

	

( ) ( )
0

=0
( ) ( ) = ( ),     [ ( 1) , ],

n k kR z d p z P z z k l klν ν

ν
∈ − + −∑ 

	
(23)

 	

( )
( ) ( )( )

( ) ( ) ( )

( ) 1 ( ) 1 ( )

1( ) = (0) (0) ,
2

1( ) = ( 1) 1 (0) ( 1) 1 (0) ,
2

= 1, 1.

k k k

j k j j k j j k

p kl

d p kl d d

j n

+ +

− ϕ − Ψ

− − − ϕ − − + Ψ

−





	

(24)

Отметим, что ( ) ( )kp z  не содержит свободной константы C, так как она отсутствует в правой ча-
сти и в начальных условиях задачи (23), (24).

И вторая задача: 

	
( ) (0,0)

0 1 0
=0

( ) ( ) = ( ) ,     [ ( 1) , ],
2

n k CR z d p z r z z k l klν ν

ν
− ∈ − + −∑

	
(25)

 	

( )
1

( )
1

( ) = ,
2

( ) = 0, = 1, 1.

k

kj

Cp kl

d p kl j n

− −

− − 	

(26)

Решение задачи (25), (26) существует и единственно, с другой стороны, легко проверить, что 
( )
1 ( ) = .

2
k Cp z −  Таким образом, действительно, ( ) ( )= .

2
k k Cp p −  Заметим, что приведенные выше 

рассуждения верны и при (0,0)
0 ( ) 0.r z ≡  

Рассмотрим поведение гладкости функции p(k) в зависимости от правой части P(k). Заметим, 
что гладкость решения p(k) уравнения (15) на единицу выше гладкости коэффициентов уравнения 
и его правой части [10, c. 153–154]. В функции P(k)(z) фигурируют функция g(k) и ее производные, 
которые определяются из начальных условий по формуле (13). В формуле (16) могут фигуриро-
вать производные функции g(k) до порядка n включительно. Пусть 

( )0
0

| |=
= max | 0,  0zn a r n

a
α

ν

  ν − ≠ ≤ ν ≤     
∑ α

α

– максимальный порядок производной функции g(k), которая входит в правую часть P(k). В силу 
условий (4) значение n  постоянно на всем отрезке [ ( 1) , ].z k l kl∈ − + −  При таких условиях функ-
ция p(k), которая определяется по формуле (21), будет n nC −  гладкости. Для повышения гладкости 
данной функции требуется повысить требования на гладкость функции g(k), а следовательно, 
и φ(k), Ψ(k). Из теории обыкновенных дифференциальных уравнений (ОДУ) известно, что если 

( )
0 ,   ,kn nCr C Pα ∈ ∈  то его решение класса Сn. Таким образом, чтобы функция P(k) была из клас-

са Сn, усилим требования на гладкость заданных функций: 
( )( ) ( ) 1 (0)

0([0; ]),     ([0; ]),     ([0; ]),     ([0; ]).n nk n k n n n nC l C l C T r C Tα+∆ − +∆ −ϕ ∈ ψ ∈ µ ∈ ∈

Осталось решить вопрос с условиями согласования. Условия Коши дают гладкость 
в точке z  =  –kl только до порядка 0 1.n n≤ ≤ −  Для того чтобы функция p(k) была из класса 
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([ ( 1) ; ( 1) ]),nC k l k l− + − −  потребуем выполнения условий согласования в точке z = –kl для произ-
водных функции p(k) от порядка n  до n по формуле (18).

Заметим, что если > ,n n  то для решения смешанной задачи требуется повышенная глад-
кость на φ(k), ψ(k), а также на μ, r при меньших значениях x0.

