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СЛОЖНОСТЬ РАСПОЗНАВАНИЯ ЖЕСТКОСТИ  
В КЛАССЕ (2t + 1)-РЕГУЛЯРНЫХ ГРАФОВ

Аннотация. Известно, что в общем случае проблема распознавания t-ЖЕСТКОСТИ графа является coNP-
полной. Кроме того, для многих подклассов графов задача распознавания t-ЖЕСТКОСТИ остается NP-трудной, 
в частности, в классе r-регулярных графов, где r  ≥  3t для любого целого числа t  ≥  1. Сложность распознавания 
t-ЖЕСТКОСТИ r-регулярных графов остается открытой, когда 2t ≤ r < 3t, а когда r = 2t + 1 сложность распознава-
ния является особенно интригующей. В последнем случае была выдвинута гипотеза, что она остается NP-трудной. 
В данной статье мы устанавливаем справедливость этой гипотезы.
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THE COMPLEXITY OF THE DECISION PROBLEM OF TOUGHNESS 
IN THE CLASS OF (2t + 1)-REGULAR GRAPHS

Abstract. It is known that the decision problem of t-TOUGHNESS of a graph is coNP-complete in general. Moreover, in 
many subclasses of graphs, the decision problem of t-TOUGHNESS remains NP-hard, in particular, in the class of r-regular 
graphs, where r ≥ 3t for any integer number t ≥ 1. The complexity of the decision problem of t-TOUGHNESS for r-regular 
graphs remains open when 2t ≤ r < 3t, and when r = 2t + 1 the complexity of the decision problem is particularly intriguing. 
In the latter case it has been conjectured, that it remains NP-hard. In this paper, we establish the validity of this conjecture.
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Мы будем рассматривать всюду простые конечные неориентированные графы. Через c(G) 
будем обозначать число компонент связности графа G. В 1973 г. В. Хватал ввел новый инвариант 
графа, который в отличие от связности графа учитывает, как удаление любого вершинного раз-
реза влияет на количество полученных компонент связности. Он обнаружил некоторые взаимо
связи между этим параметром и существованием гамильтонова цикла в графе, а также получил 
несколько результатов относительно этого нового инварианта. Жесткость графа является крити-
ческой мерой его устойчивости к удалению вершин, отражающей, сколько компонент остается 
после таких удалений, количественно определяет уязвимость графа и имеет важное значение 
для понимания его структурных свойств и при анализе уязвимости коммуникационной сети 
к сбоям.

Происхождение этого понятия было вызвано следующим наблюдением: если граф G имеет 
гамильтонов цикл, то при удалении из графа произвольного множества S мощности s, получен-
ный граф G – S имеет не более s связных компонент. Результатом похожего характера является 
известный критерий Татта о 1-факторе, который утверждает, что граф G четного порядка имеет 
совершенное паросочетание тогда и только тогда, когда для каждого подмножества ( )S V G⊆  
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мощности s число компонентов G – S нечетного порядка не превышает s. В обеих этих ситуаци-
ях число компонент G – S является критическим.

Напомним, что подмножество ( )S V G⊂  называется вершинным разрезом графа G, если вы-
полняется условие c(G – S) > 1.

О п р е д е л е н и е. Для рационального числа t неполный граф G называется t-жестким, если 
для любого вершинного разреза ( )S V G⊂  выполняется неравенство | | ( ).S t c G S⋅≥ −  

Жесткостью неполного графа G является максимальное ,t ∈  такое, что G является t-жест-
ким и обозначается через τ(G). Следовательно, для неполного графа G

( ) min : ( ), ( ) 1 .
( )

S
G S V G c G S

c G S
 

τ = ⊂ − > 
− 

Поскольку полный граф Kn порядка n ≥ 1 не имеет вершинного разреза, то для него полагают 
τ(Kn) = +∞. 

