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В. Г. Сафонов1, И. Н. Сафонова21

1Институт математики Национальной академии наук Беларуси, Минск, Республика Беларусь 
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О σ-ЛОКАЛЬНЫХ КЛАССАХ КОНЕЧНЫХ ГРУПП

Аннотация. Для различных разбиений множества  всех простых чисел исследуются свойства обобщенно ло-
кальных классов (формаций, классов Фиттинга) конечных групп. Доказаны критерии σ-локальности α-локального 
класса групп, где σ и α – некоторые различные разбиения множества . Изучены свойства произведений обобщенно 
локальных классов, а также их алгебр. Для σ-разрешимого σ-локального класса получены достаточные условия ком-
мутативности порожденной им σ-алгебры.

Ключевые слова: конечная группа, σ-локальная формация, σ-локальный класс Фиттинга, σ-алгебра формаций, 
σ-алгебра классов Фиттинга, полугруппа классов групп

Для цитирования. Сафонов, В. Г. О σ-локальных классах конечных групп / В. Г. Сафонов, И. Н. Сафонова // 
Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-матэматычных навук. – 2025. – Т. 61, № 4. – С. 271–287. 
https://doi.org/10.29235/1561-2430-2025-61-4-271-287

Vasily G. Safonov1, Inna N. Safonova2

1Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus 
2Belarusian State University, Minsk, Republic of Belarus

ON σ-LOCAL CLASSES OF FINITE GROUPS

Abstract. For various partitions of the set  of all prime numbers, properties of generalized local classes (formations, 
Fitting classes) of finite groups are investigated. Criteria for σ-locality of an α-local class of groups are proved, where σ and 
α are some distinct partitions of . Properties of products of generalized local classes, as well as their algebras, are studied. 
For a σ-soluble σ-local class, sufficient conditions for the commutativity of the σ-algebra generated by it are obtained.

Keywords: finite group, σ-local formation, σ-local Fitting class, σ-algebra of formations, σ-algebra of Fitting classes, 
semigroup of classes of groups

For citation. Safonov V. G., Safonova I. N. On σ-local classes of finite groups. Vestsі Natsyyanalʼnai akademіі navuk 
Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and 
Mathematics series, 2025, vol. 61, no. 4, pp. 271–287 (in Russian). https://doi.org/10.29235/1561-2430-2025-61-4-271-287

Введение. Все рассматриваемые группы являются конечными. Мы придерживаемся терми-
нологии и обозначений, принятых в [1–6].

Интенсивное развитие в последнее десятилетие теории σ-свойств групп (т. е. свойств групп, 
связанных с разбиением σ множества всех простых чисел), заложенной в работах А. Н. Скибы 
[4, 5], вызвало необходимость изучения классов групп, определяемых разбиением σ. Среди под-
ходов, которые были найдены и развиты на этом пути, весьма полезными оказались некоторые 
новые аспекты теории формаций, основанные на понятии σ-локальной, или, иначе, обобщен-
но локальной, формации, впервые предложенном А.  Н. Скибой [6]. Так, в работах [6–10] изу-
чен ряд общих свойств σ-локальных формаций, а также даны их приложения при изучении ме-
та-σ-нильпотентных и σ-разрешимых классов групп, замкнутых относительно произведений 

© Сфонов В. Г., Сафонова И. Н., 2025
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заданных систем подгрупп. Отметим, что именно σ-локальные формации оказались основным 
инструментом при решении некоторых старых задач теории групп, одной из которых являлась 
задача Л. А. Шеметкова [11, с. 47, проблема 7] о расширении теории Крамера [12], о фактори-
зациях разрешимых групп на классы произвольных групп. Решение данной задачи получено 
З. Чи, А. Н. Скибой [8] методами σ-локальных формаций. Кроме того, в [9, 10] был изучен ряд 
свойств решеток кратно σ-локальных формаций. В частности, доказано, что множество nl σ  всех 
n-кратно σ-локальных формаций конечных групп является полной алгебраической модулярной 
решеткой, а также изучены некоторые свойства полугруппы всех формаций такого типа. Позже 
А. А. Царевым [13] было показано, что каждое тождество решетки всех формаций выполняется 
в решетке ,nl σ  а также что для любого неотрицательного целого числа n решетка nl σ  является 
модулярной, но не дистрибутивной. В [14] была установлена дистрибутивность решетки всех 
тотально σ-локальных формаций. Н. Н. Воробьевым, И. И. Стаселько и А. О. Ходжагулыевым 
изучены свойства прямых разложений n-кратно σ-локальных формаций [15], а также доказана  
G-отделимость решетки таких формаций [16].

Цикл работ И. Н. Сафоновой [17–25] посвящен изучению τ-замкнутых кратно σ-локальных 
формаций, в которых разработаны оригинальные методы исследования и конструирования фор-
маций такого типа и их решеток, позволившие построить теорию функторно замкнутых кратно 
σ-локальных формаций. В частности, изучить основные свойства τ-замкнутых n-кратно σ-ло-
кальных формаций [18]; получить критерии τ-замкнутости n-кратно σ-локальной формации [23] 
и n-кратной σ-локальности непустой τ-замкнутой формации [19, 25]; установить основные свой-
ства (полнота, σ-индуктивность, модулярность, алгебраичность, отделимость) решетки всех 
τ-замкнутых n-кратно σ-локальных формаций [20, 22, 24]; решить проблему Л.  А. Шеметкова 
о классификации критических формаций в классе σ-локальных формаций [17, 21]. В недавних 
работах И.  Н. Сафоновой и В.  В.  Скрундь [26–29] получено описание структурного строения 
приводимых σ-локальных формаций конечного Hσ-дефекта, а также структурного строения при-
водимых σ-локальных формаций конечной lσ-длины, изучены свойства наибольшего τ-замкнуто-
го подкласса n-кратно σ-локальной формации, доказан критерий для Hτ

σ-критических формаций 
и получено описание минимальных τ-замкнутых σ-локальных не σ-разрешимых и не σ-нильпо-
тентных формаций.

В теории классов конечных групп хорошо известен некий параллелизм результатов теории 
формаций, или корадикальных классов групп, и результатов теории радикальных классов, или, 
иначе, классов Фиттинга. В. Го, Л. Чжаном и Н. Т. Воробьевым [30] было введено понятие σ-ло-
кального класса Фиттинга, изучены основные свойства таких классов, способы их задания с по-
мощью специальных функций (функций Хартли), а также свойства радикальных произведений 
классов такого типа. В работе Н. Н. Воробьева и И. И. Стаселько [31] исследовались свойства 
решетки σ-локальных классов Фиттинга. В частности, было установлено, что решетка всех σ-ло-
кальных классов Фиттинга является индуктивной.

Отметим также, что σ-локальные формации и классы Фиттинга используются не только как 
инструмент для изучения σ-свойств групп, алгебры их σ-локальных классов, но и нашли приме-
нение в теории формальных языков в работах А. А. Царева и А. В. Кухарева [13, 32].

В настоящей работе нами исследуются свойства обобщенно локальных классов групп (фор-
маций и классов Фиттинга) при различных разбиениях σ и α множества  всех простых чисел. 
Доказаны критерии σ-локальности α-локального класса групп, изучены свойства произведений 
обобщенно локальных классов, а также их алгебр, получены необходимые и достаточные усло-
вия коммутативности σ-алгебры, порожденной σ-разрешимым σ-локальным классом.

Обобщенно локальные формации. Класс групп F называют формацией, если он замкнут 
относительно гомоморфных образов и конечных подпрямых произведений. Пусть F – непустая 
формация. Тогда для любой группы G через GF обозначают F-корадикал группы G, т.  е. наи-
меньшую нормальную подгруппу G, факторгруппа по которой принадлежит формации F.

Формация F называется (нормально) наследственной, если H ∈F  всякий раз, когда G ∈F  
и H – (нормальная) подгруппа группы G.
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Пусть F и H – некоторые классы групп. Произведение FH классов групп F и H определяется 
условием G ∈FH  тогда и только тогда, когда в G имеется такая нормальная подгруппа N, что 

/G N ∈F.  Если при этом H  – формация, то корадикальное произведение F H  классов F и H 

определяется следующим образом: = ( | ).G G ∈

HF H F
Следующая лемма описывает свойства произведений формаций групп, которые мы будем 

использовать в данной работе, как правило, не ссылаясь явно на данные утверждения.
Л е м м а  1 (см., напр., [1, гл. II; 3, гл. IV.; 33, 2.2.11]). Пусть F, H и M  – формации. Тогда 

справедливы утверждения: (1) ⊆F H FH  и ⊆ H F H,  если F непусто; (2) если формация F 
нормально наследственная, то = ,F H FH  и ⊆ F F H,  если H непусто; (3) F H  – формация;  
(4) = ( )G GF H H F  для всех ;G ∈G  (5) ( ) = ( ).   F H M F H M

Напомним некоторые понятия и обозначения теории σ-свойств групп и их классов [4–6].
Пусть = { | }i i Iσ σ ∈  – некоторое разбиение множества всех простых чисел , G – группа, F – 

класс групп. Тогда ( ) { | ( ) };i iG Gσ = σ σ ∩ π ≠ ∅ ( ) = ( ).G G∈σ ∪ σFF
Группу G называют [4, 5] σ-примарной, если G является σi-группой для некоторого i; σ-ниль-

потентной, если G  – прямое произведение σ-примарных групп; σ-разрешимой, если каждый 
главный фактор группы G является σ-примарным.

Символами σS  и σN  обозначают классы всех σ-разрешимых и σ-нильпотентных групп со-
ответственно, πG  – класс всех π-групп, где .∅ ≠ π ⊆ �

Всякая функция f вида f : σ → {формации групп} называется [6] формационной σ-функцией. 
Для любой формационной σ-функции f класс LFσ( f ) определяется следующим образом: 

 ',( ) = | = 1либо 1и / ( ) ( ) для всех ( ) ,i ii iLF f G G G G O G f G      

где ', ( )i iO Gσ σ  обозначает 'i iσ σG G -радикал группы G.
Если для некоторой формационной σ-функции f имеет место равенство = ( ),LF fσF  то класс 

F называют σ-локальным [6], а f называют σ-локальным определением F.
Если f – формационная σ-функция, то Supp( ) = { | ( ) }i if fσ ∈σ σ ≠ ∅  – носитель f.
Формационную σ-функцию f называют [6] внутренней, если ( ) ( )if LF fσσ ⊆  для всех i; пол-

ной, если ( ) = ( )i iif fσσ σG  для всех i. Полное внутреннее σ-локальное определение формации 
называют ее каноническим σ-локальным определением.

Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈  – некоторые разбиения множества . Тогда, если для 
каждого i I∈  существует = ( )j j i J∈  такое, что ,i jσ ⊆ α  пишут [34, p. 1803], что .σ ≤ α

Для классических разбиений { }1 = {2},{3},{5}, ,   = { , }π ′σ σ π π  (π  – непустое подмноже-
ство ) и { }1

1 2 1 2= { },{ }, ,{ },   ( = { , , } )n np p p p p pπ ′σ π π ⊆    имеет место 1 1 .π πσ ≤ σ ≤ σ
Те о р е м а  1. Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈  – некоторые разбиения множества всех 

простых чисел. Тогда в том и только в том случае всякая α-локальная формация является σ-ло-
кальной, когда σ ≤ α. В частности, поскольку для всякого разбиения σ множества простых чисел 
имеет место σ1 ≤ σ, то всякая σ-локальная формация является локальной.

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Допустим, что ,σ ≤ α  но всякая α-локальная фор-
мация является σ-локальной. Тогда существует такое ,i I∈  что i jσ ⊆ α  для любого .j J∈  Пусть 

kα ∈α такое, что .i kσ ∩ α ≠ ∅  Ввиду [10, пример 1.2 (iii)] формация kαG  является α-локаль-
ной. Значит, по условию теоремы формация kαG  является σ-локальной. Тогда = ( ),k LF gα σG  
где g  – некоторое σ-локальное определение формации .kαG  Не ограничивая общности, вви-
ду [35, лемма 2.4] можем считать, что формационная σ-функция g является внутренней, т.  е. 

