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EIGENVALUES OF THE GENERALIZED HELICITY OPERATOR
FOR SPIN 3/2 PARTICLE IN THE PRESENCE OF THE MAGNETIC FIELD
AND THE PROJECTIVE OPERATORS METHOD

Abstract. The eigenvalue problem for generalized helicity operator for a spin 3/2 particle in presence of the uniform
magnetic field is solved. After separating the variables in the basis of cylindrical coordinates (r, ¢, z) and the tetrad, the system
of 16 first-order differential equations in the variable r is derived. This system is studied with the use of the method of pro-
jective operators, constructed with the use of the third projection of the spin for the particle. In accordance with the method
by Fedorov — Gronskiy, all 16 variables may be expressed in terms of only 4 distinguished functions, which are constructed
in terms of confluent hypergeometric functions. Further the problem reduces to studying the linear algebraic homogeneous
system for 16 algebraic variables. In the end, we derive algebraic equations of the second and the fourth order, their roots de-
termine the possible eigenvalues of the helicity operator.
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3AJJAYA O COBCTBEHHBIX 3BHAYEHHUAX OBOBIIEHHOI'O OIIEPATOPA CIIUPAJIBHOCTH
A1 YHACTHULBI CO CIIMHOM 3/2 BMATHUTHOM HOJIE
N METOJ HPOEKTUBHBIX OIIEPATOPOB

AnHoTanus. Pemena 3a1aua 0 COOCTBEHHBIX 3HaYECHHSIX 0000IIEHHOr0 oOniepaTopa CIIMPaIbHOCTH JJIsl YACTUIIBI CO CITH-
HOM 3/2 BO BHENIHEM OTHOPOJHOM MarHUTHOM roJje. [locie pazaeneHns nepeMeHHbIX B yPaBHCHHN Ha COOCTBEHHBIE 3HaUe-
HUS B WUIMHPUYECKON CHCTEMe KOOPAMHAT (7, ¢, z) B COOTBETCTBYIOIICH TeTpajie HaljeHa cucteMa quddepeHInanbHbIX
ypaBHEHHH ITEPBOTo MOPsIKA B IepeMeHoit 7 1iist 16 pyHKumil. DTa cucTeMa pelnieHa Ha OCHOBE TPHMEHEHHST METO/Ia IIPOeK-
THBHBIX OIIEPATOPOB, IIOCTPOCHHBIX Ha OCHOBE TPEThEl MPOEKIINH OIepaTopa CIUHA JacTUIBL. B cooTBeTCTBHU C MEeTOTOM
denopoBa — 'poHCKOr0 Bee 16 IepeMEHHBIX MOTYT OBITh BRIPAXKEHBI TOJIBKO uepe3 4 pazindaroiuecs GyHKIHUH, YA0BICTBO-
pSIIOIINE YPaBHEHHUSIM BBIPOXKICHHOTO THIIEPreOMeTpUYecKoro Tuma. JlanbHelas 3aja4a CBOAUTCS K aHAIU3Y OJHOPOIHOH
anreOpanyecKoll CHCTEMbI YpAaBHEHUH 7151 16 HEM3BECTHBIX BEINYHMH. B HTOre HAaliIGHBI YypaBHEHHS 2-TO U 4-TO MOPSAKOB,
KOPHH KOTOPBIX ONPEACIIAIOT COOCTBEHHBIE 3HAYCHH S OTEpaTOpa CIUPATbHOCTH.

KuroueBble cjioBa: yacTuma co cuHoM 3/2, BHEIIHEE MarHUTHOE MoJje, 00OOIIEHHBINH ONepaTop CIHPadbHOCTH, IIH-
JUHJPUYECKAs CAMMETPHSL, IPOCKTUBHBIC ONIEPATOPBI, 331a4a Ha COOCTBEHHbIE 3HAUCHU S, TOUHbBIC PCLICHH S