На практике проще применять альтернативное определение жесткости графа. Пусть G – граф 
порядка n и вершинной связности κ(G), отличный от полного графа. Положим max ( )p

S p
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=
= −  

и .p
p

pt
c

=  Тогда G является t-жестким для 
( )

0 min p
G p

t t
κ ≤

≤ ≤  и его жесткость равна 
( )

( ) min .p
G p

G t
κ ≤

τ =  

Заметим, что при этом нет необходимости рассматривать значения p, которые больше n – α(G), 
где α(G) – число независимости графа G, поскольку иначе имеем ( ) ,p n Gt t −α>  что вытекает из 
того, что для любого вершинного разреза S графа G справедливо неравенство ( ) ( ).c S GG α− ≤

Согласно Пламеру, вершинный разрез S V⊂  графа G, на котором достигается минимум 
 ( ),( ) /G S c G Sτ = −  называется жестким множеством. Иногда 1-жесткий граф называют про-

сто жестким графом. Например, граф Петерсена является 4/3-жестким графом, цикл длины не 
меньше 4 является 1-жестким. 

Из определения немедленно следует, что для неполного графа G справедливо неравенство 

( )( ) .
2
GG κ

τ ≤

Исторически сложилось, что большая часть исследований в области изучения жесткости гра-
фов основывалась на ряде гипотез, выдвинутых В. Хваталом. Самая сложная из них все еще 
остается открытой – существует ли конечная константа t0, такая, что каждый t0-жесткий граф 
является гамильтоновым. Последние 50 лет исследования по нахождению жесткости графов так-
же были сосредоточены на вопросах ее вычислительной сложности. Сложность проблемы рас-
познавания жесткости графа впервые также была поднята В. Хваталом. Проблема распознавания 
жесткости формулируется следующим образом. 

Проблема t-ЖЕСТКОСТЬ графа.
Ус л о в и е: дан граф G и положительное рациональное число t. 
Вопрос: справедливо ли неравенство τ(G) ≥ t? 
Ответ на него дает следующее утверждение.
Те о р е м а  1 [1]. Проблема t-ЖЕСТКОСТЬ графа является coNP-полной.
Отметим, что д о к а з а т е л ь с т в о этой теоремы разбивается на 2 этапа: сначала к задаче НЕ-

1-ЖЕСТКОСТЬ полиномиально сводится задача k-НЕЗАВИСИМОЕ МНОЖЕСТВО, которая, 
как известно, является NP-полной, т. е. для заданного графа G строится граф G′ такой, что число 
независимости α(G) ≥ k тогда и только тогда, когда τ(G′) < 1. Затем задача НЕ-1-ЖЕСТКОСТЬ 
полиномиально сводится к задаче НЕ-t-ЖЕСТКОСТЬ, т. е. для графа G′ строится граф G″ такой, 
что τ(G′) < 1 тогда и только тогда, когда τ(G″) < t.

Оказывается, что для многих подклассов графов задача распознавания t-ЖЕСТКОСТЬ гра-
фа остается NP-трудной. Например, распознать t-жесткость графа является NP-трудной задачей 
даже в классе графов, имеющих достаточно высокую минимальную степень, чтобы гарантиро-
вать свойство t-жесткости графа в следующем смысле.
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Те о р е м а  2 [2]. Пусть t ≥ 1 – рациональное число. Если минимальная степень 
1

,t
t

n 
 + 

δ ≥  

то G является t-жестким. С другой стороны, для любого фиксированного ε  >  0 проблема 

t-ЖЕСТКОСТЬ для графа G с 
1

nt
t

 − ε +
≥ 


δ  является уже coNP-полной.

Другим интересным классом графов является класс двудольных графов. Нетрудно заметить, 
что τ(G) ≤ 1 для любого двудольного графа G – достаточно в качестве вершинного разреза S вы-
брать долю меньшей мощности. Тем не менее проблема 1-ЖЕСТКОСТЬ не становится легче для 
двудольных графов. В 1996 г. Д. Кратч и другие смогли свести проблему 1-ЖЕСТКОСТЬ для про-
извольного графа к проблеме 1-ЖЕСТКОСТЬ для двудольных графов, используя классическую 
конструкцию Нэш-Вильямса.