( ) ( ) = .i kg LF gσ ασ ⊆ G  Поскольку ,i kσ ∩ α ≠ ∅  то ( )i kασ ∈σ G  и ( )ig σ ≠ ∅ по [35, лемма 2.3 (1)]. 
Так как формация iσG  наследственная, то ( ).ii i gσ σ⊆ σG G  Поэтому по [19, теорема 1.1 (ii)] имеем 

( ) ( ) = .ii i kg LF gσ σ σ α⊆ σ ⊆G G G

Отсюда .i kσ ⊆ α  Противоречие. Поэтому σ ≤ α.
Д о с т а т о ч н о с т ь. Пусть теперь σ ≤ α и = ( )LF fαF  – неединичная α-локальная формация, 

где f – некоторое внутреннее α-локальное определение формации F. Так как σ и α – разбиения 
множества  и σ ≤ α, то для любого αj имеем = .j ii jσ ⊆αα ∪ σ
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Покажем, что F является σ-локальной формацией. Пусть h  – такая формационная 
σ-функция, что ( ) = ( )i jjh fασ αG  для любого .i jσ ⊆ α  В силу [19, теорема 1.1 (ii)] име-
ем ( ) = ( ) .i jjh fασ α ⊆G F  Пусть = ( ).LF hσH  Заметим, что ( ) = { | ( )}.i i jσ σ ∈σ σ ⊆ α ∈αH F  
Действительно, если ( ),jα ∈α F  то в силу [35, лемма 2.3 (1)] ( ) .jf α ≠ ∅  Значит, ( )ih σ ≠ ∅  
для любого ( ).i jσ ⊆ α ∈α F  Поэтому ( )iσ ∈σ H  опять же по [35, лемма 2.3 (1)]. Отсюда 
{ | ( )} ( ).i i jσ ∈σ σ ⊆ α ∈α ⊆ σF H  С другой стороны, если ( ),iσ ∈σ H  то ( )ih σ ≠ ∅  ввиду [35, лем-
ма 2.3 (1)]. Значит, ( )jf α ≠ ∅  и в силу [35, лемма 2.3(1)] ( )jα ∈α F  для любого αj такого, что 

.i jσ ⊆ α  Следовательно, имеет место включение ( ) { | ( )}.i i jσ ⊆ σ ∈σ σ ⊆ α ∈αH F  Таким обра-
зом, ( ) = { | ( )}.i i jσ σ ∈σ σ ⊆ α ∈αH F

Покажем теперь, что F = H. Допустим, что \ ,≠ ∅F H  и пусть G – группа минимального по-
рядка из F \ H. Тогда G – монолитическая группа с монолитом = .P G H

Рассмотрим прежде случай, когда P – α-примарная группа. Тогда P – αj-группа для некоторо-
го ( )jα ∈α F  и , ( ) = ( ).j j jO G O Gα α α′  Поскольку ,G ∈F  то 

,/ ( ) = / ( ) ( ) ( ) = ( )j j ij j j jG O G G O G f f hα α α α′ ∈ α ⊆ α σG

для всякого .i jσ ⊆ α  Следовательно, ( )iG h∈ σ  для всякого ( ).i Pσ ∈σ  Поэтому ,/ ( ) ( ).ii iG O G hσ σ′ ∈ σ 
,/ ( ) ( ).ii iG O G hσ σ′ ∈ σ  Но = .P G H  Последнее противоречит [19, лемма 3.4]. Значит, группа P – не α-примарна. 

Тогда , ( ) = 1j jO Gα α′  для любого ( ).j Pα ∈α  Следовательно, ,/ ( ) ( ) ( ) = ( )j j ij j jG G O G f f hα α α′ ∈ α ⊆ α σG  
,/ ( ) ( ) ( ) = ( )j j ij j jG G O G f f hα α α′ ∈ α ⊆ α σG для всякого .i jσ ⊆ α  Поэтому ( )iG h∈ σ  для всех ( ).i Pσ ∈σ  Но тогда 

,/ ( ) ( )ii iG O G hσ σ′ ∈ σ  для всякого ( ),i Pσ ∈σ  что невозможно в силу [19, лемма 3.4]. Полученное 
противоречие показывает, что данный случай также невозможен. Поэтому .⊆F H

Пусть теперь ⊆H F  и A – группа минимального порядка из H \ F. Тогда A – монолитическая 
группа с монолитом = .R AF  

Допустим, что R – σ-примарная группа. Тогда R – σi-группа для некоторого i и, следователь-
но, ,= ( ) = ( )i i iR O A O Aσ σ σ′ . Поскольку ,A∈H  имеем 

,/ ( ) = / ( ) ( ) = ( ),i ji i i jA O A A O A h fσ σ σ α′ ∈ σ αG

где ( ).i j Rσ ⊆ α ∈α  Значит, ( )( ) = ( ) ( ) = ( ) ,j j ji j i j jA f f fσ α σ α α∈ α α α ⊆G G G G G F  что проти-
воречит выбору A. Следовательно, R – не σ-примарная группа. Тогда , ( ) = 1i iO Aσ σ′  для любого 

( ).i Rσ ∈σ  Поэтому ,/ ( ) ( ) = ( ) .i ji i jA A O A h fσ σ α′ ∈ σ α ⊆G F  И мы снова получаем противоре-
чие с выбором группы A. Значит, ⊆H F,  и поэтому H = F.

Вторая часть утверждения теоремы является следствием ее первой части. Теорема доказана.
Те о р е м а  2. Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈  – некоторые разбиения множества , 

= ( ),LF tαF  где t – внутреннее α-локальное определение F. Тогда:
(1) если σ ≤ α, то F – σ-локальна и = ( ),LF fσF  где f – каноническое σ-локальное определение 

формации F, при этом ( ) = ( )i jjf tασ αG  для любого ;i jσ ⊆ α
(2) если ,σ ≤ α  но для всякого ( )iσ ∈σ F  найдется = ( )j j i J∈  такое, что ,i jσ ⊆ α  то фор-

мация F – σ-локальна и = ( ),LF fσF  где f – каноническое σ-локальное определение F, при этом 
( ) = ( )i jjf tασ αG  для всех ( ),   i i jσ ∈σ σ ⊆ αF  и ( ) =if σ ∅  для всех ( ).iσ ∉σ F

Д о к а з а т е л ь с т в о. (1) Пусть = ( ),LF tαF  где t – внутреннее α-локальное определение фор-
мации F. Поскольку σ ≤ α, то в силу теоремы 1 формация F является σ-локальной. Кроме того 
(см. доказательство теоремы 1), = ( ),LF fσF  где f – такое внутреннее σ-локальное определение 
F, что ( ) = ( )i jjf tασ αG  для любого .i jσ ⊆ α  Так как при этом для любого i 

( )( ) = ( ) = ( ) ( ) = ( ) = ( ),i j j j ii i j i j jf t t t fσ σ α σ α ασ α α α σG G G G G G

то f – каноническое σ-локальное определение F. Следовательно, утверждение (1) верно.
(2) Пусть ,σ ≤ α  но для всякого ( )iσ ∈σ F  найдется = ( )j j i J∈  такое, что .i jσ ⊆ α  Тогда 

( ) .σ ⊂ σF  Пусть f – такая формационная σ-функция, что ( ) = ( )i jjf tασ αG  для всех ( ),iσ ∈σ F  
i jσ ⊆ α  и ( ) =if σ ∅  для всех ( ).iσ ∉σ F  Пусть = ( ).LF fσH  Ввиду [35, лемма 2.3  (1)] имеем 
( ) = ( ).σ σH F



      Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-матэматычных навук. 2025. T. 61, № 4. С. 271–287	 275

Покажем, что H = F. Предположим вначале, что \ ,≠ ∅F H  и пусть A – группа минимального 
порядка из F \ H. Тогда A – монолитическая группа с монолитом = .N AH

Допустим, что N  – α-примарная группа. Тогда N  – αj-группа для некоторого ( )jα ∈α F  
и , ( ) = ( ).j j jO A O Aα α α′  Поскольку ,A∈F  то ,/ ( ) = / ( ) ( ) ( ) = ( )j j ij j j jA O A A O A t t fα α α α′ ∈ α ⊆ α σG  
для всякого .i jσ ⊆ α  Значит, ( )iA f∈ σ  для всякого ( ).i Nσ ∈σ  Поэтому ,/ ( ) ( ).ii iA O A fσ σ′ ∈ σ  
Получили противоречие с [19, лемма 3.4], поскольку = .N AH  Следовательно, N – не α-примар-
ная группа. Поэтому , ( ) = 1j jO Aα α′  для любого ( ).j Nα ∈α  Но тогда имеем 

,/ ( ) ( ) ( ) = ( )j j ij j jA A O A t t fα α α′ ∈ α ⊆ α σG

для всякого .i jσ ⊆ α  Следовательно, ( )iA f∈ σ  для всех ( ),i Nσ ∈σ  и мы снова получаем, что 
,/ ( ) ( )ii iA O A fσ σ′ ∈ σ  для всякого ( ).i Nσ ∈σ  Последнее противоречит [19, лемма 3.4]. Поэтому 

данный случай невозможен и .⊆F H
Пусть теперь ,⊆H F и B – группа минимального порядка из H \ F. Тогда B – монолитическая 

группа с монолитом = .R BF  Допустим, что R – σ-примарная группа. Тогда R – σi-группа для не-
которого i, и, следовательно, ,= ( ) = ( ).i i iR O B O Bσ σ σ′  Поскольку ,B ∈H  то 

,/ ( ) = / ( ) ( ) = ( ),i ji i i jB O B B O B f tσ σ σ α′ ∈ σ αG

где ( ).i j Rσ ⊆ α ∈α  Значит, ( )( ) = ( ) ( ) = ( ) ,j j ji j i j jB t t tσ α σ α α∈ α α α ⊆G G G G G F  что противо-
речит выбору группы B. Следовательно, группа R – не σ-примарна. Тогда , ( ) = 1i iO Bσ σ′  для лю-
бого ( ).i Rσ ∈σ  Поэтому ,/ ( ) ( ) = ( ) .i ji i jB B O B f tσ σ α′ ∈ σ α ⊆G F  И мы снова получаем проти-
воречие с выбором группы B. Значит, ⊆H F  и = .H F  Поскольку при этом для любого i 

 ( ) = ( ) = ( ) ( ) = ( ) = ( ),i j j j ii i j i j jf t t t f         G G G G G G

то f – каноническое σ-локальное определение F и, следовательно, утверждение (2) теоремы вер-
но. Теорема доказана.

Те о р е м а  3. Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈  – некоторые разбиения множества  
и пусть = ( ),   = ( ),LF m LF hα σM H  где m – внутреннее α-локальное определение формаций M, h – 
внутреннее σ-локальное определение H. Тогда, если σ ≤ α, произведения = F M H  и = L H M  – 
σ-локальные формации и = ( ),   = ( ),LF f LF lσ σF L  где f и l – такие внутренние формационные 
σ-функции, что 

( ) ,    если ( ) и ,
( ) =

( ),   если \ ( ),  
( ) ,    если ( ),

( ) = ( ),   если \ ( ) и . 

j i i jj
i

i i

i i
i

j i i jj

m
f

h
h

l m





      
   
          

G H M

M

M H

G H





Д о к а з а т е л ь с т в о. Пусть σ  ≤  α. Ввиду теоремы 2 формация M является σ-локаль-
ной и = ( ),LF tσM  где t  – каноническое σ-локальное определение формации M, при 
этом ( ) = ( )i jjt mασ αG  для любого .i jσ ⊆ α  Применяя теперь [10, теорема 1.14], имеем 

= ( ),LF fσM H  = ( ),LF lσH M  где f и l – такие формационные σ-функции, что 

j( ) = ( ) ,   если ( ) и ,
( ) =

( ),    если \ ( ),  
( ) ,    ( ) ,

( ) ( ) ( ),    если \ ( )  . 

i j i ij
i

i i

i i
i

i j i i jj

t m
f

h
h h

l t m и





       
   
            

H G H M

M

M M

G H

 

 

Поскольку формационные σ-функции h и t являются внутренними, то ( ) = ( )i if tσ σ ⊆ H M H 
при всех ( )iσ ∈σ M  и ,i jσ ⊆ α  а также ( ) = ( )i if hσ σ ⊆ ⊆ H M H  при всех \ ( ).iσ ∈σ σ M  
Аналогично, ( ) = ( )i il hσ σ ⊆ M H M  при всех ( ),iσ ∈σ H  а также ( ) = ( )i il tσ σ ⊆ ⊆ M H M  
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при всех \ ( )iσ ∈σ σ H  и .i jσ ⊆ α  Поэтому внутренними являются и формационные σ-функции f 
и l. Таким образом, = ( )LF fσF  и = ( ),LF lσL  где f и l – внутренние формационные σ-функции, 
удовлетворяющие условию теоремы. Теорема доказана.

Частичные σ-алгебры формаций. Пусть θ – полная решетка формаций, σ – некоторое раз-
биение множества простых чисел , ( ) = ( ).∈θσ θ ∪ σF F  Формации из θ называют θ-формациями.