Jast uuTupoBanus. MpamkeBuy, A. B. 3amaua o coOCTBEHHBIX 3HaYCHHUSX 00OOIEHHOrO Oreparopa CHUpPaIbHOCTH
JUISL YaCTHIIBI CO CITMHOM 3/2 B MAarHUTHOM TI0JIE U METOJ MPOCKTUBHBIX oneparopos / A. B. MBamikesuy, B. M. Peaskos /
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Helicity operator, the basic formulas. As it is known, in presence of the external magnetic field, it
is useful to use the possibilities to diagonalize additionally the helicity operator. In Cartesian basis, this
operator for a spin 3/2 particle is determined by the formula [1-9] (the presence of the external magnetic
field will be taken into account below)

i|:(81023 +62631 +63012)®1+1®(81j23+82j31 +63j12)}=

=(8101+ 8202 +8303), ZWcat =0 cart. M
Taking in mind expessions for matrices in Cartesian basis, from the formula (1) we derive':
03 01 —i0, 0 0 0 o0 0 0
01 +1i0 —0 0 0 0 0 —io3 0
poL1rio T ®I+1® e 02 ®)
2 0 0 03 01 —1i0; 0 i0; 0 —i0
0 0 81-1-162 —63 0 —iaz i&l 0
After the transition to cylindric coordinateds we get
03 e [a, —iaq,j 0 0
r
1 e’ (ar +ia¢j 05 0 0
Zean = g o1+
0 0 03 e [a, —iad,)
0 0 ef¢(a,+ia¢] 05
r
0 0 0 0
. (. cosd
0 0 —i03 i| singd, + 04
r
+/® i .
0 03 0 —i(cosd)@r—waq,j
r
0 —i(sin¢8,+cos¢6¢j i(cosd)a,—sm(b@q,j 0
r r

Transition to 16-dimensional form. Let us start with the transformation relating Cartesian basis
with cylindrical one

e o2 (cosdfy +sindfy) e (=sindfi +cosdfy) e f;
T e (cosggr +singga) e (—singgr +cosoga) e gs| g
e 2 (coshhy +sindhy) e (—sindhy +cosdhy) ey

e 2 T2 (cosdd +sindds) e (=sindd +cosdd,) e dy

e
chyl =(BOL)Y cant =

We turn to the helicity equation in Cartesian basis; after performing needed calculations we arrive at the
system (in Cartesian basis)

. 0 . 0
103 /¢ +e_’¢( . —l—¢jg8 —20ff, —03g6+eti (a, +’—“’Jfoc — 20g§,
r r
. 0 . 0
+03h¢ +e’¢( . —l—d’jd(‘j =26h, 03d& +eti® (a, +l—¢Jh5 = 26d:

r r

" The use of anti-Hermitian generators means that the eigenvalues of the introduced helicity operator will be purely ima-
ginary.
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. _16_¢ng +21(sm¢8 +
r

cos¢

+03 fi¢ = 2i05 f% +ei¢(

a3glc—2ia3g§+e+i¢[ jf] +21(s1n¢6 +

, L 94 .
+O3hf — 2i03h5 +e"¢[ , —l—‘b)df + Zi(sin(l)ar L Losé
r

cosd

i0
—03df 2183d2+e+’¢(6,+ ¢jh1+2z[sm¢8 +

8¢Jd3c =2Gd1 5

)fac =20f1",
20gf,

h Ghl .

+asz+2iagﬁ0+e"'¢[ar jg%—zz(cosw —Sm“’ad)Jﬁ 2015,
r
, o 0

—03g5 +2i03gf +e*® 6r+l—¢ 5 —2i| cos 8r—sm¢6 g5 =20g5,

o

,,
. 0

103h5 +2i03h{ +e 7| 8, -2 d2—21(cos¢6 —Smd’ ¢jh = 26hS,
r

_03d5 + 2i03df +e7 | 8, + 2% |hs —2i] cos¢o, —Sm¢ jdf—chz,
r

2| sin¢d, +COS¢ qu)aq,jfz =20f7,

cosd

. - 0 ,
+03 5 +e" [f% —l—jg§ -
r

-03g5 +et® (Or +—j

cosd

+03h5 +e_i¢(8, i 3

cosd

—03d§ +e*™* [a, +—2

8¢ gf +2i[cos¢6r -
r

[

ad,jff +2i(cos¢8r -
)
)