Те о р е м а  3 [3]. Проблема t-ЖЕСТКОСТЬ остается coNP-полной в классе двудольных графов.
Как следствие получается, что проблема 1-ЖЕСТКОСТЬ графа также является NP-трудной 

в классе K3-свободных графов.
Еще одним важным классом графов, который исследовался на нахождение жесткости, яв-

ляется класс регулярных графов. Отметим, что жесткость r-регулярного графа G не превосхо-

дит  r/2, поскольку справедливо неравенство 
( )( ) .
2 2
G rG κ

τ ≤ ≤  Сначала проблема 1-ЖЕСТКОСТЬ 
изучалась для кубических графов [4], а затем результаты исследований были обобщены в виде 
следующего утверждения.

Те о р е м а  4 [5]. Для любого целого числа t ≥ 1 и любого целого r ≥ 3t проблема t-ЖЕСТКОСТЬ 
является coNP-полной в классе r-регулярных графов.

Сложность распознавания t-жесткости r-регулярных графов остается открытой, когда 
2t ≤ r < 3t, а сложность распознавания в случае r = 2t + 1 является особенно интригующей. Там 
же [5] была выдвинута следующая гипотеза.

Г и п о т е з а. Для любого целого числа t ≥ 1 проблема t-ЖЕСТКОСТЬ остается NP-трудной 
для (2t + 1)-регулярных графов.

В данной статье мы устанавливаем справедливость этой гипотезы.
Напомним, что t-регулярный остовной подграф называется t-фактором. Связный 2-регуляр-

ный остовной подграф является гамильтоновым циклом, а 1-фактор графа G также называется 
его совершенным паросочетанием.

Реберная k-раскраска графа – это такое разбиение его ребер на k (цветных) классов, что ни-
какие смежные ребра не принадлежат одному и тому же классу. Наименьшее возможное коли-
чество цветов в раскраске ребер графа называется его хроматическим индексом. Так как ребра 
k-регулярного графа не могут быть раскрашены менее чем в k цветов, хроматический индекс 
k-регулярного реберно k-раскрашенного графа равен k. Очевидно, что дополнение 1-фактора ку-
бического графа является его 2-фактором. В общем случае такой 2-фактор может иметь циклы 
произвольной длины, но особый интерес представляют 2 случая – когда все циклы имеют чет-
ную длину и когда существует в точности один (т. е. гамильтонов) цикл. Оказывается, первый 
случай тесно связан с раскраской его ребер. При этом 2-фактор, в котором все циклы имеют чет-
ную длину, называется четным 2-фактором. 

Если ∆ – максимальная степень вершин графа, то по теореме Визинга хроматический индекс 
равен либо ∆, либо ∆ + 1. Этот факт разбивает графы на два класса: класс 1 и класс 2 соответ-
ственно. В [6] было обнаружено, что хорошо известная проблема четырех красок эквивалентна 
тому, что простые связные планарные кубические графы без мостов относятся к классу 1, т. е. 
имеют хроматический индекс 3. Простые связные кубические графы без мостов могут относить-
ся и к классу 2, т. е. иметь хроматический индекс 4.

Те о р е м а  5 [7]. Кубический граф G реберно 3-раскрашиваем тогда и только тогда, когда 
он имеет четный 2-фактор.

Те о р е м а  6. Задача 1-ЖЕСТКОСТЬ остается coNP-полной для 2-связных реберно 3-рас-
крашиваемых кубических графов.
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Рис. 1. Граф Hv с правильной реберной 3-раскраской

Fig. 1. Graph Hv with a regular edge 3-coloring

Д о к а з а т е л ь с т в о. Как было уже сказано, задача 1-ЖЕСТКОСТЬ остается coNP-пол
ной для кубических графов (теорема 1.8 [4]). Поэтому мы полиномиально сведем задачу 
1-ЖЕСТКОСТЬ для кубического графа G к задаче 1-ЖЕСТКОСТЬ для 2-связного реберно 
3-раскрашиваемого кубического графа H = H(G) с помощью аналогичного метода, который ис-
пользовался в доказательстве теоремы 1.8 [4]. А именно: каждой вершине ( )v V G∈  мы ставим 
в соответствие в графе H граф Hv, изображенный на рис. 1, который состоит из двух подграфов Av 
и Bv, соединенных ребром e, с указанной на рис. 1 раскраской его ребер в цвета 1, 2 и 3.

