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EIGENVALUES OF THE GENERALIZED HELICITY OPERATOR 
FOR SPIN 3/2 PARTICLE IN THE PRESENCE OF THE MAGNETIC FIELD 

AND THE PROJECTIVE OPERATORS METHOD

Abstract. The eigenvalue problem for generalized helicity operator for a spin 3/2 particle in presence of the uniform 
magnetic field is solved. After separating the variables in the basis of cylindrical coordinates (r, ϕ, z) and the tetrad, the system 
of 16 first-order differential equations in the variable r is derived. This system is studied with the use of the method of pro-
jective operators, constructed with the use of the third projection of the spin for the particle. In accordance with thе method 
by Fedorov – Gronskiy, all 16 variables may be expressed in terms of only 4 distinguished functions, which are constructed 
in terms of confluent hypergeometric functions. Further the problem reduces to studying the linear algebraic homogeneous 
system for 16 algebraic variables. In the end, we derive algebraic equations of the second and the fourth order, their roots de-
termine the possible eigenvalues of the helicity operator.
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ЗАДАЧА О СОБСТВЕННЫХ ЗНАЧЕНИЯХ ОБОБЩЕННОГО ОПЕРАТОРА СПИРАЛЬНОСТИ  
ДЛЯ ЧАСТИЦЫ СО СПИНОМ 3/2 В МАГНИТНОМ ПОЛЕ  

И МЕТОД ПРОЕКТИВНЫХ ОПЕРАТОРОВ

Аннотация. Решена задача о собственных значениях обобщенного оператора спиральности для частицы со спи-
ном 3/2 во внешнем однородном магнитном поле. После разделения переменных в уравнении на собственные значе-
ния в цилиндрической системе координат (r, ϕ, z) и соответствующей тетраде найдена система дифференциальных 
уравнений первого порядка в переменой r для 16 функций. Эта система решена на основе применения метода проек-
тивных операторов, построенных на основе третьей проекции оператора спина частицы. В соответствии с методом 
Федорова – Гронского все 16 переменных могут быть выражены только через 4 различающиеся функции, удовлетво-
ряющие уравнениям вырожденного гипергеометрического типа. Дальнейшая задача сводится к анализу однородной 
алгебраической системы уравнений для 16 неизвестных величин. В итоге найдены уравнения 2-го и 4-го порядков, 
корни которых определяют собственные значения оператора спиральности.
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Helicity operator, the basic formulas. As it is known, in presence of the external magnetic field, it 
is useful to use the possibilities to diagonalize additionally the helicity operator. In Cartesian basis, this 
operator for a spin 3/2 particle is determined by the formula [1–9] (the presence of the external magnetic 
field will be taken into account below) 
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Taking in mind expessions for matrices in Cartesian basis, from the formula (1) we derive1: 
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Transition to 16-dimensional form. Let us start with the transformation relating Cartesian basis 
with cylindrical one 
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We turn to the helicity equation in Cartesian basis; after performing needed calculations we arrive at the 
system (in Cartesian basis) 
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1 The use of anti-Hermitian generators means that the eigenvalues of the introduced helicity operator will be purely ima
ginary.
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We can see that it is enough to study only the system for the variables fa, ga: 
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Now we should take into account the transformation between Cartesian and cylindrical tetrad bases; we 
will follow only transformations on the variables fa, ga: 
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and inverse ones 

	

( )
( )

( )
( )

( 1/2)( 1/2) 1 1 20 0
( 1/2) ( 1/2)

0 0 1 1 2

( 1/2) ( 1/2)2 1 2 3 3
( 1/2)( 1/2)

3 32 1 2

= cos sin ,= ,
     

= , = cos sin ,

= sin cos , = ,
     

= .= sin cos ,

i c ci c

i c i c c

i c c i c

i ci c c

f e f ff e f

g e g g e g g

f e f f f e f

g e gg e g g

+ φ+ φ

− φ − φ

+ φ + φ

− φ− φ

φ + φ

φ + φ

− φ + φ

− φ + φ
	

(6)