84, h{ +21(cos¢6 -

64,)611 +2I(COS(I)6 -

n¢

sin ¢

sin ¢

a(,,jhg = 2645,

We can see that it is enough to study only the system for the variables f,, g

+83foc +e_i¢(

i0
r __¢Jg6
r

+03 1 = 2i03 f5 +e (ﬁr —l—¢jg1€ + Zi(sind)a, +
r

. 0
=20f§, —03gf+et™ (& +l—¢Jfoc =20g§,
r

CO:(I)ad)Jf; — 2Gf'](3’

) : ; i0
03g{ —2i03g5 +e+l¢(6 + jfl +21(sm(|)6 + OS¢6¢Jg3 =20gf{,
. 5
+63ff+2i83ff+e_’¢[ —l—¢jg§—2z(cos¢6 _sing, jfg, = 20f%, @)
—03g5 +2i03gf +e™? 5r+ sz —2i| cosdpd, — 6¢jg§ =20g5,

+63f3c +e_i¢£

. 0
—83g§+e+’¢(8 + % ¢jf3C 2| sind0, + & d¢ |&t +2z[cos¢

_18_¢jg 2(s1 $0, +COS¢6¢jf1‘+2z(cos¢8 —qu)aq,jfz =20f7,

¢5¢jg§ =20g5.
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Now we should take into account the transformation between Cartesian and cylindrical tetrad bases; we
will follow only transformations on the variables f,, g,:

S5 =0y, S =T (cos oy —sing2),

g5 =/ V0g g = VD0 (coshe —singgs), )
15 =" TV (singf) +cosdfn),  ff=eTVVf,
g5 ="V (singg) +cosdga), g§ =D,
and inverse ones
fo=e D pe  fi= e (1129 (cos¢f1 +sindfs )
2o =eCVDoge el 1/2)¢(cos¢g1 +sm¢gz)
£ = ei(+1/2)¢( $in §f;C + cos df S ) fy= U0 pe ©)
gy =18 (—sin dgf +cos b’ ) gy = CUDbge

With the use of (5) and (6) we can transform the subsystem (4) to the other form (we will omit technical
details and write down the final system of 8 equations; besides, we have taken into account that factors

e™e™® are in the field function)

, m+1/2 ) m—1/2
go+ go+ fo(20+ik)=0, fo-

f() +g0(—20’—ik)20.

b

S1(=20 +ik) + 2kf5 + (d=2m)fs + (2m;1)g1 +g1 +82 -
r r r

fo-20 k) -2k - 2+ 8Ly gy Ty
r

r
“‘j—m)ﬁ+f1'—ﬁ+g1(—2c—ik)+2kgz—MZO’
.
(1- 3m)fz il L+ g2(-20 - ik) — kg, ~ 2ig’ =0,
' 2m+1 r
(—20+zk)f3+ f1+2lfz+—f2+ g3+g3=0,

(1-2m)
2r

Thus we arrive at the system of 8 equations. Further we will present this system in the matrix form,
applying the truncated column ¥

———f3+ f3+(- 26—zk)g3+2 1g1+21g2+2 g, =0.

fo
8o
N
81
/2
82
/3
g3

AY cyl = 2c¥ cyls b4 cyl = > (7)

where (let d/dr = R)
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ik 2mrlg 0 0 0 0 0 0
2r
I22m p ik 0 0 0 0 0 0
2r
0 0 ik 2mil p o ok L 1= 2m 0
2r r r
0 0 I=2m p ik L 2k 0 2m +1
2r r r
4= 0 2k L ik lp o g 0
r 2r
0 0 L ok 2 i 0 _2iR
r 2r
0 0 2m | 0 2R+ 2 0 kg
r r 2r
0 0 0 2m +1 0 wr+2 122 p o i
r r 2r
®)
Let us transform this system to the cyclic basis [7-9]. Starting with the relations
Ve =U¥ ey, Vip=Ups¥is=¥iulp, ¥=VU, ¥=¥U", )
in 16-dimensional form ¥ = Tje¢¥ we have the needed repesentation; we use its truncated 8-form
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 -1/v2 0 /2 0 00
S 1/32 0 i/N2 00 10)
1/2 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1/V2 0 /N2 0 00
0 0 0 /N2 0 /N2 00
Transition of the system to the cyclic basis is done by the rule
Y=TY, (TAT H¥=206Y, A=TAT'; (11)
for the matrix 4 we obtain an explicit expression: then we get new equations
d Lmt 1/2 d m-1/2 ]
ikfo +| — go=2cf0, |—- So—ikgo =20g0,
dr r dr r
d m 1/2 m -1/2
31kf1+\/7( jfz ( jg1:20f1,
dr r
d m-3/2 d Lm +1/2
[ jf1+1kgl+f( jg2:20g1,
dr r r
d 3/2 d +1/2 d +1/2
f{ — jfl +ikf +f[ + ]fs +(d—+ “ jgz =22,  (12)
r r r