Н е о б х о д и м о с т ь. Пусть u(k)(x) принадлежит классу ( ,1) ( ,2)( ).n k kC Q Q  Тогда в силу лем-
мы 2 функции ( ) ( ) 1([0; ]),   ([0; ]).n nk n k nC l C l+ − +∆ ∆ϕ ∈ ψ ∈  При этом, так как функция u(k)(x) глад-
кая до порядка n на всем множестве ( ,1) ( ,2) ,k kQ Q  то она гладкая в каждой точке, в том числе 
и на ( ,1) ( ,2) ,k kQ Q



 а гладкость на этом пересечении обеспечивается условиями согласования (18) 
и выбором констант по формуле (19). Лемма доказана.

Заметим, что при 0n =  уравнение (15) превращается в обычное функциональное уравнение, 
которое решается, как в случае первой смешанной задачи. Условия Коши (19) исчезают, в фор-
муле (18) = 0, ,j n  при этом (0,0)( ) ( )

0( ) = ( ) / ( ).k kp z P z r z  Утверждение леммы 2 при этом остается 
в силе.

Задача в области Q(k,3) решается аналогично. Из граничного условия на правой границе полу-
чается дифференциальное уравнение 

	
( ) ( )

=0
( ) ( ) = ( ),     [( 1) ,( 2) ],

m k k
lR y d g y G y y k l k lν ν

ν
∈ + +∑

	
(27)

где 

	
( )

| |
( )( ) ( ) ( )0 1 =0 10 1| | 1

( ) = ( ) ( ) | ,k l k
x l

n

y l y lG y a r p x l y
a a y x

α
α α

≤

− − ∂   µ − − + −    ∂ ∂   
∑

α
α

α 	
(28)

	

( )0

| |=
( ) = ( ) ,l l

y lR y a r
a

ν α

ν

− 
 
 

∑ α

α 	
(29)

0m∈  – максимальный порядок производной функции g(k) в уравнении такой, что .m n≤  Его 
общее решение записывается как

	

1( ) ( ) ( ) ( )

=0 ( 1)
( ) = ( ) ( ) ( ) ,

ymk l l k

k l
g y C y G y d

−
ν ν

ν +
β + τ γ − τ τ∑ ∫

	
(30)

где ( )( ) ( )( )
0 1( ) = ( ),... ( )l ll

my y y
−

β ββ  – фундаментальная система решений; γ(y) – решение специаль-
ной задачи Коши для однородного уравнения (27) с условиями 

	
1(0) = 0,     = 0, 2,     (0) = 1.i md i m d    	 (31)

Для задачи в области Q(k,3) справедлива следующая 
Л е м м а  4. Пусть выполняются условия (4) и ( )( ) ([0; ]),   ([0; ]).l n m n

lC T r C Tα−µ ∈ ∈  Тогда ре-
шение задачи (6), (27) существует и единственно в классе ( ,1) ( ,3)( )n k kC Q Q  тогда и только 
тогда, когда ( ) ( ) 1([0; ]),   ([0; ])m mk n k nC l C l∆ ∆+ − +ϕ ∈ ψ ∈  и выполнены условия согласования 

	

( )

( ) ( )( )

1 ( ) ( ) ( )
=( 1)

=0 ( 1)

1 ( ) 1 ( )

( 1) ( ) ( ) | =

1= ( 1) 1 ( ) ( 1) 1 ( ) ,
2

ym l j l j k
y k l

k l

j j k j j k

C d k l d G y d

d l d l

−
ν ν +

ν +

+ +

β + + τ γ − τ τ

− − ϕ − − − Ψ

∑ ∫

	
(32)

где ; ( );= ,   mj ReLU m mm n ∆ = −  а m  – максимальный порядок производной функции p(k), кото-
рая входит в правую часть G(k), а константы ( )lCν  выбираются из условий
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( ) ( )

( ) ( ) ( )( )

1 ( ) ( ) ( ) ( )

=0
1 ( ) ( ) 1 ( ) 1 ( )