Формационную σ-функцию f называют θ-значной, если ( )if σ ∈θ  для всех Supp( ).i fσ ∈
Через θσ будем обозначать множество всех σ-локальных формаций, которые имеют хотя бы од-

но θ-значное σ-локальное определение, т. е. = { = ( ) | ( )  для любого Supp( )}.i iLF f f f     F
По определению формация всех единичных групп (1) = ( ),LF nσ  где ( ) =in σ ∅  для всех i, 

принадлежит θσ.
Следуя [2, с. 12], полную решетку формаций θ будем называть: 1) частичной σ-алгеброй форма-

ций, если iσ ∈θG  для любого ( )iσ ∈σ θ  и для всякой формации ∈θF  имеет место ;iσ ∈θG F  2) σ-ал-
геброй формаций, если θ – такая частичная σ-алгебра формаций, что ∈θF H  для любых .∈θF,H

П р е д л о ж е н и е  1. Пусть θ – такая полная решетка формаций, что .σθ ⊆ θ  Тогда: (1) если 
θ  – частичная σ-алгебра формаций, то θσ также является частичной σ-алгеброй формаций; 
(2) если θ – σ-алгебра формаций, то θσ также является σ-алгеброй формаций. 

Д о к а з а т е л ь с т в о. (1) Поскольку θ – решетка формаций, то в силу [10, лемма 2.2] пересе-
чение любой совокупности формаций из θσ снова принадлежит θσ. Пусть F – такая θ-формация, 
что для любой θ-формации M имеет место ⊆M F.  И пусть f  – такая формационная σ-функ-
ция, что ( ) =if σ F  для любого .iσ ∈σ  Тогда ( ) .LF fσ σ∈θ  Пусть H – произвольная θσ-формация. 
Тогда, очевидно, ( ).LF fσ⊆H  Следовательно, θσ – полная решетка формаций.

Пусть теперь iσ ∈σ и = ( ),LF fσF  где f  – θ-значное σ-локальное определение формации F. 
Поскольку θ – решетка формаций и σθ ⊆ θ по условию, то ввиду [35, лемма 2.4] мы можем считать, 
что f – внутренняя формационная σ-функция. Покажем, что = .iσ σ∈θH G F  Действительно, ввиду 
[21, лемма 2.1] имеем = ( ),i LF mσ σG  где m – такое σ-локальное определение ,iσG  что ( ) = (1)im σ  
и ( ) =jm σ ∅ для любого j ≠  i. Так как (1) ,∈θ  то m является θ-значным σ-локальным определе-
нием .iσG  По [10, теорема 1.14] имеем = ( ),LF hσH  где h – такое σ-локальное определение H, что 

( ) = ( ) = (1) =i ih m σσ σ ∈θ ⊆ θF F F  и ( ) = ( )j jh fσ σ ∈θ для любого ( ) \{ }.j iσ ∈σ σF  Отсюда 
= .iσ σ∈θH G F  Таким образом, θσ является частичной σ-алгеброй формаций, т. е. имеет место (1).

(2) Ввиду утверждения (1) достаточно доказать, что для любых формаций M и F из θσ их 
произведение M F  принадлежит θσ. Пусть = ( )LF mσM  и = ( ),LF fσF  где m и f  – внутрен-
ние θ-значные σ-локальные определения формаций M и F соответственно, = .H M F  Тогда по 
[10, теорема 1.14] имеем = ( ),LF hσH  где h  – такое σ-локальное определение формации H, что 

( ) = ( )i ih mσ σ F  для любого ( )iσ ∈σ M  и ( ) = ( )i ih fσ σ  для любого ( ) \ ( ).iσ ∈σ σF M  Так как 
по условию ,σθ ⊆ θ  то ( ) = ( ) .i ih mσ σ ∈θF  Значит, h – θ-значное σ-локальное определение фор-
мации H. Следовательно, .σ∈θH  Поэтому θσ  – σ-алгебра формаций и утверждение (2) верно. 
Предложение доказано.

С л е д с т в и е  1 . При всяком разбиении σ множества  полная решетка lσ всех σ-локальных 
формаций является σ-алгеброй формаций.

Пусть σ – некоторое разбиение множества , θ – σ-алгебра формаций, .σ∈θM  Через ( )σθ M  
будем обозначать множество всех θσ-формаций из M. В частности, если θ – решетка всех фор-
маций, то вместо символа ( )σθ M  будем использовать символ ( ),Aσ M  т. е. ( )Aσ M  – множество 
всех σ-локальных формаций из .lσ∈M

Напомним (см. [36] и [1, с. 57]), что умножение формаций в M определяется следующим об-
разом: = .∩





M
F H F H M

Л е м м а  2. Пусть σ – некоторое разбиение множества , θ – σ-алгебра формаций, .σ∈θM  
Тогда справедливы следующие утверждения: (1) ( )σθ M  является σ-алгеброй формаций; (2) если 

= ( )LF fσF  и = ( )LF hσH  – формации из ( ),σθ M  где f и h – некоторые внутренние θ-значные
σ-локальные определения формаций F и H соответственно, то = ( ),LF lσ

M
F H  где l – такая вну-

тренняя θ-значная формационная σ-функция, что 
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 ( ) ( ),     если ( ),
( ) =

 ( ) ( ),      если \ ( ).
j i j

i
j i j

f m
l

h m

      
     

H F

F



Д о к а з а т е л ь с т в о. (1) Поскольку формация iσG  является наследственной, то с учетом [19, 
теорема 1.1] iσ ⊆G M  для любого ( ).iσ ∈σ M  Так как при этом формация iσG  σ-локальна [10, при-
мер 1.2 (iii)] и = ( ),i LF gσ σG  где ( ) =i ig σσ ∈θG  и ( ) =kg σ ∅  для любого k ≠ j, то ( ).iσ σ∈θG M  
Ввиду предложения 1(2) θσ является σ-алгеброй формаций. Поэтому для любой формации 

( )σ∈θL M  имеем ,iσ σ∈θG L  и, следовательно, = = ( ).i i iσ σ σ σ∩ ∩ ∈θ




M
G L G L M G L M M

Пусть = ( )LF fσF  и = ( )LF hσH  – формации из ( ),σθ M  где f и h – некоторые внутренние 
θ-значные σ-локальные определения формаций F и H соответственно. Тогда в силу [10, теоре-
ма 1.14] имеем = ( ),LF xσF H  где x – такая формационная σ-функция, что 

( ) ,     если ( ),
( ) =

( ),     если \ ( ).
j j

i
j j

f
x

h
       

H F

F



Заметим, что x является внутренним θ-значным σ-локальным определением формации .F H  
Пусть m  – некоторое внутреннее θ-значное σ-локальное определение формации M. И пусть 

= ( ) .LF xσ ∩L M  В силу [35, лемма 2.2] имеем = ( ),LF lσL  где ( ) = ( ) ( )i i il x mσ σ ∩ σ  для любого j.  
Значит, l – внутреннее θ-значное σ-локальное определение формации L, при этом 

 ( ) ( ),     если ( ),
( ) =

 ( ) ( ),      если \ ( ).
j i j

i
j i j

f m
l

h m

      
     

H F

F



Следовательно, = = ( ).σ∩ ∈θ




M
L F H M F H M  Таким образом, ( )σθ M  – σ-алгебра.

(2) См. доказательство (1). Лемма доказана.
Те о р е м а  4. Пусть σ и α – некоторые разбиения множества , θ – α-алгебра формаций, 

.α∈θM  Тогда, если θ – σ-алгебра формаций и σ ≤ α, то ( )αθ M  – σ-подалгебра в ( ).σθ M
Д о к а з а т е л ь с т в о. Пусть = ( )s sLF fαF  – формация из ( ),αθ M  где fs – некоторое внутрен-

нее θ-значное α-локальное определение формации ,   = 1,2.s sF  По теореме 2 (1) формация Fs яв-
ляется σ-локальной и = ( ),s sLF tσF  где ts – каноническое σ-локальное определение Fs, при этом 

( ) = ( )s i s jjt fασ αG  для любого .i jσ ⊆ α  Поскольку по условию теоремы θ – α-алгебра форма-
ций, то произведение ( )s jj fα αG  является θ-формацией. Значит, t – θ-значное σ-локальное опре-
деление формации .sF  Следовательно, ( ).s σ∈θF M  Поэтому ( ) ( ).α σθ ⊆ θM M

В силу леммы 2 (2) имеем 1 2 = ( ),LF xσ

M
F F  где x – такая внутренняя θ-значная формационная 

σ-функция, что 
 1

2

( ) ( ),     если ( ),
( ) =

( ) ( ),     если \ ( ). 
i i i

i
i i i

t m
x

t m
      

     

H F

F



Поэтому 1 2 ( )σ∈θ


M
F F M  и ( )αθ M  – σ-подалгебра в ( ).σθ M  Теорема доказана.

С л е д с т в и е  2. Пусть σ и α – некоторые разбиения множества . Тогда, если σ ≤ α, полу-
группа ( )Aα M  всех α-локальных формаций является подполугруппой полугруппы ( )Aσ M  всех 
σ-локальных формаций.

Напомним понятие прямого разложения класса групп (см. [2, с. 171]). Пусть { | }j j J∈F  – не-
который непустой набор подклассов j ⊆F F  такой, что 1 2 = (1)j j∩F F  для любого j1 ≠  j2 из J. 
Если, кроме того, каждая группа G ∈F  имеет вид 1= ,j jtG A A× ×  где 1 1 , ,j j j jt tA A∈ ∈F F  
для некоторого 1, , ,tj j J∈

 то пишут, что = j J j∈⊕F F  (в частности, 1= ,t⊕ ⊕F F F  если 
= {1, , }J t ).

Л е м м а  3. Пусть = ( ),   = ( ).LF fσ Π σF F  Тогда =σ Π∩F N N  и = { | ( ) }.i ifΠ σ σ ≠ ∅
Д о к а з а т е л ь с т в о. Ввиду [35, лемма 2.3(1)] имеем = { | ( ) }.i ifΠ σ σ ≠ ∅  Поскольку форма-

ция iσG  является наследственной, то ( ( ) )ii i fσ σ⊆ σ ∩G G F  и по [35, лемма 2.3 (5)] имеем 
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( ( ) )ii i fσ σ⊆ σ ∩ ⊆G G F F

для всякого .iσ ∈Π  Поэтому = .iiΠ σ ∈Π⊕ ⊆N G F  С другой стороны, поскольку ,σ Π∩ ⊆F N N  
то мы имеем искомое равенство = .σ Π∩F N N  Лемма доказана.

Те о р е м а  5. Пусть θ – σ-алгебра формаций, σ∈θM  – некоторая σ-разрешимая формация. 
Тогда и только тогда σ-алгебра ( )σθ M  является коммутативной полугруппой, когда M σ-ниль-
потентна.

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Пусть выполняются условия теоремы и σ-алге-
бра ( )σθ M  является коммутативной полугруппой. Покажем, что в этом случае формация M 
σ-нильпотентна. Действительно, если ,σ⊆M N  то по [26, следствие 3.9] в формацию M вхо-
дит по меньшей мере одна минимальная σ-локальная не σ-нильпотентная подформация L. 
В силу [21, следствие 2.9] имеем = form( )l GσL  и выполняется одно из следующих условий: 
1) G – простая не σ-примарная группа; 2) = ,G P K  где = ( )GP C P  – p-группа, ,ip ∈σ  а K – 
простая σj-группа, j ≠ i. Поскольку формация ,⊆L M  то L – σ-разрешима. Следовательно, груп-
па G удовлетворяет условию 2) и ( ) = { , } ( ).i jσ σ σ ⊆ σL M  Значит, iσG  и jσG   – σ-локальные 
подформации из M в силу [10, пример 1.2  (iii)] и, очевидно, , ( ).i jσ σ σ∈θG G M  Значит, имеет 
место = .i j j iσ σ σ σ 

M M
G G G G  Поскольку = ,i j i jσ σ σ σ⊆ ∩



M
L G G M G G  то .j iσ σ⊆



M
L G G  

Следовательно, .j iσ σ⊆L G G  Поэтому группа G принадлежит формации .j iσ σG G  Значит, 
.i

jG σ
σ∈

G
G  Из описания группы G следует, что =iG GσG  и .jG σ∉G  Полученное противоре-

чие показывает, что .σ⊆M N
Д о с т а т о ч н о с т ь. Пусть теперь формация σ⊆M N  и пусть F и H – некоторые σ-локаль-

ные подформации из ( ).σθ M  Полугруппой σ-алгебра ( )σθ M  является в силу [10, теорема 1.13)]. 
Покажем, что ( )σθ M  коммутативна. Действительно, ввиду леммы 3 имеем 

( ) ( )= и = .      F H H FF H N N H F N N 

Следовательно, поскольку σ∩ ⊆F H M N  и ,σ∩ ⊆H F M N  то 

( )= = = ( ) = =σ σ σ ∪∩ ∩ ∩ ∩ ∩ ∩


   F H
M

F H F H M F H M N F H N M N M
 

( )= = ( ) = = = .σ ∪ σ σ∩ ∩ ∩ ∩ ∩ ∩


  H F
M

N M H F N M H F M N H F M H F

Таким образом, =
 

M M
F H H F  и ( )σθ M  – коммутативная полугруппа. Теорема доказана.