dr r
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i_m—l/Z fz+\/5 i_m—1/2 gl—ikg2+\/§ i+m+3/2 23 =200,
dr r dr r dr r
d m-1/2 . d m+3/2
\/5(—— jfz—lkﬁ +(—+—jg3=26f3,
dr r dr r
(i—m+l/zjf3+\/§(i—m+l/2jg2—3ikg3=2Gg3.
dr r dr r
With the use of shortening notations
d m-1/2 d m+1/2 d m+3/2
Ap-1/2 =—+ s, Amy2 = —/+ s Amu3p = —t—m,
dr r dr r dr r
b :i_m—1/2 b :i_m+l/2 b :i_m—3/2
m-1/2 d}" r ) m+1/2 d}" Py ) m-3/2 dr r )

we reduce the last system to the form
am+1280 = (20 —ik) fo,  bm-112fo = (20 +ik)go,
212 f> + am-12g1 = 26 - 3ik) fi,
bz fi + 21282 = 20 —ik)g1,
N2by 30 fi #2012 fs + amings = (26 —ik) f, (13)
bu12.f2 +N2by12g1 +\2ami3083 = 20 +ik) g2,
2B, i3 f + ami3ngs = 2o +ik) f,
busiafs +2bui1282 = (20 +3ik) g3,

Method of projective operators. In order to solve the system (13) we will apply the method of projec-
tive operators [10]. To this end, let us start with the matrix (in the cyclic basis) Y = J R-s?®1+1® 712,
whence it follows

BRI L éfa

2 2 2
Ly ig ig g
— &0 —— &1 - 82 —~ 83
YW egel = 21 3zl 21 21, . (14)
Lpe =2n —Lp Ly
270 T T gl
i i i3
La, -La, La, 2
R R SR

It is more convenient to have a 16-dimensional form of generator Y

Y a0 fo N /2 /3
Y 20 g1 g2 g3
Y=Y 40 = s, Yao =, Yaor =, |, Yary=|. |, Yux)=|, | 15)
(n) \PA(Z) ) ho (@) Iy 2) hy 3) hs
Y 43) do dy d3 d3

for the relevant matrix ¥ we get the explicite expression. In which we can separate two similar
8-dimensional structures with respect to the variables:
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Jfo.&0, 1,81, f2,82, 3,83,  ho,do, h,di, ha,da, h3,d3; (16)
so the truncated matrix Y is defined by
-i/2 0 0 0 0 0 0 0 |lfo
0 i/2 0 0 0 0 0 0 |lho
0 0 -3/2 0 0 0 0 0 ||A
0 0 0 -i/2 0 0 0 0 ||m
YV = . (17)
0 0 0 0 —i/2 0 0 0 |f2
0 0 0 0 0 /2 0 0 ||h2
0 0 0 0 0 0 i/2 0 | f3
0 0 0 0 0 0 0 —3i/2||hs

We verify that the minimal equation is valid [10]
(Y2 +1/4)Y2+9/4) =Y +i/2)Y —i/2)(Y +3i/2)(Y -3i/2)=0, (18)

which permits us to introduce four projective operators

p=+i{y-Lly2+2), p=—iyil)y242),
207 2 4 207 2 4

p=+ify2 e L[y 3 p=—ify2 L)y 3),
6 4 2 6 4 2

with the properties Pi+P, +P3+ Py =1, Pl-2 = P;; correspondingly, the wave function can be
decomposed into the sum of 4 parts, ¥ =¥ +¥, +¥3+¥4. Their explicit form is readily found.
Correspondingly, the truncated projective constituents are determined by the relations

fo(r) 0 0 0
0 go(r) 0 0
0 0 0 ()
¥, = ig; ¥, = 8 . W, = g LW, = g . (19)
0 g2(r) 0 0
0 f3(r) 0 0
0 0 g3(r) 0