=0

1( 1) = ( ) ( ) ,
2

1( 1) = ( 1) 1 ( ) ( 1) 1 ( ) ,     = 1, 1.
2

m l l k k

m l j l j j k j j k

k l C l l C

C d k l d l d l j n

−
ν ν

ν

−
+ +

ν ν
ν

β + ϕ − Ψ −

β + − − ϕ − − + Ψ −

∑

∑
	

(33)

Д о к а з а т е л ь с т в о повторяет доказательство леммы 3.
Аналогично случаю с условием на левой границе, утверждение данной леммы справедливо 

при = 0.m
В области Q(k,4) решение строится с помощью суммы функций p(k)(z), определенной по фор-

муле (21) и g(k)(y), определенной по формуле (30). Пусть max( )., nm∆ = ∆ ∆
Л е м м а  5. Пусть выполняются условия (4) и (0) ( )([0; ]),   ([0; ]),n n l n mC T C T− −µ ∈ µ ∈



 
( ) ( ) ( ) ( ) 1

0 ([0; ]),   ([0; ]),   ([0; ]),   ([0; ]).n n k n k n
lr C T r C T C l C l∆α α + − ∆+∈ ∈ ϕ ∈ ψ ∈  Тогда решение задачи 

(6)–(8) существует и единственно в классе ( ,4)( ).n kC Q
Д о к а з а т е л ь с т в о данной леммы следует из вида общего решения уравнения (9) и суще-

ствования единственной функций p(k)(z) из граничного условия на левой границе и существова-
ния единственной функции g(k)(y) из граничного условия на правой границе.

Леммы 2–5 дают условия на существование единственного решения на отдельных частях 

множества ( ) .kQ  Для получения условий существования единственного решения на всем мно-

жестве ( )kQ  объединим результаты лемм 2–5 в виде утверждения.
У т в е р ж д е н и е. Пусть выполняются условия (4) и функции (0) ([0; ]),n nC T−µ ∈  

( ) ( )( )
0([0; ]),   ([0; ]),   ([0; ]).l n m n n

lC T r C T r C Tα α−µ ∈ ∈ ∈  Решение задачи (6)–(8) существует и един-

ственно в классе ( )( )n kC Q  тогда и только тогда, когда ( ) ( ) 1([0; ]),   ([0; ])k n k nC l C l∆ ∆+ − +ϕ ∈ ψ ∈  
и выполняются условия согласования (18), (23), а константы (0) ( ),   lC Cν ν  выбираются из усло-
вий (19) и (33) соответственно.

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Пусть решение u(k)(x) задачи (6)–(8) существует и един-

ственно в классе ( )( ),n kC Q  тогда в силу леммы 2 будут выполняться условия ( ) ( ) 1([0; ]),   ([0; ]),k n k nC l C l∆+∆ − +ϕ ∈ ψ ∈ 
( ) ( ) 1([0; ]),   ([0; ]),k n k nC l C l∆+∆ − +ϕ ∈ ψ ∈ а в силу лемм 3, 4 – условия согласования (18) и (32).

Д о с т а т о ч н о с т ь. При выполнении условий на функции из граничных условий утвержде-
ния, а также условий ( ) ( ) 1([0; ]),   ([0; ])k n k nC l C l∆ ∆+ − +ϕ ∈ ψ ∈  и условий согласования (18) и (32) по-

лучим, что решение u(k)(x) задачи (6)–(8) существует и единственно в классе ( )( ).n kC Q  Утверждение 
доказано.