Каждому ребру vw графа G мы ставим в соответствие в графе H два ребра, которые соединя-
ют вершину степени 2 в Av с вершиной степени 2 в Bw, а также вершину степени 2 в Aw с верши-
ной степени 2 в Bv. Эти добавленные ребра мы раскрасим в графе H в цвет 1. В результате, оче-
видно, получим 2-связный реберный 3-раскрашиваемый кубический граф H = H(G). Поскольку 
такое соответствие является частным случаем соответствия, предложенного в доказательстве 
теоремы 1.8 [4], то будет справедливо следующее

У т в е р ж д е н и е. G является 1-жестким тогда и только тогда, когда H(G) является 
1-жестким.

Таким образом, задача 1-ЖЕСТКОСТЬ остается coNP-полной для 2-связных реберно 3-рас-
крашиваемых кубических графов. Теорема доказана.

Те о р е м а  7. Для любого целого числа t ≥ 1 проблема t-ЖЕСТКОСТЬ остается coNP-полной 
для (2t + 1)-регулярных графов.

Д о к а з а т е л ь с т в о. Сведем задачу 1-ЖЕСТКОСТЬ для 2-связных реберно 3-раскрашивае
мых кубических графов к задаче t-ЖЕСТКОСТЬ для (2t + 1)-регулярных графов, где t ≥ 1 – це-
лое число. 

Пусть G  – любой 1-жесткий 2-связный 3-реберно-раскрашиваемый кубический граф. 
Согласно теореме 5 ребра графа G можно разбить на 1-фактор и четный 2-фактор, состоящий из 
четных циклов.

Построим H = H(G) следующим образом. Каждая вершина ( )v V G∈  в графе G заменяется на 
полный граф Kt в графе H. Такой граф будем обозначать через .v

tK  Для смежных вершин u и v 
в графе G m-соединением графов v

tK  и w
tK  в графе H будем называть ребра паросочетания Pvw 

между вершинами графов v
tK  и .w

tK  При этом ребро uv графа G назовем m-ребром. Аналогично, 
для смежных вершин u и v в графе G c-соединением графов v

tK  и w
tK  в графе H будем называть 

ребра полного двудольного графа ( ), ( ), ( )vw v w
t t t tK K V K V K=  в графе H между вершинами графов 

v
tK  и .w

tK  При этом ребро uv графа G назовем c-ребром. Тогда в 1-факторе графа G каждое ребро 
vw мы заменим m-соединением в графе H, а в четном 2-факторе графа G мы попеременно заме-
ним каждое ребро vw на c-соединение и m-соединение в графе H. Таким образом, c-соединение 
представляет собой совокупность t2 ребер, а m-соединение представляет собой совокупность 
t независимых ребер, и каждый подграф v

tK  в графе H имеет одно c-соединение и два m-соеди-
нения с тремя другими различными подграфами u

tK  графа H, где .
G

u v  Следовательно, построен-

ный граф H является (2t + 1)-регулярным.
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Покажем, что из 2-связности исходного графа G следует, что построенный граф H является 
2t-связным. Для этого по теореме Уитни достаточно показать, что любая пара различных вер-
шин графа H может быть соединена по крайней мере 2t непересекающимися цепями. Возможны 
следующие случаи.