We divide 8 equations into 4 groups:
P, anango=Q2c-ik)fo, busnfi+N2amngs =Qo-ik)g,
2632 fi 4 2aman fs + dminga = 26 —ik) f2;
Py, buinfo=Q0+ik)g0, buiafr +N2bm11281 +N2ami3283 = 20 +ik)g2,
2b 12 f2 + Amr3ngs = 20 +ik) f;
P, buanfs +\2bungs =20 +3ik)gs;  Pa, 2@y fa +amy2g1 = (20 -3ik) fi.

According to the method by Fedorov — Gronskiy [10], each projective constituent is determined only
by one function of the variable 7:
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fo 0 0 0
0 go 0 0
0 0 fi
Y= Jg,zl o1(r), Ya2= g P2(r), Wi= ?) e3(r), Wa= g Q4(r); (20)
0 2 0 0
/3 0 0
0 0 2 0

inside the columns some numerical coefficients stay. Besides, near each equation we have to impose
additional differential constraints which permit us to transform the equations to the algebraic form:

B,  apan02g80=02c-ik)e1fo = a2 =ci¢1,

3204 f1 V2000120282 = 20 —ik)P1g1 = bu320s =C201, Ani1202 = 191,
V263204 fi + V200112923 + Ami120282 = Q0 —iK)Q1f2 = Bpo3n®a = €201, Ami2@2 = CIQ1;
Py, bpe12@ifo = 2o +ik)pago = buin®r =392,
bu1/201f2 + 326120181 + V201320383 = 26 +iK)92g2 = bu1201 = €392, Ami3293 = 402,

26,1201 f2 + Ani3n®383 = Q0 +iK)P2fs = bu12P1 = €302, Ami3n®3 = C402;
Py, bui1pn@afs +V2bu1120282 = (26 +3ik)p3g3 = busi2@2 = 503;
Piy 2601001 f2 + amo120181 = 26 -394 fi = @u-1201 = 6P
In this way, from the above we arrive at the following algebraic system

c1go=Qo-ik)fo, crfi+N2eig2=Q20-ik)g,
Vaes fi+\2e1fs +e1ga = Q2o -ik) o, e3fo = Q2o +ik)go,
c3fr + \/503g1 +\/EC4g3 =Qoc+ik)g,, \/§C3f2 +c4g3 = (2o +ik) f3,
esf3+2esgr = (20 +3ik)gs,  N2eqf2 +cogi =(20-3ik) /i,

1)

and at the first-order constraints

Ami1292 =C1Q1,  bpop@1=c3¢02, let c3=cy;
Ap-1291 = C6P4,  bp3p@4=c201, let cg=cy; (22)
Am+3293 =C4Q2,  bpi1202 =cs5¢3, let  c5=cy.

Whence we derive the 2-nd-order equations for separate functions
(am+1/2bm—1/2 —cf )(Pl =0, (bm—3/2am—1/2 —c3 )(P1 =0,
(bmfl/Zaerl/Z —cf )(Pz =0, (am+3/2bm+l/2 ~c} )(Pz =0, (23)
(bm+1/2am+3/2 —c} )(P3 =0, (am—l/me—3/2 —c3 )(P4 =0.

Explicitly they read

2 2 2 2
@ d o G\ (i 4o )
dar’* rdr 4r? dr* rdr 4r?

d> 1d (1+2m)? d> 1d (1+2m? s 2
—t——-———-c =0, —t—————"—c =0 = ¢f =ci,
[a’r2 rdr 472 Lee dr’ rdr 4r? e : !
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d> 1d @G+2m)? , d> 1d (3-2m?® ,
o —c =0, po— 2 ¢ =0.
(dr2 rdr 4r? ds dr rdr 4r? 2 |4