Решение задачи в полуполосе. В предыдущем пункте была решена задача (6)–(8) в каждой 
из подобластей ( )

.
k

Q  Выведем теперь условия принадлежности решения u(x) задачи (6)–(8) клас-

су ( ) ( 1)( ).n k kC Q Q −


Л е м м а  6. Пусть выполняются условия (4) и u(k–1)(x)  – решение задачи (6)–(8) на множе-

стве ( 1) ,kQ −  и выполнены условия ( )(0) ( )([0; ]),   ([0; ]),   ([0; ]),n n l n m n
lC T C T r C Tα− + − + ∆+∆ ∆µ ∈ µ ∈ ∈  

( )
0 ([0; ]).nr C T+∆α ∈  Тогда функция 

	

( ) ( )
( , 1)

( 1) ( 1)

( ), ( ) ,
( ) =

( ), ( )

k k
k k

k k

u Q
u

u Q
−

− −

 ∈

 ∈

x x
x

x x 	

(34)

будет n + Δ раз непрерывно дифференцируемой на ( ,1) ( 1)k kQ Q −
  и будет решением задачи (6)–(8) 

на этом же множестве тогда и только тогда, когда ( 1) 2 ( 1) 1 2([0; ]),   ([0; ])k n k nC l C l− + − − +∆ ∆ϕ ∈ ψ ∈  
и начальные условия на слое k определены как 
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( ) ( 1) ( 1) ( 1)
1 1 1 1

( ) ( 1) ( 1) ( 1)
1 1 1 1 10

( ) = , = ( ) ( ),

( ) = , = ( ) ( ),     [0; ].

k k k k

k k k k
x

klx u x p x kl g x kl
a

klx u x adp x kl adg x kl x l
a

− − −

− − −

 ϕ − + + 
 

 ψ ∂ − − + + ∈ 
  	

(35)

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Пусть решение ( 1, ) ( ,1) ( 1)( ) ( ).k k n k ku C Q Q− +∆ −∈x   
Тогда выполняются условие на гладкость ( 1) ( )

1 1( / , ) ( / , )k ku kl a x u kl a x− =  и на производные этих 
функций до порядка n  +  Δ включительно. Отсюда следует определение начальных функций 
по формуле (35). А из лемм 2–5 следует условие на гладкость функций ( 1) 2 ( 1) 1 2([0; ]),   ([0; ]).k n k nC l C l− + −∆ ∆− +ϕ ∈ ψ ∈

( 1) 2 ( 1) 1 2([0; ]),   ([0; ]).k n k nC l C l− + −∆ ∆− +ϕ ∈ ψ ∈
Д о с т а т о ч н о с т ь. Пусть выполнены условия ( 1) 2 ( 1) 1 2([0; ]),   ([0; ]),k n k nC l C l− + −∆ ∆− +ϕ ∈ ψ ∈  тог

да u(k–1)(x) – решение задачи (6)–(8) на множестве ( 1)kQ −  принадлежит классу ( 1)( ).n kС Q   С уче-

том леммы 2 и определения начальных условий по формуле (34) функция ( ) ( ,1)( ) ( ).k n ku C Q+∆∈x  
Также условий (35) оказывается достаточно для того, чтобы решение ( 1, ) ( )k ku − x  было из класса 

( ,1) ( 1)( )n k kC Q Q+∆ −
 . Лемма доказана.

З а м е ч а н и е. Условия согласования (18), (32) для некоторого k выполняются, если выполня-
ются условия согласования (18), (32) для k – 1. 

Сформулируем лемму о существовании и единственности решения смешанной задачи (6)–(8) 
на всем множестве .Q

Л е м м а  7. Пусть выполняются условия (4) и (0) ([0; ]),n n sC T∆− +µ ∈  ( ) ( )( )
0([0; ]),   ([0; ]),   ([0; ]).l n m s n s n s

lC T r C T r C Tα α− + +∆ ∆ ∆+µ ∈ ∈ ∈
( ) ( )( )

0([0; ]),   ([0; ]),   ([0; ]).l n m s n s n s
lC T r C T r C Tα α− + +∆ ∆ ∆+µ ∈ ∈ ∈  Тогда решение задачи (6)–(8) в классе ( )nC Q  существует 

и единственно тогда и только тогда, когда ( 1) ([0; ]),n sC l∆+ +ϕ∈  1 ( 1) ([0; ])n sC l− + + ∆ψ ∈  и выполня-
ются условия согласования (18), где = , ,j n n s+ ∆  и условия (32), где = ,j m n s+ ∆ при k = 0, а кон-
станты (0) ( ),  lC Cν ν  выбираются из условий (19) и (33) соответственно.