С л у ч а й  1. Пара различных вершин x, y графа H лежит в одном и том же графе .v
tK  Тогда 

в самом графе v
tK  имеется t – 1 xy-цепь плюс для c-ребра vw t xy-цепей вида { | }w

txzy z K〈 〉 ∈  и для 
двух m-ребер vu две xy-цепи вида { | , , , },u

t vuxzsy z s K xz sy P〈 〉 ∈ ∈  всего 2t + 1 цепь.
С л у ч а й  2. Пара вершин x и y графа H лежит в разных графах v

tK  и ,w
tK  причем вершины 

v и w графа G лежат на одном и том же четном цикле C 2-фактора графа G. 
П о д с л у ч а й  2.1. Вершины v и w несмежны в графе G. Пусть vu, wg – m-ребра, а vf, wh – 

c-ребра цикла C. Тогда можно построить t непересекающихся xy-цепей вида

{ }| , , ,v u h
t t vu txzs ry z K s K zs P r K〈 〉 ∈ ∈ ∈ ∈

и t непересекающихся xy-цепей вида 

{ }| , , , ,g fw
t wgt tyzs rx z K s K zs P r K〈 〉 ∈ ∈ ∈ ∈

всего получаем 2t непересекающихся xy-цепей (рис. 2). 
П о д с л у ч а й  2.2. Вершины v и w графа G смежны, причем ребро vw графа G является 

c-ребром, а ребра vu, wh – m-ребра цикла C. В этом случае построим 2t – 1 непересекающихся 
xy-цепей вида

{ } { }; | , |v w
t txy xzy z K xzy z K〈 〉 ∈ 〈 〉 ∈

и одну цепь вида

| ,     ,     ,     ,u h
t t vu whxz ry z K r K xz P ry P〈 〉 ∈ ∈ ∈ ∈

всего получаем 2t непересекающихся xy-цепей (рис. 3, a).
П о д с л у ч а й  2.3. Вершины v и w графа G смежны, причем ребро vw графа G является 

m-ребром, а ребра vu, wh  – c-ребра цикла C. В этом случае построим t непересекающихся xy-
цепей вида

{ }| , ,v w
t t vwxzsy z K s K zs P〈 〉 ∈ ∈ ∈

Рис. 2. 2t непересекающихся xy-цепей (v и w несмежны)

Fig. 2. 2t disjoint xy-paths (v and w are not adjacent)
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а b

Рис. 3. 2t непересекающихся xy-цепей (v и w смежны)

Fig. 3. 2t disjoint xy-paths (v and w are adjacent)

и t непересекающихся xy-цепей вида

{ }| , ,u h
t txz sy z K s K〈 〉 ∈ ∈

всего получаем 2t непересекающихся xy-цепей (рис. 3, b).
С л у ч а й  3. Пара вершин x и y графа H лежит в разных графах v

tK  и ,w
tK  причем вершины 

1 2 1 2,   ,   ,v C w C C C∈ ∈ ≠  где C1, C2  – различные четные циклы 2-фактора графа G. Поскольку 
исходный граф G 2-связен, то, согласно теореме Уитни, существуют две непересекающиеся vw-
цепи. Нетрудно видеть, что (если нужно, взяв дополнение цепей в циклах C1 и C2) можно по-
строить две vw-цепи таким образом, чтобы каждой концевой вершине v и w было инцидентно 
одно c-ребро, принадлежащее одной из двух vw-цепей. Причем эти два конечных c-ребра могут 
принадлежать только одной vw-цепи, а у второй vw-цепи конечными ребрами могут быть оба 
m-ребра. Тогда так же, как и выше, для каждой пары m- и c-ребер, инцидентных вершинам v и w 
в графе G, можно построить 2t непересекающихся xy-цепей в графе H.

Таким образом, H является 2t-связным.
Чтобы завершить доказательство, теперь покажем, что G является 1-жестким тогда и только 

тогда, когда H является t-жестким. 
Предположим, что G не является 1-жестким, т. е. существует вершинный разрез ( ,)X V G⊆  удов-

летворяющий неравенству ( ) .c G X X− >  Пусть ( )Y V H⊆  состоит из полных графов ,   ,x
tK x X∈  

соответствующих вершинам из X. Легко видеть, что Y также является вершинным разрезом, 

причем ( ) ( ) ,
Y

c H Y c G X X
t

− = − > =  и, следовательно, H не является t-жестким, противоречие.