С л е д с т в и е  3 [37, теорема 3.2]. Пусть M – разрешимая локальная формация. Тогда и толь-
ко тогда ( )lA M  является коммутативной полугруппой, когда M нильпотентна.

Обобщенно локальные классы Фиттинга. Напомним, что класс групп H называется клас-
сом Фиттинга, если он замкнут относительно взятия нормальных подгрупп и произведения 
нормальных H-подгрупп. Для непустого класса Фиттинга H каждая группа G имеет наиболь-
шую нормальную H-подгруппу GH, которая называется H-радикалом группы G.

Пусть F – класс Фиттинга и H – класс групп. Тогда радикальное произведение ◊F H  классов F 
и H определяется следующим образом: = ( | / ).G G G◊ ∈FF H H

Свойства радикальных произведений классов групп описывает лемма 4. Используя их в дан-
ной работе, мы, как правило, не будем явно ссылаться на утверждения данной леммы.

Л е м м а  4 ([3, гл. IX, 1.12; 33, предложение 2.2.11]). Пусть F, H и M – классы Фиттинга. 
Тогда справедливы утверждения: (1) ◊ ⊆F H FH  и ⊆ ◊F F H , если H непусто; (2) если класс H – 
гомоморф, то =◊F H FH  и ,⊆ ◊H F H  если F непусто; (3) ◊F H  – класс Фиттинга; (4) для всех 

,G ∈G  H-радикал группы /G GF  равен / ;G G◊F H F  (5) ( ) = ( ).◊ ◊ ◊ ◊F H M F H M
Напомним [30], что всякую функцию f вида f : σ → {классы Фиттинга} называют σ-функцией 

Хартли, или Hσ-функцией. Для любой Hσ-функции f класс LRσ( f ) определяют следующим обра-
зом: ( ) = ( | = 1либо 1и ( ) для всех ( )),i i i iLR f G G G G f G  

     
G G  где i iG σ σ ′G G  – i iσ σ ′G G - 

корадикал группы G.
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Пусть F – класс Фиттинга. Если найдется такая Hσ-функция f, что = ( ),LR fσF  то говорят 
[30], что класс Фиттинга F является σ-локальным, а f – σ-локальное задание класса F.

Hσ-функцию h называют [30, определение 1.3] внутренней, если ( ) ( )ih LR hσσ ⊆  для всех i; 
полной, если ( ) = ( )i i ih h σσ σ G  для всех i; полной внутренней, если h является полной и внутрен-
ней Hσ-функцией.

Доказательство следующей леммы осуществляется прямой проверкой.
Л е м м а  5. Пусть = ( )LR hσH  и t – такая Hσ-функция, что ( ) = ( )i it hσ σ ∩ H  для всех i. Тогда 

t – внутреннее σ-локальное задание класса Фиттинга H.
Л е м м а  6. Пусть = ( )LR hσH  – σ-локальный класс Фиттинга, G – группа и .G G≠H  Тогда 

найдется такое ( / ),i G Gσ ∈σ H  что ( ).i i iG hσ σ ′ ∉ σ
G G

Д о к а з а т е л ь с т в о. Пусть ( )i Gσ ∈σ  такое, что ( )i i iG hσ σ ′ ∉ σ
G G  и = .H GH  Тогда, посколь-

ку ,H ∈H  то ( )j j
jH hσ σ ′ ∈ σ

G G
 при всяком ( ).j Hσ ∈σ  Пусть ( ) \ ( / ).j H G Hσ ∈σ σ  Тогда в си-

лу [30, лемма 2.9] имеет место = .j j j jG Hσ σ σ σ′ ′G G G G
 Значит, ( )j j

jG hσ σ ′ ∈ σ
G G

 для любого 
( ) \ ( / ).j H G Hσ ∈σ σ  Поэтому ( / ).i G Hσ ∈σ  Лемма доказана.

Те о р е м а  6. Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈  – некоторые разбиения множества . 
Тогда в том и только в том случае всякий α-локальный класс Фиттинга является σ-локальным, 
когда σ ≤ α. В частности, поскольку для всякого разбиения σ имеет место σ1 ≤ σ, то любой σ-ло-
кальный класс Фиттинга является локальным.

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Допустим, что ,σ ≤ α  но всякий α-локальный 
класс Фиттинга является σ-локальным. Тогда найдется такое ,i I∈  что i jσ ⊆ α  для любого .j J∈  
Пусть kα ∈α такое, что .i kσ ∩ α ≠ ∅  Ввиду [30, пример 1.2] класс Фиттинга kαG  является α-ло-
кальным. Поэтому по условию теоремы класс Фиттинга kαG  является также и σ-локальным. 
Тогда = ( ),k LR gα σG  где g  – некоторое σ-локальное задание класса Фиттинга .kαG  Учитывая 
лемму 5, мы можем считать, что Hσ-функция g является внутренней, т. е. ( ) ( ) = .i kg LR gσ ασ ⊆ G  
Поскольку ,i kσ ∩ α ≠ ∅  то ( )i kασ ∈σ G  и ( )ig σ ≠ ∅  по [30, лемма  3.1  (a)]. Так как класс 
Фиттинга iσG  является наследственным, то ( ) .ii igσ σ⊆ σG G  Тогда, в силу [30, лемма 3.2], имеем 

( ) ( ) = .ii i kg LR gσ σ σ α⊆ σ ⊆G G G

Отсюда .i kσ ⊆ α  Противоречие. Следовательно, σ ≤ α.
Д о с т а т о ч н о с т ь. Пусть σ ≤ α и = ( )LR fαF  – неединичный α-локальный класс Фиттинга, 

где f – некоторое внутреннее α-локальное задание F. Покажем, что класс Фиттинга F σ-локален. 
Пусть h – такая Hσ-функция, что ( ) = ( )i j jh f ασ α G  для любого .i jσ ⊆ α  Ввиду [30, лемма 3.2] 
имеем ( ) = ( ) .i j jh f ασ α ⊆G F  Так как σ и α – разбиения множества  и σ ≤ α, то для любого αj 
имеем = .j ii jσ ⊆αα ∪ σ

Пусть = ( ).LR hσH  Заметим, что ( ) = { | ( )}.i i jσ σ ∈σ σ ⊆ α ∈αH F  Действительно, если 
( ),jα ∈α F  то в силу [30, лемма 3.1 (a)] имеем ( ) .jf α ≠ ∅  Следовательно, ( )ih σ ≠ ∅  для любого 

( ).i jσ ⊆ α ∈α F  Тогда ( )iσ ∈σ H  по [30, лемма 3.1 (a)]. Значит, { | ( )} ( ).i i jσ ∈σ σ ⊆ α ∈α ⊆ σF H  
Обратно, если ( ),iσ ∈σ H  то, применяя [30, лемма 3.1  (a)], имеем ( ) .ih σ ≠ ∅  Следовательно, 

( )jf α ≠ ∅  для всякого αj такого, что .i jσ ⊆ α  Тогда ( )jα ∈α F  в силу [30, лемма 3.1 (a)]. Поэтому 
( ) { | ( )}.i i jσ ⊆ σ ∈σ σ ⊆ α ∈αH F  Таким образом, ( ) = { | ( )}.i i jσ σ ∈σ σ ⊆ α ∈αH F

Докажем, что = .F H  Допустим, что \ ≠ ∅F H  и пусть G – группа минимального порядка из 
F \ H. Тогда G – комонолитическая группа с комонолитом = .P GH

Пусть G/P  – α-примарная группа. Тогда G/P  – αj-группа для некоторого ( )jα ∈α F  

и = .j j jG Gα α α′G G G
 Поскольку ,G ∈F  то = ( ) ( ) = ( )j j j

j j ijG G f f hα α α ′
α∈ α ⊆ α σ

G G G
G  для вся-

кого .i jσ ⊆ α  Значит, ( )iG h∈ σ  для всякого ( / ).i G Pσ ∈σ  Поэтому ( ).i i iG hσ σ ′ ∈ σ
G G  Но = .P GH  

Последнее противоречит лемме 6. Значит, группа G/P  – не α-примарна. Тогда =j jG Gα α ′G G
 

для любого ( / ).j G Pα ∈α  Следовательно, = ( ) ( ) = ( )j j
j j ijG G f f hα α ′

α∈ α ⊆ α σ
G G

G  для всяко-
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го .i jσ ⊆ α  Поэтому ( )iG h∈ σ  для всех ( / ).i G Pσ ∈σ  Но тогда ( )i i iG hσ σ ′ ∈ σ
G G  для всякого 

( / ),i G Pσ ∈σ  и мы снова получаем противоречие с леммой 6. Поэтому .⊆F H
Предположим теперь ⊆H F  и A  – группа минимального порядка из H \ F. Тогда A  – ко-

монолитическая группа с комонолитом = .R AF  Допустим, что A/R  – σ-примарная груп-
па. Тогда A/R  – σi-группа для некоторого i и, следовательно, = = .i i iR A Aσ σ σ ′G G G  Поскольку 

,A∈H  то = ( ) = ( ) ,i i i i j jA A h fσ σ σ ′
α∈ σ α

G G G
G  где ( / ).i j A Rσ ⊆ α ∈α  Следовательно, 

( )( ) = ( )( ) = ( ) ,j j jj i j i jA f f fα σ α σ α∈ α α α ⊆G G G G G F  что противоречит выбору A. Зна
чит, A/R  – не σ-примарная группа. Тогда =i iA Aσ σ ′G G  для любого ( / ).i A Rσ ∈σ  Поэтому 

= ( ) = ( ) .i i i j jA A h fσ σ ′
α∈ σ α ⊆

G G
G F  И мы снова получаем противоречие с выбором группы A. 

Поэтому ⊆H F и H = F.
Вторая часть утверждения теоремы является следствием первой ее части. Теорема доказана.
Те о р е м а  7. Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈  – некоторые разбиения , = ( ),LR tαF  

где t – внутреннее α-локальное задание F. Тогда: (1) если σ ≤ α, то класс Фиттинга F – σ-локален 
и = ( ),LR fσF  где f – полное внутреннее σ-локальное задание F, при этом ( ) = ( )i j jf t ασ α G  для 
любого ;i jσ ⊆ α  (2) если ,σ ≤ α  но для всякого ( )iσ ∈σ F  найдется = ( )j j i J∈  такое, что ,i jσ ⊆ α  
то класс Фиттинга F – σ-локален и = ( ),LR fσF  где f – полное внутреннее σ-локальное зада-
ние F, при этом ( ) = ( )i j jf t ασ α G  для всех ( ),   i i jσ ∈σ σ ⊆ αF  и ( ) =if σ ∅  для всех ( ).iσ ∉σ F

Д о к а з а т е л ь с т в о. (1) Пусть = ( ),LR tαF  где t  – внутреннее α-локальное задание класса 
Фиттинга F. Поскольку σ  ≤  α, то в силу теоремы 6 класс Фиттинга F является σ-локальным. 
Кроме того (см. доказательство теоремы 6), = ( ),LR fσF  где f – такая внутренняя Hσ-функция, 
что ( ) = ( )i j jf t ασ α G  для любого .i jσ ⊆ α  Так как при этом для любого i 

( )( ) = ( ) = ( )( ) = ( ) = ( ),i j j j ii j i j i jf t t t fσ α σ α σ ασ α α α σG G G G G G

то f – полное внутреннее σ-локальное задание F. Значит, утверждение (1) верно.
(2) Пусть ,σ ≤ α  но для всякого ( )iσ ∈σ F  найдется = ( )j j i J∈  такое, что .i jσ ⊆ α  Тогда 

( ) .σ ⊂ σF  Пусть f  – такая Hσ-функция, что ( ) = ( )i j jf t ασ α G  для всех ( ),   i i jσ ∈σ σ ⊆ αF  
и ( ) =if σ ∅  для всех ( ).iσ ∉σ F  Пусть = ( ).LR fσH  Ввиду [30, лемма 3.1 (a)] имеем ( ) = ( ).σ σH F

Покажем, что = .H F  Предположим вначале, что \ ≠ ∅F H  и пусть A – группа минимального 
порядка из \ .F H  Тогда A – комонолитическая группа с комонолитом = .N AH

Допустим, что A/N  – α-примарная группа. Тогда A/N  – αj-группа для некоторого ( )jα ∈α F  

и = .j j jA Aα α α′G G G
 Поскольку ,A∈F  то = ( ) ( ) = ( )j j j

j j ijA A t t fα α α ′
α∈ α ⊆ α σ

G G G
G  для всяко-

го .i jσ ⊆ α  Значит, ( )iA f∈ σ  для всякого ( / ).i A Nσ ∈σ  Поэтому ( ).i i iA fσ σ ′ ∈ σ
G G  Но посколь-

ку = ,N AH  то последнее противоречит лемме 6. Следовательно, A/N – не α-примарная группа. 