With the use of (5) and (6) we can transform the subsystem (4) to the other form (we will omit technical 
details and write down the final system of 8 equations; besides, we have taken into account that factors 

ikz ime e φ  are in the field function)
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Thus we arrive at the system of 8 equations. Further we will present this system in the matrix form, 
applying the truncated column Ψcul: 
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where (let d/dr = R) 
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Let us transform this system to the cyclic basis [7–9]. Starting with the relations 
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in 16-dimensional form 16 16= T ×Ψ Ψ  we have the needed repesentation; we use its truncated 8-form 
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Transition of the system to the cyclic basis is done by the rule
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for the matrix A  we obtain an explicit expression: then we get new equations
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dr r dr r dr r

− + +

− + −

− + +
+ + +

− + −
− − −

we reduce the last system to the form 

	

1/2 0 0 1/2 0 0

1/2 2 1/2 1 1

3/2 1 1/2 2 1

3/2 1 1/2 3 1/2 2 2

1/2 2 1/2 1 3/2 3 2

1/2 2 3/2 3

= (2 ) ,     = (2 ) ,

2 = (2 3 ) ,

2 = (2 ) ,

2 2 = (2 ) ,

2 2 = (2 ) ,

2 = (2

m m

m m

m m

m m m

m m m

m m

a g ik f b f ik g

a f a g ik f

b f a g ik g

b f a f a g ik f

b f b g a g ik g

b f a g

+ −

− −

− +

− + +

− − +

− +

σ − σ +

+ σ −

+ σ −

+ + σ −

+ + σ +

+ 3

1/2 3 1/2 2 3

) ,

2 = (2 3 ) .m m

ik f

b f b g ik g+ +

σ +

+ σ + 	

(13)

Method of projective operators. In order to solve the system (13) we will apply the method of projec-
tive operators [10]. To this end, let us start with the matrix (in the cyclic basis) 12 12 12= = ,Y J I I jσ ⊗ + ⊗  
whence it follows 

	

0 1 2 3

0 1 2 3

cycl

0 1 2 3

0 1 2 3

3
2 2 2 2

3
2 2 2 2= .

3
2 2 2 2

3
2 2 2 2

i i i if f f f

i i i ig g g g
Y

i i i ih h h h

i i i id d d d

− − −

−
Ψ

− − −

−
	

(14)

It is more convenient to have a 16-dimensional form of generator Y 

	

(0) 0 1 2 3

(1) 0 1 2 3
( ) (0) (1) (2) (3)

(2) 0 1 2 3

(3) 0 1 3 3

= = ,     = ,     = ,     = ,     = ;

A

A
A n A A A A

A

A

f f f f
g g g g
h h h h
d d d d




     

 	

(15)

for the relevant matrix Y we get the explicite expression. In which we can separate two similar 
8-dimensional structures with respect to the variables: 
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	 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3, , , , , , , , , , , , , , , ;f g f g f g f g h d h d h d h d  	  (16)

so the truncated matrix Y is defined by 

	

0

0

1

1

2

2

3

3

/ 2 0 0 0 0 0 0 0
0 / 2 0 0 0 0 0 0
0 0 3 / 2 0 0 0 0 0
0 0 0 / 2 0 0 0 0

= .
0 0 0 0 / 2 0 0 0
0 0 0 0 0 / 2 0 0
0 0 0 0 0 0 / 2 0
0 0 0 0 0 0 0 3 / 2

i f
i h

i f
i h

Y
i f

i h
i f

i h

−

−
−

Ψ
−

− 	

(17)

We verify that the minimal equation is valid [10]

	
2 2( 1 / 4)( 9 / 4) = ( / 2)( / 2)( 3 / 2)( 3 / 2) = 0,Y Y Y i Y i Y i Y i+ + + − + − 	 (18)

which permits us to introduce four projective operators 

	