Обратно, предположим, что граф H не является t-жестким. Тогда существует вершинный 

разрез ( ),Y V H⊆  удовлетворяющий неравенству ( ) .
Y

c H Y
t

− >  Будем говорить, что граф v
tK  в H 

не расщепляется разрезом Y, если он не пересекается с Y. 
Покажем, что без ограничения общности можно считать, что каждый полный граф v

tK  в графе H 
полностью содержится в разрезе Y или не расщепляется им.

Действительно, выберем разрез ( ),Y V H⊆  такой, что ( )  
Y

c H Y
t

− >  и разрез Y расщепляет наи-
меньшее число графов ,v

tK  входящих в граф H. Если разрез Y не расщепляет ни один граф ,v
tK  то 

доказывать нечего, поэтому предположим, что A является некоторым графом ,v
tK  который расщеп

ляется разрезом Y, и пусть B1 и B2 обозначают графы ,w
tK  которые m-соединены с A. Возможны 

следующие случаи.
С л у ч а й  1. B1 и B2 не расщепляются разрезом Y. Пусть ( ).Y Y A Y′ = −   Тогда  ,Y Y′ <  в то вре

мя как ( ) ( ),c H Y c H Y′− = −  поскольку граф A по-прежнему c-соединен с теми же графами ,u
tK  

что и A – Y. Таким образом, мы имеем 
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 ,
( ) ( )

Y Y
t

Yc cH H Y
′

< <
′− −

 или ( ) .c
Y

H Y
t
′

′− >

Поскольку Y является разрезом и ( ) ( ),c H Y c H Y′− = −  то Y′ также является разрезом в H. 
Поскольку Y′ расщепляет меньшее количество графов Kt, чем Y, то это нарушает условие выбора Y.

Случай 2.1. B1 и B2 расщепляются Y и 1 2 .A Y B Y B Y t+ + <    Положим Y′ = Y – 
1 2( ).( ) ( )Y Y A Y B Y B Y′ − −= −   

Тогда Y Y′ <  и ( ) ( ),c H Y c H Y′− = −  поскольку A – Y, B1  – Y и B2  – Y принадлежат одной 
и той же компоненте связности графа H – Y, и A (соответственно, B1 и B2) c-соединен со сво-
ими смежными графами Kt, кроме B1 и B2 (соответственно, A). Таким образом, мы получа-

ем  ,
( ) ( )

Y Y
t

Yc cH H Y
′

< <
′− −

 или ( ) .c
Y

H Y
t
′

′− >  Поскольку Y является вершинным разрезом

и ( ) ( ),c H Y c H Y′− = −  то Y′ также является вершинным разрезом в H. Снова Y′ расщепляет мень-
шее число графов Kt, чем Y, что нарушает условие выбора Y.

С л у ч а й  2.2. B1 и B2 расщепляются Y и 1 2 .A Y B Y B Y t+ + ≥    Положим 
( ) ,Y Y A Y Z′ = − −  где 1 2( ) ( )Z B Y B Y⊆      – любое подмножество мощности 

0.Z t A Y= − >  Поскольку H является 2t-связным и Y является вершинным разрезом в H, име-
ем 2 .Y Y t t t t′ = − ≥ − =  Заметим, что ( ) ( ) 1,c H Y c H Y′− − −≥  так как стягивая две компоненты, 
содержащие A – Y, B1 – Y и B2 – Y, мы можем потерять не более одной компоненты. Поскольку 

( ) ,
Y

c H Y
t

− >  получаем  ,
( ) ( ) 1

Y Y t
t

c H Y c H Y
′ −

≤ <
′− − −

 или ( )   1.
Y

c H Y
t
′

′− > ≥  Таким образом,

Y′ является вершинным разрезом в H. Поскольку Y′ расщепляет меньшее количество графов Kt, 
чем Y, то это нарушает условие выбора Y.

Чтобы закончить доказательство теоремы 7, предположим, что ( )X V G⊆  обозначает подмно-
жество вершин в G, которые соответствуют графам ,x

tK  входящим в Y. Тогда X является вершин-

ным разрезом в G и имеет место ( ) ( ) ,
Y

c G X c H Y X
t

− = − > =  и, следовательно, G не является 

1-жестким графом, противоречие. Это доказывает теорему 7.
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