Поэтому =j jA Aα α ′G G
 для любого ( / ).j A Nα ∈α  Значит, 

= ( ) ( ) = ( )j j
j j ijA A t t fα α ′

α∈ α ⊆ α σ
G G

G

для всякого .i jσ ⊆ α  Поэтому ( )iA f∈ σ  для всех ( / ),i A Nσ ∈σ  и мы снова получаем, что 
( )i i iA fσ σ ′ ∈ σ

G G  для всякого ( / ).i A Nσ ∈σ  Последнее противоречит лемме 6. Поэтому данный 
случай невозможен и .⊆F H

Пусть теперь ⊆H F  и B – группа минимального порядка из H \ F. Тогда B – комонолити-
ческая группа с комонолитом = .R BF  Допустим, что B/R  – σ-примарная группа. Тогда B/R  – 
σi-группа для некоторого i и, следовательно, = = .i i iR B Bσ σ σ ′G G G  Поскольку ,B ∈H  то 

= ( ) = ( ) ,i i i i j jB B f tσ σ σ ′
α∈ σ α

G G G
G

где ( / ).i j B Rσ ⊆ α ∈α  Значит, ( )( ) = ( )( ) = ( ) ,j j jj i j i jB t t tα σ α σ α∈ α α α ⊆G G G G G F  что проти-
воречит выбору группы B. Следовательно, группа B/R – не σ-примарна. Тогда =i iB Bσ σ ′G G  для 
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любого ( / ).i B Rσ ∈σ  Поэтому = ( ) = ( ) .i i i j jB B f tσ σ ′
α∈ σ α ⊆

G G
G F  И мы снова получаем про-

тиворечие с выбором группы B. Значит, ⊆H F  и H = F. Поскольку при этом для любого i 

( )( ) = ( ) = ( )( ) = ( ) = ( ),i j j j ii j i j i jf t t t fσ α σ α σ ασ α α α σG G G G G G

то f – полное внутреннее σ-локальное задание F. Следовательно, утверждение (2) теоремы верно. 
Теорема доказана.

Те о р е м а  8. Пусть = { | }i i Iσ σ ∈  и = { | }j j Jα α ∈   – некоторые разбиения множества 
всех простых чисел  и пусть = ( ),   = ( ),LR x LR hα σX H  где x – внутренняя Hα-функция класса 
Фиттинга X, h – внутренняя Hσ-функция класса Фиттинга H. Тогда, если σ ≤ α, то произведения 

= ◊F X H  и = ◊M H X  являются σ-локальными классами Фиттинга и = ( ),   = ( ),LR m LR fσ σM F  
где f и m – такие внутренние Hσ-функции, что 

,

( ),    если ( ),
( ) = ( ) ,     если \ ( ) и 

( ) ,      если ( ) и ,
( ) =

( ),      если \ ( ).

i i
i

j i i jj

j i i jj
i

i i

h
f x

x
m

h





           
       
   

X H

G H

H G X

X

Д о к а з а т е л ь с т в о. Пусть σ ≤ α. Ввиду теоремы 7 (1) класс Фиттинга X является σ-локаль-
ным и = ( ),LR tσX  где t – полное внутреннее σ-локальное задание класса Фиттинга X, при этом 
( ) = ( )i j jt x ασ α G  для любого .i jσ ⊆ α  Применяя теперь [30, теорема 1.2], имеем = ( ),LR fσF  

= ( ),LR mσM  где f и m – такие Hσ-функции, что 

( ),      если ( ),
( ) = ( ) = ( ) ,      если \ ( ) и ,

( ) = ( ) ,     если ( ) и ,
( ) =

( ),      если \ ( ).

i i
i

i j i i jj

i j i i jj
i

i i

h
f t x

t x
m

h





            
         
   

X H

G H

H H G X

X

Поскольку Hσ-функции h и t являются внутренними, то, очевидно, внутренними являются 
и Hσ-функции f и m. Теорема доказана.

Частичные σ-алгебры классов Фиттинга. Пусть θ  – полная решетка классов Фиттинга 
и пусть σ – некоторое разбиение множества простых чисел . Классы Фиттинга из θ будем назы-
вать θ-классами Фиттинга.

Для всякой Hσ-функции h символ Supp(h) обозначает носитель h, т.  е. Supp(h) =
Supp( ) = { | ( ) }.i ih hσ ∈σ σ ≠ ∅  Hσ-функцию h называют θ-значной, если ( )ih σ ∈θ  для всех Supp( ).i hσ ∈

Через θσ будем обозначать множество всех σ-локальных классов Фиттинга, которые имеют 
хотя бы одно θ-значное σ-локальное задание, т. е. 

= { = ( ) | ( )  для любого Supp( )}.i iLR h h h
    H

Класс (1) всех единичных групп является σ-локальным классом Фиттинга [30, пример 1.2 (i)] 
и (1) = ( ),LR nσ  где ( ) =in σ ∅  для всех i. По определению класс (1) принадлежит θσ.

Полную решетку классов Фиттинга θ будем называть: 1) частичной σ-алгеброй классов 
Фиттинга, если iσ ∈θG  для любого ( )iσ ∈σ θ  и для любого класса Фиттинга ∈θH  имеет ме-
сто ;iσ◊ ∈θH G  2) σ-алгеброй классов Фиттинга, если θ – такая частичная σ-алгебра классов 
Фиттинга, что ◊ ∈θH X  для любых , .∈θH X

Л е м м а  7. Пусть = iσH G  – класс всех σi-групп. Тогда = ( ),LR hσH  где h – такая Hσ-функция, 
что ( ) = (1)im σ  и ( ) =jm σ ∅  для любого j ≠ i. 

Д о к а з а т е л ь с т в о  осуществляется прямой проверкой.
П р е д л о ж е н и е  2. Пусть θ – такая полная решетка классов Фиттинга, что .σθ ⊆ θ  Тогда 

имеют место утверждения: (1) если θ – частичная σ-алгебра классов Фиттинга, то θσ также 
является частичной σ-алгеброй классов Фиттинга; (2) если θ – σ-алгебра классов Фиттинга, 
то θσ также является σ-алгеброй классов Фиттинга. 



282	  Proceedings of the National Academy of Sciences of Belarus. Рhysics and Mathematics series, 2025, vol. 61, no. 4, рр. 271–287

Д о к а з а т е л ь с т в о. Поскольку θ  – решетка классов Фиттинга, то в силу [30, предложе-
ние 7.3] пересечение любой совокупности классов Фиттинга из θσ снова принадлежит θσ. Пусть 
F  – такой класс Фиттинга из θ, что для любого θ-класса Фиттинга M имеет место ⊆M F. 
И пусть f – такая Hσ-функция, что ( ) =if σ F  для любого .iσ ∈σ  Тогда ( ) .LR f σ

σ ∈θ  Пусть H – 
произвольный θσ-класс Фиттинга. Тогда, очевидно, ( ).LR fσ⊆H  Значит, θσ  – полная решетка 
классов Фиттинга.

Пусть iσ ∈σ  и .σ∈θF  Пусть = ( ),LR fσF  где f  – θ-значное σ-локальное задание класса 
Фиттинга F. Поскольку θ – решетка классов Фиттинга, то ввиду леммы 5 мы можем считать, что 
f – внутренняя Hσ-функция. Покажем, что = .i

σ
σ ∈θH FG  Действительно, ввиду леммы 7 имеем 

= ( ),i LR mσ σG  где m – такое σ-локальное задание iσG , что ( ) = (1)im σ  и ( ) =jm σ ∅  для любого 
j ≠ i. Так как (1) ,∈θ  то m является θ-значным σ-локальным заданием .iσG  По [30, теорема 1.2] 
имеем = ( ),LR hσH  где h  – такое σ-локальное задание H, что ( ) = ( ) = (1) =i ih mσ ◊ σ ◊ ∈θF F F  
и ( ) = ( )j jh fσ σ ∈θ  для любого ( ) \{ }.j iσ ∈σ σF  Отсюда = .i

σ
σ ∈θH FG  Таким образом, θσ яв-

ляется частичной σ-алгеброй формаций, т. е. имеет место утверждение (1).
(2) Ввиду утверждения (1) θσ является частичной σ-алгеброй классов Фиттинга. Пусть 
= ( )LR mσM  и = ( ),LR fσF  где m и f  – внутренние θ-значные σ-локальные задания клас-

сов Фиттинга M и F соответственно, = .◊H M F  По [30, теорема 1.14] имеем = ( ),LR hσH  где 
h – такое σ-локальное задание класса Фиттинга H, что ( ) = ( )i ih fσ ◊ σM  для любого ( )iσ ∈σ F  
и ( ) = ( )i ih mσ σ  для любого ( ) \ ( ).iσ ∈σ σM F  Так как по условию ,σθ ⊆ θ  то ( ) = ( ) .i ih fσ ◊ σ ∈θM  
Значит, h – θ-значное σ-локальное задание класса Фиттинга H. Следовательно, .σ∈θH  Поэтому 
θσ является σ-алгеброй классов Фиттинга и утверждение (2) верно. Предложение доказано.

Пусть σ – некоторое разбиение множества , θ – σ-алгебра классов Фиттинга, .σ∈θM  Через 
( )σθ M  будем обозначать множество всех θσ-классов Фиттинга из M. В частности, если θ – ре-

шетка всех классов Фиттинга, то вместо символа ( )σθ M  будем использовать символ ( ),Aσ M  
т. е. ( )Aσ M  – множество всех σ-локальных классов Фиттинга из .l σ∈M

Умножение классов Фиттинга в M определим следующим образом: =◊ ◊ ∩
M

F H F H M.

Л е м м а  8. Пусть σ – некоторое разбиение множества , θ – σ-алгебра классов Фиттинга, 
.σ∈θM  Тогда: (1) ( )σθ M  является σ-алгеброй классов Фиттинга; (2) если = ( )LR fσF  

и = ( )LR hσH  – классы Фиттинга из ( ),σθ M  где f и h – некоторые внутренние θ-значные σ-ло-
кальные задания классов Фиттинга F и H соответственно, то = ( ),LR l◊ σ

M
F H  где l  – такая 

внутренняя θ-значная Hσ-функция, что 
 ( ) ( ),     если ( ),

( ) =
( ) ( ),     если \ ( ).

i i i
j

i i i

h m
l

f m
       

     

F H

H

Д о к а з а т е л ь с т в о. (1) Поскольку для любого σi класс Фиттинга iσG  является наслед-
ственным, то ввиду [30, лемма 3.2] для любого ( )iσ ∈σ M  имеем .iσ ⊆G M  Так как при этом 
класс Фиттинга iσG  σ-локален и ввиду [30, пример 1.2 (ii)] = ( ),i LR gσ σG  где ( ) =i ig σσ ∈θG  
и ( ) =kg σ ∅  для любого k ≠ i, то ( ).i

σ
σ ∈θG M  В силу предложения 2 (2) θσ является σ-алгеброй 

классов Фиттинга. Поэтому для любого класса Фиттинга ( )σ∈θL M  имеем i
σ

σ ∈θLG  и, следо-
вательно, = = ( ).i i i

σ
◊ σ σ σ◊ ∩ ∩ ∈θ
M

L G L G M LG M M  Пусть = ( )LR fσF  и = ( )LR hσH  – классы 

Фиттинга из ( ),σθ M  где f и h – некоторые внутренние θ-значные σ-локальные задания классов 
Фиттинга F и H соответственно. Тогда в силу [30, теорема 1.2] имеем = ( ),LR xσ◊F H  где x – такая 
Hσ-функция, что 

( ),      если ( ),
( ) =

( ),     если \ ( ).
i i

i
i i

h
x

f
   

     

F H

H

Заметим, что x является внутренним θ-значным σ-локальным заданием класса Фиттинга .◊F H  
Пусть m  – некоторое внутреннее θ-значное σ-локальное задание класса Фиттинга M. И пусть 



      Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-матэматычных навук. 2025. T. 61, № 4. С. 271–287	 283

= ( ) .LR xσ ∩L M  Ввиду [30, предложение 7.3] имеем = ( ),LR lσL  где ( ) = ( ) ( )i i il x mσ σ ∩ σ  для 
любого i. Значит, l – внутреннее θ-значное σ-локальное задание класса L, при этом 

 ( ) ( ),      если ( ),
( ) =

( ) ( ),      если \ ( ).
i i i

i
i i i

h m
l

f m
       

     

F H

H

Следовательно, = = ( ).σ
◊◊ ∩ ∈θ
M

L F H M F H M  Таким образом, ( )σθ M  – σ-алгебра.