2 2
1 2

2 2
3 4

9 9= ,     = ,
2 2 4 2 2 4

1 3 1 3= ,     = ,
6 4 2 6 4 2

i i i iP Y Y P Y Y

i i i iP Y Y P Y Y

     + − + − + +     
     
     + + + − + −     
      	

with the properties 2
1 2 3 4 = , = ;i iP P P P I P P+ + +  correspondingly, the wave function can be 

decomposed into the sum of 4 parts, 1 2 3 4=Ψ Ψ + Ψ + Ψ + Ψ . Their explicit form is readily found. 
Correspondingly, the truncated projective constituents are determined by the relations 

	

0

0

1

1
1 2 3 4

2

2

3

3

( ) 0 0 0
0 ( ) 0 0
0 0 0 ( )
( ) 0 0 0

= ,     = ,     = ,     = .
( ) 0 0 0
0 ( ) 0 0
0 ( ) 0 0
0 0 ( ) 0

f r
g r

f r
g r
f r

g r
f r

g r

Ψ Ψ Ψ Ψ

	

(19)

We divide 8 equations into 4 groups:

1 1/2 0 0 3/2 1 1/2 2 1,      = (2 ) ,      2 = (2 ) ,m m mP a g ik f b f a g ik g+ − +σ − + σ −

3/2 1 1/2 3 1/2 2 22 2 = (2 ) ;m m mb f a f a g ik f− + ++ + σ −

2 1/2 0 0 1/2 2 1/2 1 3/2 3 2,     = (2 ) , 2 2 = (2 ) ,m m m mP b f ik g b f b g a g ik g− − − +σ + + + σ +

1/2 2 3/2 3 32 = (2 ) ;m mb f a g ik f− ++ σ +

3 1/2 3 1/2 2 3 4 1/2 2 1/2 1 1,     2 = (2 3 ) ;      ,     2 = (2 3 ) .m m m mP b f b g ik g P a f a g ik f+ + − −+ σ + + σ −

According to the method by Fedorov – Gronskiy [10], each projective constituent is determined only 
by one function of the variable r:
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0

0

1

1
1 1 2 2 3 3 4 4

2

2

3

3

0 0 0
0 0 0
0 0 0

0 0 0
= ( ),      = ( ),      = ( ),      = ( );

0 0 0
0 0 0
0 0 0
0 0 0

f
g

f
g

r r r r
f

g
f

g

Ψ ϕ Ψ ϕ Ψ ϕ Ψ ϕ

	

(20)

inside the columns some numerical coefficients stay. Besides, near each equation we have to impose 
additional differential constraints which permit us to transform the equations to the algebraic form:

1 1/2 2 0 1 0 1/2 2 1 1,     = (2 ) = ,m mP a g ik f a c+ +ϕ σ − ϕ ⇒ ϕ ϕ

3/2 4 1 1/2 2 2 1 1 3/2 4 2 1 1/2 2 1 12 = (2 ) = , = ,m m m mb f a g ik g b c a c− + − +ϕ + ϕ σ − ϕ ⇒ ϕ ϕ ϕ ϕ

3/2 4 1 1/2 2 3 1/2 2 2 1 2 3/2 4 2 1 1/2 2 1 12 2 = (2 ) = , = ;m m m m mb f a f a g ik f b c a c− + + − +ϕ + ϕ + ϕ σ − ϕ ⇒ ϕ ϕ ϕ ϕ

2 1/2 1 0 2 0 1/2 1 3 2,     = (2 ) = ,m mP b f ik g b c− −ϕ σ + ϕ ⇒ ϕ ϕ

1/2 1 2 1/2 1 1 3/2 3 3 2 2 1/2 1 3 2 3/2 3 4 22 2 = (2 ) = , = ,m m m m mb f b g a g ik g b c a c− − + − +ϕ + ϕ + ϕ σ + ϕ ⇒ ϕ ϕ ϕ ϕ