Д о к а з а т е л ь с т в о. Напомним, что 0= ( 1) / , .T s l a s+ ∈  Доказательство данной леммы 
проводится по индукции по номеру области k, исходя из леммы 6 и утверждения. Процедура на-

чинается с множества (0) ,Q  в котором с использованием начальных условий (7) строится решение 
по формуле Даламбера. Далее из граничных условий (8) и лемм 3, 4 показывается, что решения 

граничных задач существуют и единственны. Из леммы 5 находится решение в области (0,4) .Q  

Лемма 6 позволяет выбрать новые начальные условия на множестве (1) ,Q  и далее процесс будет 
продолжаться до номера области s.

В работах [4] и [5] были доказаны теоремы о разрешимости смешанной задачи для уравнения 
типа Клейна – Гордона – Фока с косыми производными в граничных условиях. При этом полу-
ченные результаты существенно зависели от коэффициентов граничных условий. Покажем, что 
результаты упомянутых работ следуют из доказанной леммы 7. В случае характеристических 
производных, рассмотренных в [5], выполняется 1,   0,   1,n n m n m= = = = =  откуда 1,n m∆ = ∆ =  
а следовательно, значение Δ = 1 и скорость, с которой ухудшается гладкость решения, также рав-
на единице. Для случая нехарактеристической первой производной, рассмотренной в [4], спра-
ведливы соотношения = 1,   = = = = 1,n n n m m  следовательно, Δ = 0 и ухудшения гладкости не 
происходит.

Используя результаты леммы 7, можно доказать теорему о разрешимости задачи (1)–(3) для 
неоднородного уравнения.

Те о р е м а. Пусть выполняются условия (4) и 1 (0)( ),   ([0; ]),n s n n sf C Q C T− + −∆ ∆+∈ µ ∈  
( ) ( )( )

0([0; ]),   ([0; ]),   ([0; ]).l n m s n s n s
lC T r C T r C Tα α− + +∆ ∆ ∆+µ ∈ ∈ ∈  Тогда решение задачи (1)–(3) 

в классе ( )nC Q  существует и единственно тогда и только тогда, когда ( 1) ([0; ]),n sC l∆+ +ϕ∈  
1 ( 1) ([0; ]),n sC l− + + ∆ψ ∈  и выполняются условия согласования (18), где = , ,j n n s+ ∆  и условия (32), 
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где = ,j m n s+ ∆  при k – 0, а константы (0) ( ),  lC Cν ν  выбираются из условий (19) и (33) соответ-
ственно, где выражение ( )

0( )j xµ  и его производные заменяются на



| |
( )( )

0 0 00 1| | 0 1
( ) ( ) ( , ),   {0, }.pj

j
n

w
x r x x j j l

x x

α
α

α α
α ≤

∂
µ − ∈

∂ ∂
∑

Д о к а з а т е л ь с т в о данного утверждения следует из лемм 1 и 7, так как условие 
1 ( )n sf C Q− ∆+∈  гарантирует выполнение условий существования гладкого решения wp. В си-

лу условий (4), Δm, Δn, а следовательно, и max( ),, nm∆ = ∆ ∆  определены и постоянны для всех 
0 [0; ].x T∈

Заключение. Рассмотрена смешанная задача для волнового уравнения с дифференциальны-
ми полиномами в граничных условиях. Доказано существование единственного решения в по-
луполосе при достаточных условиях гладкости на исходные функции задачи при выполнении 
необходимых и достаточных условий согласования на заданные функции задачи и специального 
выбора произвольных констант, которые возникают при разрешении граничных условий.
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