(2) См. доказательство (1). Лемма доказана.
Те о р е м а  9. Пусть σ и α  – некоторые разбиения множества , θ  – α-алгебра классов 

Фиттинга, .α∈θM  Тогда если θ – σ-алгебра классов Фиттинга и σ ≤ α, то ( )αθ M  – σ-подал-
гебра в ( ).σθ M

Д о к а з а т е л ь с т в о. Пусть = ( )s sLR fαF   – класс Фиттинга из ( ),αθ M  где fs  – некоторое 
внутреннее θ-значное α-локальное задание класса Фиттинга Fs, s = 1, 2. По теореме 2 (1) класс 
Фиттинга Fs является σ-локальным и = ( ),s sLR tσF  где ts – полное внутреннее σ-локальное за-
дание класса Фиттинга Fs, при этом ( ) = ( )s i s j jt f ασ α G  для любого .i jσ ⊆ α  Поскольку по ус-
ловию теоремы θ – α-алгебра классов Фиттинга, то произведение ( )s j jf αα G  является θ-клас-
сом Фиттинга. Значит, t  – θ-значное σ-локальное задание класса Фиттинга Fs. Следовательно, 

( ).s
σ∈θF M  Поэтому ( ) ( ).α σθ ⊆ θM M

Пусть m – некоторое внутреннее θ-значное σ-локальное задание класса Фиттинга M. В силу 
леммы 8(2) имеем 1 2 = ( ),LR x◊ σ

M
F F  где x – такая внутренняя θ-значная Hσ-функция, что 

 1 2 2

1 2

( ) ( ),      если ( ),
( ) =

( ) ( ),      если \ ( ).
i i i

i
i i i

f m
x

f m
       

     

F F

F

Поэтому 1 2 ( )σ
◊ ∈θ
M

F F M  и ( )αθ M  – σ-подалгебра в ( ).σθ M  Теорема доказана.

С л е д с т в и е  4. Пусть σ и α – некоторые разбиения множества . Тогда, если σ ≤ α, то 
полугруппа ( )Aα M  всех α-локальных классов Фиттинга является подполугруппой полугруппы 

( )Aσ M  всех σ-локальных классов Фиттинга.
Л е м м а  9. Пусть = ( ).LR hσH  Если ( )i iG hσ ∈ σ ∩

G
H  для некоторого ( ),i Gσ ∈σ  то .G ∈H

Д о к а з а т е л ь с т в о. Поскольку ,i i iσ σ σ ′⊆G G G  то .i i iG Gσ σ σ′ ⊆
G G G  Значит, ( ).i i iG hσ σ ′ ∈ σ

G G  
Далее, так как / iG G σG   – σj′-группа для любого j  ≠  i, то в силу [30, лемма 2.9] имеем 

( ) = .j j j jiG Gσ σ σ σ′ ′σ G G G GG  Теперь поскольку ,iG σ ∈
G

H  то ( )j j
jG hσ σ ′ ∈ σ

G G
 для любого j  ≠  i. 

Поэтому .G ∈H  Лемма доказана.
Л е м м а  10. Пусть = ( ),   = ( ).LR fσ Π σF F  Тогда =σ Π∩F N N  и = { | ( ) }.i ifΠ σ σ ≠ ∅
Д о к а з а т е л ь с т в о. Ввиду [30, лемма 3.1 (a)] имеем = { | ( ) }.i ifΠ σ σ ≠ ∅  Поскольку iσG  – 

наследственный класс Фиттинга, то ( ( ) )ii ifσ σ⊆ σ ∩G F G  и с учетом [30, лемма 3.2] имеем 

( ( ) )ii ifσ σ⊆ σ ∩ ⊆G F G F

для всякого .iσ ∈Π  Поэтому = .iiΠ σ ∈Π⊕ ⊆N G F  С другой стороны, поскольку ,σ Π∩ ⊆F N N  
то = .σ Π∩F N N  Лемма доказана.

Те о р е м а  10. Пусть M  – некоторый σ-локальный класс Фиттинга σ-разрешимых групп. 
Тогда и только тогда σ-алгебра ( )σθ M  является коммутативной полугруппой σ-локальных 
классов Фиттинга, когда M содержится в классе всех σ-нильпотентных групп.

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Пусть σ-алгебра ( )σθ M  является коммутатив-
ной полугруппой. Покажем, что тогда класс Фиттинга M σ-нильпотентен.

Пусть m  – некоторое внутреннее θ-значное σ-локальное задание класса Фиттинга M. 
Допустим, что σ⊆M N  и пусть G – группа минимального порядка из \ .σM N  Тогда G – ко-
монолитическая группа с комонолитом R = GNσ. Поскольку M  – σ-разрешимый класс, то 
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G/R  – σ-примарная группа, т.  е. G/R  – σi-группа для некоторого ( ).iσ ∈σ M  Понятно, что 
1 : = = .i i iR H G G    

G G G  Пусть σj ∈ σ(H), где j ≠  i, и X – холлова σj-подгруппа группы Н. 
Поскольку ,G ∈M  то Н = ( ).i i iR G mσ σ ′ ∈ σ

G G  Ввиду σ-нильпотентности Н подгруппа X нормаль-
на в Н, следовательно, ( ).iX m∈ σ

Пусть P – неединичная σi-группа и = =B X P K P   – регулярное сплетение групп X и P, где 
K – база сплетения B. Тогда, очевидно, = = .i i iK B Bσ σ σ′G G G  Поскольку ( ),iX m∈ σ  то ( )iK m∈ σ  
как прямое произведение групп, изоморфных X. Поэтому = ( ) .i iB K mσ ∈ σ ⊆

G
M  Применяя те-

перь лемму 9 заключаем, что .B ∈M  Кроме того, в силу [30, лемма 3.1] имеем , ( )i jσ σ ∈σ M  
и, значит, , ( ).i j

σ
σ σ ∈θG G M  По условию теоремы имеем = .j i i jσ ◊ σ σ ◊ σ

M M
G G G G  Поскольку

= ,j i j iB σ σ σ ◊ σ∈ ◊ ∩
M

G G M G G  то В .i jG σ ◊ σ∈
M

G G  Поэтому группа B принадлежит классу 

Фиттинга .i jσ σ◊G G  Значит, / .ji
B B σσ ∈G G  Из построения группы B следует, что = 1

i
B σG  

и / .ji
B B B σσ ∉G G  Полученное противоречие показывает, что .σ⊆M N

Д о с т а т о ч н о с т ь. Пусть теперь класс Фиттинга σ⊆M N  и пусть F и H  – некоторые 
σ-локальные классы Фиттинга из ( ).σθ M  Понятно, что σ-алгебра ( )σθ M  является полугруппой. 
Покажем, что ( )σθ M  коммутативна. Действительно, ввиду леммы 10 имеем ( )=σ σ ∪◊ ∩ F HF H N N  
и ( )= .σ σ ∪◊ ∩ H FH F N N  Значит, поскольку σ◊ ∩ ⊆F H M N  и ,σ◊ ∩ ⊆H F M N  то 

( )= = = ( ) = =◊ σ σ σ ∪◊ ∩ ◊ ∩ ∩ ◊ ∩ ∩ ∩F H
M

F H F H M F H M N F H N M N M
 

( )= = ( ) = = = .σ ∪ σ σ ◊∩ ◊ ∩ ∩ ◊ ∩ ∩ ◊ ∩H F
M

N M H F N M H F M N H F M H F

Поэтому =◊ ◊
M M

F H H F  и ( )σθ M  – коммутативная полугруппа. Теорема доказана.

С л е д с т в и е  5 [37, теорема 3.2]. Пусть M – разрешимый локальный класс Фиттинга. Тогда 
и только тогда ( )lA M  является коммутативной полугруппой, когда M нильпотентна.
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КЛАССИЧЕСКОЕ РЕШЕНИЕ СМЕШАННОЙ ЗАДАЧИ  
ДЛЯ УРАВНЕНИЯ КОЛЕБАНИЯ СТРУНЫ С ЛИНЕЙНЫМИ 

ДИФФЕРЕНЦИАЛЬНЫМИ ПОЛИНОМАМИ В ГРАНИЧНЫХ УСЛОВИЯХ

Аннотация. Исследовано доказательство корректности постановки смешанной задачи для уравнения колеба-
ния струны в полуполосе с дифференциальными полиномами в граничных условиях. Для данной задачи выводят-
ся условия существования единственного достаточно гладкого решения в полуполосе в целом. Показано, что она 
сводится к решению задач Коши для обыкновенных линейных дифференциальных уравнений с переменными ко-
эффициентами. Изучены случаи, когда гладкость решения задачи с ростом времени ухудшается и когда этого не 
происходит. Для обоих случаев выведены достаточные условия ухудшения (сохранения) гладкости, основанные на 
коэффициентах граничных условий. Также с помощью метода характеристик выведены необходимые и достаточные 
условия согласования на исходные данные при заданной гладкости исходных функций, при которых существует 
единственное классическое решение поставленной задачи. Полученные результаты приведены как для однородного 
исходного уравнения, так и для случая, когда исходное уравнение является неоднородным.

Ключевые слова: уравнение колебания струны, метод характеристик, дифференциальный полином, классиче-
ское решение, смешанная задача, условия согласования

Для цитирования. Столярчук, И. И. Классическое решение смешанной задачи для уравнения колеба-
ния струны с линейными дифференциальными полиномами в граничных условиях  / И. И. Столярчук  // Весці 
Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-матэматычных навук. – 2025. – Т. 61, № 4. – С. 288–298. https://
doi.org/10.29235/1561-2430-2025-61-4-288-298

Ivan I. Stolyarchuk

Nextsoft Ltd., Minsk, Republic of Belarus

CLASSICAL SOLUTION OF THE MIXED PROBLEM FOR THE STRING OSCILLATION EQUATION  
WITH LINEAR DIFFERENTIAL POLYNOMIALS IN BOUNDARY CONDITIONS

Abstract. The proof of the well-posedness of the mixed problem for the string oscillation equation in the half-strip with 
differential polynoms in the boundary conditions. The conditions of the existence of the unique and smooth enough solution 
are obtained in the half strip in general. It is shown that it is reduced to the solution of the initial-value problems for the ordi-
nary linear differential equations with variable coefficients. The case when the solution smoothness is reduced during the in-
creasing of the time and the case when it doesn’t happen are studied. For both cases the sufficient conditions for smooth reduc-
tion (conservation) are obtained. These conditions are based on the coefficients in boundary conditions. Also, with the help of 
the characteristics method the necessary and sufficient matching conditions are obtained. These conditions guarantee the ex-
istence and uniqueness of the classical solution of the given problem when given functions are smooth enough. The obtained 
results are given for both homogeneous initial equation and inhomogeneous one.

Keywords: string oscillation equation, characteristics method, differential polynomials, classical solution, mixed prob-
lem, matching conditions

For citation. Stolyarchuk I. I. Classical solution of the mixed problem for the string oscillation equation with linear dif-
ferential polynomials in boundary conditions. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh 
navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2025, vol. 61, no. 4, 
pp. 288–298 (in Russian). https://doi.org/10.29235/1561-2430-2025-61-4-288-298

Введение. При построении математических моделей большого числа процессов окружающе-
го мира получаются смешанные задачи для гиперболических уравнений второго порядка с раз-
ного типа условиями. Гладкие условия Коши рассматривались, например, в работе [1], негладкие 
условия Коши – в [2]. Условия первого рода типа Дирихле изучались в [3], а в [4, 5] исследовалась 
смешанная задача для уравнения типа Клейна – Гордона – Фока с косыми производными в гра-

© Столярчук И. И., 2025
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ничных условиях. В [6] была рассмотрена задача с производными высоких порядков в гранич-
ных условиях для гиперболического уравнения, которое может быть факторизовано на компози-
цию операторов первого порядка. В [7] авторы изучали смешанную задачу для волнового урав-
нения с производными высоких порядков в условии на левой границе и с условием типа Дирихле 
на правой границе. Во всех этих задачах были получены необходимые и достаточные условия 
согласования для существования единственного гладкого решения при выполнении некоторых 
требований на гладкость исходных функций.