1/2 1 2 3/2 3 3 2 3 1/2 1 3 2 3/2 3 4 22 = (2 ) = ,      = ;m m m mb f a g ik f b c a c− + − +ϕ + ϕ σ + ϕ ⇒ ϕ ϕ ϕ ϕ

3 1/2 2 3 1/2 2 2 3 3 1/2 2 5 3,     2 = (2 3 ) = ;m m mP b f b g ik g b c+ + +ϕ + ϕ σ + ϕ ⇒ ϕ ϕ

4 1/2 1 2 1/2 1 1 4 1 1/2 1 6 4,     2 = (2 3 ) = .m m mP a f a g ik f a c− − −ϕ + ϕ σ − ϕ ⇒ ϕ ϕ

In this way, from the above we arrive at the following algebraic system

	

1 0 0 2 1 1 2 1

2 1 1 3 1 2 2 3 0 0

3 2 3 1 4 3 2 3 2 4 3 3

5 3 5 2 3 6 2 6 1 1

= (2 ) ,      2 = (2 ) ,

2 2 = (2 ) ,      = (2 ) ,

2 2 = (2 ) ,      2 = (2 ) ,

2 = (2 3 ) ,      2 = (2 3 ) ,

c g ik f c f c g ik g

c f c f c g ik f c f ik g

c f c g c g ik g c f c g ik f

c f c g ik g c f c g ik f

σ − + σ −

+ + σ − σ +

+ + σ + + σ +

+ σ + + σ − 	

(21)

and at the first-order constraints 

	

1/2 2 1 1 1/2 1 3 2 3 1

1/2 1 6 4 3/2 4 2 1 6 2

3/2 3 4 2 1/2 2 5 3 5 4

= ,      = ,      let = ;
= ,      = ,      let = ;
= ,      = ,      let = .

m m

m m

m m

a c b c c c
a c b c c c
a c b c c c

+ −

− −

+ +

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ 	

(22)

Whence we derive the 2-nd-order equations for separate functions 

	

( ) ( )
( ) ( )
( ) ( )

2 2
1/2 1/2 1 1 3/2 1/2 2 1

2 2
1/2 1/2 1 2 3/2 1/2 4 2

2 2
1/2 3/2 4 3 1/2 3/2 2 4

= 0,      = 0,

= 0,      = 0,

= 0,      = 0.

m m m m

m m m m

m m m m

a b c b a c

b a c a b c

b a c a b c

+ − − −

− + + +

+ + − −

− ϕ − ϕ

− ϕ − ϕ

− ϕ − ϕ
	

(23)

Explicitly they read 
2 2 2 2

2 2 2 2
1 1 2 1 1 22 2 2 2

2 2 2 2
2 2 2 2
1 2 4 2 1 42 2 2 2

2

2

1 (1 2 ) 1 (1 2 )= 0,      = 0 = ,
4 4

1 (1 2 ) 1 (1 2 )= 0,      = 0 = ,
4 4

1 (3 2 )

d d m d d mc c c c
r dr r drdr r dr r

d d m d d mc c c c
r dr r drdr r dr r

d d m
r drdr

   − −
+ − − ϕ + − − ϕ ⇒      

   
   + +

+ − − ϕ + − − ϕ ⇒      
   

+
+ −

2 2 2
2 2
4 3 2 42 2 2

1 (3 2 )= 0,      = 0.
4 4

d d mc c
r drr dr r

   −
− ϕ + − − ϕ      

   
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2 2 2 2
2 2 2 2
1 1 2 1 1 22 2 2 2

2 2 2 2
2 2 2 2
1 2 4 2 1 42 2 2 2

2

2

1 (1 2 ) 1 (1 2 )= 0,      = 0 = ,
4 4

1 (1 2 ) 1 (1 2 )= 0,      = 0 = ,
4 4

1 (3 2 )

d d m d d mc c c c
r dr r drdr r dr r

d d m d d mc c c c
r dr r drdr r dr r

d d m
r drdr

   − −
+ − − ϕ + − − ϕ ⇒      

   
   + +

+ − − ϕ + − − ϕ ⇒      
   

+
+ −

2 2 2
2 2
4 3 2 42 2 2

1 (3 2 )= 0,      = 0.
4 4

d d mc c
r drr dr r

   −
− ϕ + − − ϕ      

   