NS}
NS}

Therefore, there exists only one independent parameter ¢3 = cf = ¢f; and the above equations take the
form

d? ld m—1/2 d> 1d (m+1/2)°
( ( i cf](pl—O, ( T )—cf}pz—O,

dr?® rdr r? dr® rdr r?
(24)
> 1d_m+3/2° 4 ,1d _(m-3i .
I S e =0, - —-c =0.
(dr rdr r? i dr? rdr r? o
In the variable x = ic,r, they turn to a Bessel form
> 1d m—-1/2)*
?jL;a +1- (X—Z)J(m:O, 1= s(m-1/2)(%);
d> 1d +1/2)?
4 i1d IGARY >}p2:o, 02 =Js(m+1/2)(x);
X X
(25)
d*> 1d . (m+3/2)*
Tt 1- > P3=0, @3 =Jsms32)(x);

Q4 = J(m-3/2)(x).

This analysis can be readily extended to the case of the presence of the external magnetic field. In
fact, we should make one formal change field m = m + eBr? /2 (let eB= B); sowe get operators

d m-1/2+Br*/2 d m+1/2+Br?/2
ap-12 =—+ > Ap+l2 =—+ )
dr r dr r
d m+3/2+Br?/2 d m-1/2+Br*/2
Auy3n =—+ s by =—- , (26)
dr r dr r
d m+1/2+Br?/2 d m-3/2+Br* /2
buvi2 =—— s buzp=—-
dr r dr r
Correspondingly, the equations (25) become more complicated; at this there arise the constraints
3 =ct+2B, ci=cf-2B, 27)

therefore we have four 2-nd-order equations (let ¢f = X):

2 _ 2
d—2+li—lel"2—w +1/2)-X ¢ =0,
dr rdr 4 r

2 2
L I )
dr rdr 4 r
d> 14 1 /2)? o
PJr;E—ZBer—% m—3/2)— X](ngO,
d> 1d 1 _,, (m=3/2)?
—t——-—Br"—— " —Bm+3/2)-X 0.
art rdr 4 : 2 (e ) il
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They have one and the same structure. Let us consider in detail the last equation. In the variable * = x,
we get

dx® xdx 16 4x2 4x

l:dz 1d B> (m-3/2)° B(m+3/2)+X} -
— - 04 =0,

which belongs to a hypergeometric type. In the vicinity of x = 0 and x — oo their solutions behave
os=x", A=+\m-3/2|72; @s=eP*, D=+B/4;

for the bound states we are to use positive values of 4 and (assuming that B > 0) a negative value of D.
General solutions are searched in the form @4 = x1ePF, (x); further we derive

d* d B(m+3/2)+X —-4DQ2A+1)
- F4:0.

—+[2A4+1)+2Dx]—
x5 +@4+ D +2Dx] - ;

In the variable 2Dx = —z, we obtain equation

2 —
2 v (m=3/2] 41—y L, (3D m=32]H X (29)
dz? dz 2 2B

of hypergeometric type. The polynomial condition o = —n, leads to

(m+3/2)+|2m_3/2|+1+n4+%=0, ne=0,1,2,.; (30)

with notation
_(m+3/2)+|m=-3/2|+1
e 2

the quantization rule reads X =-2BN,4 <0. Three remaining equations are studied similarly. Thus we
get the following results

N

ng,

_(m+1/2)+[m-1/2]+]
! 2
2:(m—1/2)+|m+1/2|+1+n2, X = 28N, <0;

2 (31)
3=(m_3/2)+|2m+3/2|+1+n3, X = 28N, <0:

C(m+3/2)+|m=3/2]+1
‘e 2

Fi, N +ny, X =-2BN,; <0;

£y, N

3, N

Fy, N

+ny, X =-2BN,4<0.

Solving the algebraic system for the case of a free particle. For a free particle, we have one pa-
rameter, c,...,ce = C; and the matrix form of the system is AD =0,

~(26 - ik) C 0 0 0 0 0 0
C ~(26 +ik) 0 0 0 0 0 0
0 0 ~(20 - 3ik) C J2c 0 0 0
0 0 C —Q20 —ik) 0 J2c 0 0
A=| 0 0 J2c 0 ~(26 —ik) C J2c 0
0 0 0 J2c C ~Qo +ik) 0 J2c
0 0 0 0 J2c 0 —(20 +ik) C
0 0 0 0 0 J2c C ~(26 + 3ik)
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The equation det 4 = 0 leads to (9C 2_9k? - 402)(C S - 4(52)3 =0. The roots are as follows
o1 ——%\/C2 —-k?, o, —%\/cz —k?, o3 ——%\/cz —k?, o4 —%\/Cz -k (32