Возникает вопрос о возможности изучения еще более общей смешанной задачи, а именно: 
смешанной задачи для уравнения колебания струны, где граничные условия представляют собой 
дифференциальные полиномы. Введение данных полиномов в граничные условия существенно 
усложняет исследование смешанной задачи в сравнении со смешанной задачей с условиями пер-
вого рода или с косыми производными в граничных условиях. Особенность рассматриваемой за-
дачи состоит в том, что обыкновенные дифференциальные уравнения, которые возникают в про-
цессе исследования граничных условий, в общем случае не имеют явного решения. Однако, не-
смотря на это, нам удалось доказать существование и единственность решения. В данной работе 
используется метод характеристик, с помощью которого доказывается существование и един-
ственность классического решения поставленной задачи, выводятся условия согласования на за-
данные функции, а также показывается, что гладкость решения может убывать с ростом времен-
ной переменной.

Постановка задачи. Задача рассматривается на плоскости двух независимых переменных 
0 1= ( , ).x xx

В области = (0; ) (0; ), (0; )Q T l l× ∈ +∞  задается уравнение колебания струны 

	 0 1
2 2 2 ,x xLw a w fw= ∂ − ∂ =

	
(1)

где f – некоторая заданная функция, 0= ( 1) / , .T s l a s+ ∈� К уравнению (1) присоединяются ус-
ловия Коши 

	 1 1 1 1 10(0, ) = ( ),     (0, ) = ( ),     [0; ],xw x x w x x x lϕ ∂ ψ ∈ 	 (2)

и граничные условия с дифференциальными полиномами 

	



| |
( ) ( )

0 0 00 1| | 0 1
( ) ( , ) = ( ), {0, },j

j
n

wr x x j x j l
x x

α
α

α α
α

∂
µ ∈

∂ ∂
∑
 	

(3)

где ( ) ( ),  j
jr α µ  – заданные функции, α = (α0, α1) – мультииндекс, 0 ,  {0,1}i iα ∈ ∈  и 0 1| |= ,α + αα

, 2.n n∈ ≥  Условия на функции ( ) ( ), , ,  , j
jf r αϕ ψ µ  будут уточнены в дальнейшем. Пусть для 

функций ( )
jr α  существуют такие 0 ,jν ∈  что , 1,4,j n jν ≤ =  для которых справедливы следую-

щие условия: 

	

( ) ( )0 01 0 2 00
0 0| |= | |=

( ) ( )0 03 0 4 00
0 0| |= | |=

= ( ) ( ) 0,     = ( ) ( ) 0,max max

= ( ) ( ) 0,     = ( ) ( ) 0.max max

l
n n

l
n n

a r x a r x

a r x a r x

α α

≤ν≤ ≤ν≤ν ν

α α

≤ν≤ ≤ν≤ν ν

ν − ≠ ν ≠

ν ≠ ν − ≠

∑ ∑

∑ ∑

α α

α α

α α

α α 	

(4)

Общее решение неоднородного уравнения. Следуя [8; 9, c. 136–138], общее решение уравне-
ния (1) представимо в виде 

	 ( ) = ( ) ( ),pw u w+x x x 	 (5)

где u(x)  – общее решение однородного уравнения 2 2 2
0 1

= = 0,x xLu u a u∂ − ∂  a wp(x)  – некоторое 
частное решение уравнения (1). В работе [8] доказано утверждение о существовании решения 
задачи (1) с однородными начальными условиями без продолжения функции f за границу обла-
сти Q. Сформулируем его в виде леммы.

Л е м м а  1. Пусть 1( ) ( ).nf C Q−∈x  Тогда решение задачи (1)–(3) существует в классе ( ).nC Q
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Исходя из вида (5), задача (1)–(3) сводится к решению задачи для однородного уравнения 
Lu = 0, т. е. задачи 

	
2 2 2

0 1
= 0,x xu a u∂ − ∂

	
(6)

с начальными условиями 

	 1 1 1 1 10(0, ) = ( ), (0, ) = ( ),      [0; ]xu x x u x x x lϕ ∂ ψ ∈ 	 (7)

и граничными условиями 

	

| |
( ) ( )

0 0 00 1| | 0 1
( ) ( , ) = ( ),      {0, },j

j
n

ur x x j x j l
x xα α

≤

∂
µ ∈

∂ ∂
∑

α
α

α 	
(8)

где 



| |
( )( ) ( )

0 0 0 00 1| | 0 1
( ) = ( ) ( ) ( , ),      {0, }.pj j

j
n

w
x x r x x j j l

x xα α
≤

∂
µ µ − ∈

∂ ∂
∑

α
α

α

Общее решение уравнения (6) записывается как 

	 1 0 1 0( ) ( ) ( ),u p x ax g x ax= − + +x 	 (9)

где p, g – некоторые произвольные достаточно гладкие функции. Суть метода характеристик за-

ключается в их нахождении на каждом из подмножеств ( , ) , 1,4,k jQ j =  где 
4

( , )

0 1
.

s
k j

k j
Q Q

= =
=
 

 

Разбиение множества Q  приведено на рисунке.

Решение на множестве ( )kQ  будем обозначать u(k)(x), и ( ) ( ) ( )
1 0 1 0( ) ( ) ( ),k k ku p x ax g x ax= − + +x  

где p(k), g(k) – некоторые произвольные достаточно гладкие функции. 

О п р е д е л е н и е. Кусочно-заданную функцию ( ) ( )

0
( ) ( ), ,

s
k k

k
u u Q

=
= ∈x x x


 из класса 

( ),  ,mC Q m n≥  будем называть решением задачи (6)–(8), если при ее подстановке в уравнение (6) 
и условия (7), (8) они обращаются в тождества.

В дальнейшем смысл термина «решение» будем понимать в смысле данного определения.

x1

x0

Разбиение множества Q

Splitting of Q  set
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Задача (6)–(8) на ( ) .kQ  Рассмотрим условия Коши в области Q(k): 

	
( ) ( )

= / 1 = / 1 10 0 0( ) | = ( ),  ( ) | = ( ),  [0; ].k k
x kl a x x kl au x u x x lϕ ∂ ψ ∈x x 	 (10)

Изначально заданы только φ(0) = φ и ψ(0) = ψ, остальные функции мы получаем из решения в об-
ласти ( 1,4)kQ −  для = 1,2,... .k

Л е м м а  2. Решение u(k)(x) задачи (6), (10) существует единственно в классе ( ,1)( ),n kC Q  не-
прерывно зависит от функций φ(k)(x1), ψ

(k)(x1) и задается формулой Даламбера

	
( ) 1 0

( ) ( ) ( ) ( )
1 0 1 0

1 0

1 1( ) = ( ) ( ) ( )
2 2

x ax kl
k k k k

x ax kl
u x ax kl x ax kl z dz

a

+ −

− +
ϕ − + + ϕ + − + ψ∫x

	
(11)

тогда и только тогда, когда ( ) ( ) 1([0; ]),   ([0; ]).k n k nC l C l−ϕ ∈ ψ ∈

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Пусть u(k)(x) из класса ( ,1)( ).n kC Q  Тогда 
в силу первого из условий (10) справедливо, что ( ) ( )

1 1( / , ) ( ),k ku kl a x x= ϕ  откуда следует, что 
( ) ([0; ]).k nC lϕ ∈  Аналогично показывается, что ( ) 1([0; ]).k nC l−ψ ∈

Д о с т а т о ч н о с т ь. Пусть ( ) ( ) 1([0; ]),   ([0; ]).k n k nC l C l−ϕ ∈ ψ ∈  Найдем решение задачи (6), 
(10) в области Q(k,1). Функции p(k)(z) и g(k)(y), где [ ; ( 1) ],   [ ;( 1) ],z kl k l y kl k l∈ − − − ∈ +  имеют вид

	
( )( ) ( ) ( )1( ) = ( ) ( ) ,

2
k k kp z z kl z kl Cϕ + − Ψ + −

	
(12)

	
( )( ) ( ) ( )1( ) = ( ) ( ) ,

2
k k kg y y kl y kl Cϕ − + Ψ − +

	
(13)

где ( ) ( )1( ) = ( ) .
z

k k

l
z y dy

a
Ψ ψ∫
Исходя из формул (12), (13), получаем решение задачи на множестве ( ,1) ,kQ  задаваемое фор-

мулой (10) (хорошо известная формула Даламбера [9, c. 138–140]). Принадлежность решения u(k)(x)  
классу ( ,1)( )n kC Q  следует из того, что сумма двух функций из класса ( ,1)( )n kC Q  будет также 

функцией из класса ( ,1)( ).n kC Q  Непрерывная зависимость u(k)(x) от начальных функций следует 
из формулы Даламбера как сумма непрерывных на компакте функций. Лемма доказана. 

Рассмотрим решение задачи (6)–(8) в области Q(k,2). В области Q(k,2) функция g(k) будет опре-
деляться по формуле (13), а функция p(k) будет неопределена на [ ( 1) , ].z k l kl∈ − + −  Воспользуемся 
условием на левой границе: 

	

| |
( ) (0)

0 0 00 0 1| 0 1
( ) ( ,0) = ( ).

n

ur x x x
x xα α

|

∂
µ

∂ ∂
∑


α
α

α 	
(14)

С учетом того, что ( ) ( ) ( )
1 0 1 0( ) ( ),( )k k kx axu g x ap x− += +x  данное условие можно переписать 

в виде 

( )
| |

( ) ( ) ( ) (0)
0 1 0 1 0 =0 00 10 1| | 0 1

( ) ( ) ( ) | = ( ).k k
x

n
r x p x ax g x ax x

x xα α
∂

− + + µ
∂ ∂

∑


α
α

α

Перенесем известные слагаемые в одну сторону, и заметим, что 
| |

( ) | | ( )01 0 1 00 10 1
( ) = ( ) ( ).k kp x ax a d p x ax

x x
α

α α
∂

− − −
∂ ∂

α
α

Вводя замену 0 = ,ax z−  получим 

	
( ) ( )

0
=0

( ) ( ) = ( ), [ ( 1) , ],
n k kR z d p z P z z k l klν ν

ν
∈ − + −∑

	
(15)
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где 

	
( ) 1

| |
( )( ) (0) ( )0 1 =00 0 1| | 1

( ) = ( ) ( ) | ,k k
x

n

z zP z a r g x z
a a z x

α
α α

≤

∂   µ − − − − −    ∂ ∂   
∑

α
α

α 	
(16)

 	

( )00 0
| |=

( ) = ( ) ,zR z a r
a

ν α

ν

 − − 
 

∑ α

α 	
(17)

0n ∈  – максимальный порядок производной функции p(k) в уравнении такой, что .n n≤  
Л е м м а  3. Пусть выполняются условия (4) и (0) ([0; ]),n nC T−µ ∈ ( )

0 ([0; ]).nr C Tα ∈  Тогда реше-

ние задачи (6), (14) существует и единственно в классе ( ,1) ( ,2)( )n k kC Q Q


 тогда и только тогда, 
когда ( ) ( ) 1([0; ]),   ([0; ])n nk n k nC l C l∆ ∆+ − +ϕ ∈ ψ ∈  и выполнены условия согласования 

	
( ) ( )( )

1 (0) (0) ( )
=

=0

1 ( ) 1 ( )

( ) ( ) ( ) | =

1= ( 1) 1 (0) ( 1) 1 (0) ,
2

zn j j k
z kl

kl

j j k j j k

C d kl d P z d

d d

−
ν ν −

ν −

+ +

β − + τ γ − τ τ

− − ϕ + − + Ψ

∑ ∫

	
(18)

где R= , ,  ( ) e ,nj LU nn nn ∆ = −  где

0
0, 0

,
,

Re ( )
,
x

LU x
x x

<
≥


= 

  
а n   – максимальный порядок производной функции g(k), которая входит в правую часть P(k), 
а константы (0)Cν  выбираются из условий

	  

( )

( ) ( )( )

1 (0) (0) ( ) ( )

=0
1 (0) (0) 1 ( ) 1 ( )

=0

1( ) = (0) (0) ,
2

1( ) = ( 1) 1 (0) ( 1) 1 (0) ,     = 1, 1,
2

n k k

n j j j k j j k

kl C C

C d kl d d j n

−
ν ν

ν

−
+ +

ν ν
ν

β − ϕ − Ψ −

β − − − ϕ − − + Ψ −

∑

∑
	

(19)

а (0) (0)
0 1( ),..., ( )nz z

−
β β  – фундаментальная система решений уравнения (15).