Therefore, there exists only one independent parameter 2 2 2
2 4 1= = ;c c c  and the above equations take the 

form 

	

2 2 2 2
2 2
1 1 1 22 2 2 2

2 2 2 2
2 2
1 3 1 42 2 2 2

1 ( 1 / 2) 1 ( 1 / 2)= 0,      = 0,

1 ( 3 / 2) 1 ( 3 / 2)= 0,      = 0.

d d m d d mc c
r dr r drdr r dr r

d d m d d mc c
r dr r drdr r dr r

   − +
+ − − ϕ + − − ϕ      

   
   + −

+ − − ϕ + − − ϕ      
    	

(24)

In the variable x = ic1r, they turn to a Bessel form 

	

2 2

1 1 ( 1/2)2 2

2 2

2 22 2

2 2

3 3 ( 3/2)2 2

2 2

2 2

1 ( 1 / 2)1 = 0,      = ( );

1 ( 1 / 2)1 = 0,      = ( 1 / 2)( );

1 ( 3 / 2)1 = 0,      = ( );

1 ( 3 / 2)1

m

m

d d m J x
x dxdx x

d d m J m x
x dxdx x

d d m J x
x dxdx x

d d m
x dxdx x

 



 

 
      

 
 

       
 
 

      
 
 

  


4 4 ( 3/2)= 0,      = ( ).mJ x 

   
 	

(25)

This analysis can be readily extended to the case of the presence of the external magnetic field. In 
fact, we should make one formal change field 2 ;( e/ t  2  )lm m eBr eB B⇒ + ⇒  so we get operators 

	

2 2

1/2 1/2

2 2

3/2 1/2

2 2

1/2 3/2

1 / 2 / 2 1 / 2 / 2= ,      = ,

3 / 2 / 2 1 / 2 / 2= ,      = ,

1/ 2 / 2 3 / 2 / 2= ,      = .

d m Br d m Bra a
dr r dr r
d m Br d m Bra b
dr r dr r
d m Br d m Brb b
dr r dr r

µ− µ+

µ+ µ−

µ+ µ−

− + + +
+ +

+ + − +
+ −

+ + − +
− −

	

(26)

Correspondingly, the equations (25) become more complicated; at this there arise the constraints 

	
2 2 2 2
2 1 4 1= 2 , = 2 ,c c B c c B+ − 	 (27)

therefore we have four 2-nd-order equations 2
1 :(let  = )c X

	

2 2
2 2

12 2

2 2
2 2

22 2

2 2
2 2

32 2

2 2
2 2

2 2

1 1 ( 1 / 2) ( 1 / 2) = 0,
4

1 1 ( 1 / 2) ( 1 / 2) = 0,
4

1 1 ( 3 / 2) ( 3 / 2) = 0,
4

1 1 ( 3 / 2) ( 3 / 2)
4

d d mB r B m X
r drdr r

d d mB r B m X
r drdr r

d d mB r B m X
r drdr r

d d mB r B m X
r drdr r

 −
+ − − − + − ϕ  

 
 +

+ − − − − − ϕ  
 
 +

+ − − − − − ϕ  
 
 −

+ − − − + − 4 = 0.

ϕ  

  	

(28)
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They have one and the same structure. Let us consider in detail the last equation. In the variable r2 = x, 
we get 

2 2 2

42 2
1 ( 3 / 2) ( 3 / 2) = 0,

16 44
d d B m B m X

x dx xdx x

 − + +
+ − − − ϕ 

  

which belongs to a hypergeometric type. In the vicinity of x = 0 and x → ∞ their solutions behave 

4 4= ,      = | 3 / 2 | /2;      = ,      = / 4;A Dxx A m e D Bϕ ± − ϕ ±

for the bound states we are to use positive values of A and (assuming that B > 0) a negative value of D. 
General solutions are searched in the form 4 4= ( );A Dxx e F xϕ  further we derive 

2

42
( 3 / 2) 4 (2 1)[(2 1) 2 ] = 0.