Solutions of the algebraic system at these four values can be readily found.
Solving the algebraic system in the presence of the magnetic field. In the presence of the mag-

netic field, taking in mind the identities ¢3 =c¢;, c¢ =cy =vX +2B, cs=c4=~X-2B, ¢;= \/}, n
dimensionless quantities /X = %, kINX = K, B/X=b<0, X=-2BN <0, we get

go=QX—-iK)fo, fo=QX+iK)go,
V21+2b 15 +1+ 2bgy = (23 - 3iK) f1,
J1+2bf1 +2g2 = 22 -iK)g1,
2N1+2b 11 +42 5 + g2 = 22— iK) fa,
f2+2g1 +32\1-2bg3 = 22 +iK)g>,
V212 +\1-2bg3 = 22 +iK) f3,
V1-2bf3 +3/241-2bg, = (25 +3iK)g3.

It can be presented in the matrix form A® = 0; from the equation det 4 = 0 we obtain

(K? +43 —1)7 (-36b ~96ibKE + (K> +43° ~1)(OK * +43% ~9)) = ; (33)

this equation is factorized. The roots for the simple equation are

21:...%\/1_](2, 222—%\/1—](2, multiplicity 2.

Let us transform the equation K 24+4%%2-1=0 to initial parameters:

y=—2 K k

iW2BN.  i2BN’

then we obtain 2BN +k? +4c? =0. In the variable Z = ic, this equation reads 2BN +k* —4Z% =0.
The numerical study at two sets of parameters gives

—-0.866025, 0.866025, -2.29129, 2.29129,
-1.11803, 1.11803, -3.20156, 3.20156,
-1.32288, 1.32288, -3.90512, 3.90512,
-1.5, 1.5, —4.5, 4.5,
-1.65831, 1.6583], —5.02494, 5.02494,
B=1, k=1, N=1,..,10, -1.80278, 1.80278, B=10, k=1, N=1,..,10, 5.5, 5.5,
-1.93649, 1.93649, -5.93717, 5.93717,
-2.06155, 2.06155, —6.34429, 6.34429,
-2.17945,  2.17945, -6.72681, 6.72681,
-2.29129, 2.29129; —7.08872, 7.08872.

The second equation is
165* +40(K 2 —1)=2 —96ibK S +9((1<2 —1)2 —4b2)= 0;
its solutions are readily found in the analytical form. However, the numerical study will be more

convenient. To this end let us turn back to initial variables; which give (it is convenient to use the new
variable Z = io):
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16Z* —40(2BN +k*)Z% - 96BkZ +9(ZB(N—1)+k2)(2B(N+1)+k2)= 0. (34)

The numerical example study gives

-1.86147, -1.5, 0.332551, 3.02892,
-3.04142, -1.37523, 0.775656, 3.641,
-3.75612, -1.5, 1.07434,  4.18178,
—4.33759, -1.63742, 1.30616, 4.66885,
—4.84306, —-1.77134, 1.5, 5.1144,

B=1, k=1, N=1,.,10, -529713, -1.89911, 1.66928, 5.52696,
-5.71326, -2.0206, 1.82126, 5.9126,
—6.09982, -2.13628, 1.9603, 6.27581,
—6.46245, -2.24675, 2.08921, 6.61998,
—6.80517, -2.35254, 2.20996, 6.94775.

Conclusions. The eigenvalue problem for the generalized helicity operator for a spin 3/2 particle
in the presence of the uniform magnetic field has been solved. After separating the variables in the ba-
sis of cylindrical coordinates, the system of 16 differential equations in the variable 7 is derived. This
system is solved with the use of the method of projective operators. All 16 variables were expressed
in terms of only 4 distinguished functions, which are constructed in terms of confluent hypergeomet-
ric functions. Further the problem reduces to studying the linear algebraic system for 16 algebraic
variables. In the end, we derive equations of the second and the fourth order, their roots determine
the possible eigenvalues of the helicity operator. The developed method can be extended to the field
with spin 2.
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