4
d d B m X D Ax A Dx F

dxdx

 + + − + + + + − 
  

In the variable 2Dx = –z, we obtain equation

	

2

4 4 42
( 3 / 2) | 3 / 2 | 1(| 3 / 2 | 1 ) = 0

2 2
d d m m Xz F m z F F

dz Bdz
+ + − + + − + − − + 

  	
(29)

of hypergeometric type. The polynomial condition α = –n4 leads to 

	
4 4

( 3 / 2) | 3 / 2 | 1 = 0,      = 0,1,2,...;
2 2

m m Xn n
B

+ + − +
+ +

	
(30)

with notation 

	
4 4

( 3 / 2) | 3 / 2 | 1= ,
2

m mN n+ + − +
+

 	
the quantization rule reads 4= 2 < 0.X BN−  Three remaining equations are studied similarly. Thus we 
get the following results 

	

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

( 1 / 2) | 1 / 2 | 1, = , = 2 < 0;
2

( 1 / 2) | 1 / 2 | 1, = , = 2 < 0;
2

( 3 / 2) | 3 / 2 | 1, = , = 2 < 0;
2

( 3 / 2) | 3 / 2 | 1, = , = 2 < 0.
2

m mF N n X BN

m mF N n X BN

m mF N n X BN

m mF N n X BN

+ + − +
+ −

− + + +
+ −

− + + +
+ −

+ + − +
+ −

	

(31)

Solving the algebraic system for the case of a free particle. For a free particle, we have one pa-
rameter, 1 6,..., = ;c c C  and the matrix form of the system is AΦ = 0, 

(2 ) 0 0 0 0 0 0
(2 ) 0 0 0 0 0 0

0 0 (2 3 ) 2 0 0 0

0 0 (2 ) 0 2 0 0

= .0 0 2 0 (2 ) 2 0

0 0 0 2 (2 ) 0 2

0 0 0 0 2 0 (2 )

0 0 0 0 0 2 (2 3 )

ik C
C ik

ik C C

C ik C

A C ik C C

C C ik C

C ik C

C C ik

− σ −
− σ +

− σ −

− σ −

− σ −

− σ +

− σ +

− σ +
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The equation det A = 0 leads to 2 2 2 2 2 2 3(9 9 4 )( 4 ) = 0.C k C k− − σ − − σ  The roots are as follows 

	
2 2 2 2 2 2 2 2

1 2 3 4
3 3 1 1= ,      = ,      = ,      = .
2 2 2 2

C k C k C k C kσ − − σ + − σ − − σ −
	

(32)

Solutions of the algebraic system at these four values can be readily found.
Solving the algebraic system in the presence of the magnetic field. In the presence of the mag-

netic field, taking in mind the identities 3 1 6 2 5 4 1= ,   = = 2 ,   = = 2 ,   = ,c c c c X B c c X B c X+ −  in 
dimensionless quantities / = ,   / = ,   / = < 0,   = 2 < 0,X k X K B X b X BNσ Σ −  we get

0 0 0 0

2 1 1

1 2 1

1 3 2 2

2 1 3 2

2 3 3

3 2 3

= (2 ) , = (2 ) ,

2 1 2 1 2 = (2 3 ) ,

1 2 2 = (2 ) ,

2 1 2 2 = (2 ) ,

2 2 1 2 = (2 ) ,

2 1 2 = (2 ) ,

1 2 2 1 2 = (2 3 ) .

g iK f f iK g

b f bg iK f

b f g iK g

b f f g iK f

f g bg iK g

f bg iK f

b f bg iK g

Σ − Σ +

+ + + Σ −

+ + Σ −

+ + + Σ −

+ + − Σ +

+ − Σ +

− + − Σ +

It can be presented in the matrix form AΦ = 0; from the equation det A = 0 we obtain 

	 ( )2 2 2 2 2 2 2 2( 4 1) 36 96 ( 4 1)(9 4 9) = 0;K b ibK K K+ Σ − − − Σ + + Σ − + Σ −
	

(33)

this equation is factorized. The roots for the simple equation are 
2 2

1 2
1 1= 1 ,      = 1 ,      multiplicity 2.
2 2

K KΣ + − Σ − −

Let us transform the equation 2 24 1 = 0K + Σ −  to initial parameters: 

= ,      = ,
2 2

kK
i BN i BN

σ
Σ

then we obtain 2 22 4 = 0.BN k+ + σ  In the variable Z =  iσ, this equation reads 2 22 4 = 0.BN k Z+ −  
The numerical study at two sets of parameters gives 

0.866025, 0.866025,
1.11803, 1.11803,
1.32288, 1.32288,
1.5, 1.5,
1.65831, 1.65831,

= 1,   = 1,   = 1,...,10,    = 10,   = 11.80278, 1.80278,
1.93649, 1.93649,
2.06155, 2.06155,
2.17945, 2.17945,
2.29129, 2.29129;

B k N B k












2.29129, 2.29129,
3.20156, 3.20156,
3.90512, 3.90512,
4.5, 4.5,
5.02494, 5.02494,

,   = 1,...,10,   5.5, 5.5,
5.93717, 5.93717,
6.34429, 6.34429,
6.72681, 6.72681,
7.08872, 7.08872.

N












The second equation is 

	 ( )4 2 2 2 2 216 40( 1) 96 9 ( 1) 4 = 0;K ibK K bΣ + − Σ − Σ + − − 	
its solutions are readily found in the analytical form. However, the numerical study will be more 
convenient. To this end let us turn back to initial variables; which give (it is convenient to use the new 
variable Z = iσ): 
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	 ( )( )4 2 2 2 216 40(2 ) 96 9 2 ( 1) 2 ( 1) = 0.Z BN k Z BkZ B N k B N k− + − + − + + +
	

(34)

The numerical example study gives 

1.86147, 1.5, 0.332551, 3.02892,
3.04142, 1.37523, 0.775656, 3.641,
3.75612, 1.5, 1.07434, 4.18178,
4.33759, 1.63742, 1.30616, 4.66885,
4.84306, 1.77134, 1.5, 5.1144,

= 1, = 1, = 1,...,10, 5.29713, 1.89911, 1.6692B k N

− −
− −
− −
− −
− −
− − 8, 5.52696,

5.71326, 2.0206, 1.82126, 5.9126,
6.09982, 2.13628, 1.9603, 6.27581,
6.46245, 2.24675, 2.08921, 6.61998,
6.80517, 2.35254, 2.20996, 6.94775.

− −
− −
− −
− −

Conclusions. The eigenvalue problem for the generalized helicity operator for a spin 3/2 particle 
in the presence of the uniform magnetic field has been solved. After separating the variables in the ba-
sis of cylindrical coordinates, the system of 16 differential equations in the variable r is derived. This 
system is solved with the use of the method of projective operators. All 16 variables were expressed 
in terms of only 4 distinguished functions, which are constructed in terms of confluent hypergeomet-
ric functions. Further the problem reduces to studying the linear algebraic system for 16 algebraic 
variables. In  the end, we derive equations of the second and the fourth order, their roots determine 
the possible eigenvalues of the helicity operator. The developed method can be extended to the field 
with spin 2.

References

1. Pauli W., Fierz M. Über relativistische Feldleichungen von Teilchen mit beliebigem Spin im elektromagnetishen 
Feld. Enz C. P., v. Meyenn K. (eds). Wolfgang Pauli. Das Gewissen der Physik. Vieweg+Teubner Verlag, 1988, S. 484–490 
(in German). https://doi.org/10.1007/978-3-322-90270-2_45

2. Fierz M., Pauli W. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proceedings 
of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1939, vol. 173, pp. 211–232. https://doi.
org/10.1098/rspa.1939.0140

3. Rarita W., Schwinger J. On a theory of particles with half–integral spin. Physical Review, 1941, vol. 60, no. 1, pp.  61–
64. https://doi.org/10.1103/physrev.60.61

4. Ginzburg V. L. To the theory of particles of spin 3/2. Journal of Experimental and Theoretical Physics, 1942, vol. 12, 
pp. 425–442 (in Russian).

5. Fradkin E. S. To the theory of particles with higher spins. Journal of Experimental and Theoretical Physics, 1950, 
vol. 20, no. 1, pp. 27–38 (in Russian).

6. Red’kov V. M. Particle fields in the Riemann space and the Lorentz group. Minsk, Belaruskaya navuka Publ., 2009. 
486 p. (in Russian).

7. Ivashkevich A. V., Оvsiyuk Е. М., Red’kov V. M. Zero mass field with the spin 3/2: solutions of the wave equation and 
the helicity operator. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of 
the National Academy of Sciences of Belarus. Physics and Mathematics series, 2019, vol. 55, no. 3, pp. 338–354 (in Russian). 
https://doi.org/10.29235/1561-2430-2019-55-3-338-354

8. Ivashkevich A. V., Ovsiyuk E. M., Kisel V. V., Red’kov V. M. Spherical solutions of the wave equation for a spin 
3/2 particle. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2019, 
vol. 63, no. 3, pp. 282–290 (in Russian). https://doi.org/10.29235/1561-8323-2019-63-3-282-290

9. Ivashkevich A. V., Voynova Ya. A., Ovsiyuk E. M., Kisel V. V., Red’kov V. M. Spin 3/2 particle: Pauli – Fierz theo-
ry, non–relativistic approximation. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = 
Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2020, vol. 56, no 3, pp. 335–
349. https://doi.org/10.29235/1561-2430-2020-56-3-335-349

10. Gronskiy V. K., Fedorov F. I. Magnetic properties of a particle with spin 3/2. Doklady Natsional’noi akademii nauk 
Belarusi = Doklady of the National Academy of Sciences of Belarus, 1960, vol. 4, no 7, pp. 278–283 (in Russian).



      Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-матэматычных навук. 2025. T. 61, № 4. С. 307–319	 319

Information about the authors

Alina V. Ivashkevich  – Researcher, B. I. Stepanov 
Institute of Physics of the National Academy of Sciences of 
Belarus (68-2, Nezavisimosti Ave., 220072, Minsk, Republic 
of Belarus). E-mail: ivashkevich.alina@yandex.by

Viktor V. Red’kov – Dr. Sc. (Physics and Mathematics), 
Professor, Chief Researcher of the Center for Fundamental 
Interactions and Astrophysics, B. I. Stepanov Institute of 
Physics of the National Academy of Sciences of Belarus 
(68-2, Nezavisimosti Ave., 220072, Minsk, Republic of Bela
rus). E-mail: v.redkov@ifanbel.bas-net.by

Информация об авторах

Ивашкевич Алина Валентиновна  – научный со
трудник, Институт физики имени Б. И. Степанова На
циональной академии наук Беларуси (пр. Независимо
сти, 68-2, 220072, Минск, Республика Беларусь). E-mail: 
ivashkevich.alina@yandex.by

Виктор Михайлович Редьков  – доктор физико-
математических наук, профессор, главный научный 
сотрудник Центра фундаментальных взаимодействий 
и астрофизики, Институт физики имени Б. И. Степанова 
Национальной академии наук Беларуси (пр. Независи
мости, 68-2, 220072, Минск, Республика Беларусь). E-mail: 
v.redkov@ifanbel.bas-net.by