Д о к а з а т е л ь с т в о. Д о с т а т о ч н о с т ь. Уравнение (15) является обыкновенным линей-
ным дифференциальным уравнением относительно неизвестной функции p(k)(z). Пусть коэффи-
циенты 0 ( )R zν  этого уравнения достаточно гладкие, тогда справедлива теорема о существовании 
фундаментальной системы решений: 

	  (0) (0)
0 1( ) = ( ),..., ( ) .nz z z


 (0)β 	

(20)

Общее решение уравнения (15) записывается в виде [10, c. 367] 

	

1( ) (0) (0) ( )

=0
( ) = ( ) ( ) ( ) ,

znk k

kl
p z C z P z d

−
ν ν

ν −
β + τ γ − τ τ∑ ∫

	
(21)

где γ(z) – решение специальной задачи Коши для уравнения (15) при нулевой правой части с ус-
ловиями 

	
1(0) = 0,     = 0, 2,     (0) = 1,i nd i n d −γ − γ 	 (22)

(0)Cν  – некоторые константы. В силу условий (4) порядок уравнения (21) постоянен на всем отрез-
ке [ ( 1) , ].z k l kl∈ − + −  Для нахождения свободных переменных (0)Cν  потребуем выполнения усло-
вий гладкости функции p(k) в точке z = –kl, которая определена по формулам (12) и (21), а также 
их производных. Данные условия задаются формулой (19). Более того, только при таком выборе 
констант (0)Cν  полученная функция p(k) будет из класса ([ ( 1) ; ( 1) ].nC k l k l− + − −  Отметим, что при 
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= 1n  будет только первое условие. Задача Коши (15), (19) имеет единственное решение, если вы-
полнены условия на непрерывность коэффициентов уравнения (15).

Докажем, что ( ) ( )= ,
2

k k Cp p −  где функция ( )kp  не содержит свободной постоянной C. 

Заметим, что в функции p(k)(z) из выражения (16) свободная константа C содержится только в од-

ном слагаемом при | |= 0,α  тогда  (0,0)( ) ( )
0( ) = ( ) ( ) ,

2
k k CP z P z r z−  где функция ( ) ( )kP z  не содержит 

свободной постоянной C.
Задачу Коши (15), (19) можно представить в виде суммы следующих двух задач: 

	

( ) ( )
0

=0
( ) ( ) = ( ),     [ ( 1) , ],

n k kR z d p z P z z k l klν ν

ν
∈ − + −∑ 

	
(23)

 	

( )
( ) ( )( )

( ) ( ) ( )

( ) 1 ( ) 1 ( )

1( ) = (0) (0) ,
2

1( ) = ( 1) 1 (0) ( 1) 1 (0) ,
2

= 1, 1.

k k k

j k j j k j j k

p kl

d p kl d d

j n

+ +

− ϕ − Ψ

− − − ϕ − − + Ψ

−





	

(24)

Отметим, что ( ) ( )kp z  не содержит свободной константы C, так как она отсутствует в правой ча-
сти и в начальных условиях задачи (23), (24).

И вторая задача: 

	
( ) (0,0)

0 1 0
=0

( ) ( ) = ( ) ,     [ ( 1) , ],
2

n k CR z d p z r z z k l klν ν

ν
− ∈ − + −∑

	
(25)

 	

( )
1

( )
1

( ) = ,
2

( ) = 0, = 1, 1.

k

kj

Cp kl

d p kl j n

− −

− − 	

(26)

Решение задачи (25), (26) существует и единственно, с другой стороны, легко проверить, что 
( )
1 ( ) = .

2
k Cp z −  Таким образом, действительно, ( ) ( )= .

2
k k Cp p −  Заметим, что приведенные выше 

рассуждения верны и при (0,0)
0 ( ) 0.r z ≡  

Рассмотрим поведение гладкости функции p(k) в зависимости от правой части P(k). Заметим, 
что гладкость решения p(k) уравнения (15) на единицу выше гладкости коэффициентов уравнения 
и его правой части [10, c. 153–154]. В функции P(k)(z) фигурируют функция g(k) и ее производные, 
которые определяются из начальных условий по формуле (13). В формуле (16) могут фигуриро-
вать производные функции g(k) до порядка n включительно. Пусть 

( )0
0

| |=
= max | 0,  0zn a r n

a
α

ν

  ν − ≠ ≤ ν ≤     
∑ α

α

– максимальный порядок производной функции g(k), которая входит в правую часть P(k). В силу 
условий (4) значение n  постоянно на всем отрезке [ ( 1) , ].z k l kl∈ − + −  При таких условиях функ-
ция p(k), которая определяется по формуле (21), будет n nC −  гладкости. Для повышения гладкости 
данной функции требуется повысить требования на гладкость функции g(k), а следовательно, 
и φ(k), Ψ(k). Из теории обыкновенных дифференциальных уравнений (ОДУ) известно, что если 

( )
0 ,   ,kn nCr C Pα ∈ ∈  то его решение класса Сn. Таким образом, чтобы функция P(k) была из клас-

са Сn, усилим требования на гладкость заданных функций: 
( )( ) ( ) 1 (0)

0([0; ]),     ([0; ]),     ([0; ]),     ([0; ]).n nk n k n n n nC l C l C T r C Tα+∆ − +∆ −ϕ ∈ ψ ∈ µ ∈ ∈

Осталось решить вопрос с условиями согласования. Условия Коши дают гладкость 
в точке z  =  –kl только до порядка 0 1.n n≤ ≤ −  Для того чтобы функция p(k) была из класса 
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([ ( 1) ; ( 1) ]),nC k l k l− + − −  потребуем выполнения условий согласования в точке z = –kl для произ-
водных функции p(k) от порядка n  до n по формуле (18).

Заметим, что если > ,n n  то для решения смешанной задачи требуется повышенная глад-
кость на φ(k), ψ(k), а также на μ, r при меньших значениях x0.

Н е о б х о д и м о с т ь. Пусть u(k)(x) принадлежит классу ( ,1) ( ,2)( ).n k kC Q Q  Тогда в силу лем-
мы 2 функции ( ) ( ) 1([0; ]),   ([0; ]).n nk n k nC l C l+ − +∆ ∆ϕ ∈ ψ ∈  При этом, так как функция u(k)(x) глад-
кая до порядка n на всем множестве ( ,1) ( ,2) ,k kQ Q  то она гладкая в каждой точке, в том числе 
и на ( ,1) ( ,2) ,k kQ Q



 а гладкость на этом пересечении обеспечивается условиями согласования (18) 
и выбором констант по формуле (19). Лемма доказана.

Заметим, что при 0n =  уравнение (15) превращается в обычное функциональное уравнение, 
которое решается, как в случае первой смешанной задачи. Условия Коши (19) исчезают, в фор-
муле (18) = 0, ,j n  при этом (0,0)( ) ( )

0( ) = ( ) / ( ).k kp z P z r z  Утверждение леммы 2 при этом остается 
в силе.

Задача в области Q(k,3) решается аналогично. Из граничного условия на правой границе полу-
чается дифференциальное уравнение 

	
( ) ( )

=0
( ) ( ) = ( ),     [( 1) ,( 2) ],

m k k
lR y d g y G y y k l k lν ν

ν
∈ + +∑

	
(27)

где 

	
( )

| |
( )( ) ( ) ( )0 1 =0 10 1| | 1

( ) = ( ) ( ) | ,k l k
x l

n

y l y lG y a r p x l y
a a y x

α
α α

≤

− − ∂   µ − − + −    ∂ ∂   
∑

α
α

α 	
(28)

	

( )0

| |=
( ) = ( ) ,l l

y lR y a r
a

ν α

ν

− 
 
 

∑ α

α 	
(29)

0m∈  – максимальный порядок производной функции g(k) в уравнении такой, что .m n≤  Его 
общее решение записывается как

	

1( ) ( ) ( ) ( )

=0 ( 1)
( ) = ( ) ( ) ( ) ,

ymk l l k

k l
g y C y G y d

−
ν ν

ν +
β + τ γ − τ τ∑ ∫

	
(30)

где ( )( ) ( )( )
0 1( ) = ( ),... ( )l ll

my y y
−

β ββ  – фундаментальная система решений; γ(y) – решение специаль-
ной задачи Коши для однородного уравнения (27) с условиями 

	
1(0) = 0,     = 0, 2,     (0) = 1.i md i m d    	 (31)

Для задачи в области Q(k,3) справедлива следующая 
Л е м м а  4. Пусть выполняются условия (4) и ( )( ) ([0; ]),   ([0; ]).l n m n

lC T r C Tα−µ ∈ ∈  Тогда ре-
шение задачи (6), (27) существует и единственно в классе ( ,1) ( ,3)( )n k kC Q Q  тогда и только 
тогда, когда ( ) ( ) 1([0; ]),   ([0; ])m mk n k nC l C l∆ ∆+ − +ϕ ∈ ψ ∈  и выполнены условия согласования 

	

( )

( ) ( )( )

1 ( ) ( ) ( )
=( 1)

=0 ( 1)

1 ( ) 1 ( )

( 1) ( ) ( ) | =

1= ( 1) 1 ( ) ( 1) 1 ( ) ,
2

ym l j l j k
y k l

k l

j j k j j k

C d k l d G y d

d l d l

−
ν ν +

ν +

+ +

β + + τ γ − τ τ

− − ϕ − − − Ψ

∑ ∫

	
(32)

где ; ( );= ,   mj ReLU m mm n ∆ = −  а m  – максимальный порядок производной функции p(k), кото-
рая входит в правую часть G(k), а константы ( )lCν  выбираются из условий
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( ) ( )

( ) ( ) ( )( )

1 ( ) ( ) ( ) ( )

=0
1 ( ) ( ) 1 ( ) 1 ( )

=0

1( 1) = ( ) ( ) ,
2

1( 1) = ( 1) 1 ( ) ( 1) 1 ( ) ,     = 1, 1.
2

m l l k k

m l j l j j k j j k

k l C l l C

C d k l d l d l j n

−
ν ν

ν

−
+ +

ν ν
ν

β + ϕ − Ψ −

β + − − ϕ − − + Ψ −

∑

∑
	

(33)

Д о к а з а т е л ь с т в о повторяет доказательство леммы 3.
Аналогично случаю с условием на левой границе, утверждение данной леммы справедливо 

при = 0.m
В области Q(k,4) решение строится с помощью суммы функций p(k)(z), определенной по фор-

муле (21) и g(k)(y), определенной по формуле (30). Пусть max( )., nm∆ = ∆ ∆
Л е м м а  5. Пусть выполняются условия (4) и (0) ( )([0; ]),   ([0; ]),n n l n mC T C T− −µ ∈ µ ∈



 
( ) ( ) ( ) ( ) 1

0 ([0; ]),   ([0; ]),   ([0; ]),   ([0; ]).n n k n k n
lr C T r C T C l C l∆α α + − ∆+∈ ∈ ϕ ∈ ψ ∈  Тогда решение задачи 

(6)–(8) существует и единственно в классе ( ,4)( ).n kC Q
Д о к а з а т е л ь с т в о данной леммы следует из вида общего решения уравнения (9) и суще-

ствования единственной функций p(k)(z) из граничного условия на левой границе и существова-
ния единственной функции g(k)(y) из граничного условия на правой границе.

Леммы 2–5 дают условия на существование единственного решения на отдельных частях 

множества ( ) .kQ  Для получения условий существования единственного решения на всем мно-

жестве ( )kQ  объединим результаты лемм 2–5 в виде утверждения.
У т в е р ж д е н и е. Пусть выполняются условия (4) и функции (0) ([0; ]),n nC T−µ ∈  

( ) ( )( )
0([0; ]),   ([0; ]),   ([0; ]).l n m n n

lC T r C T r C Tα α−µ ∈ ∈ ∈  Решение задачи (6)–(8) существует и един-

ственно в классе ( )( )n kC Q  тогда и только тогда, когда ( ) ( ) 1([0; ]),   ([0; ])k n k nC l C l∆ ∆+ − +ϕ ∈ ψ ∈  
и выполняются условия согласования (18), (23), а константы (0) ( ),   lC Cν ν  выбираются из усло-
вий (19) и (33) соответственно.

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Пусть решение u(k)(x) задачи (6)–(8) существует и един-

ственно в классе ( )( ),n kC Q  тогда в силу леммы 2 будут выполняться условия ( ) ( ) 1([0; ]),   ([0; ]),k n k nC l C l∆+∆ − +ϕ ∈ ψ ∈ 
( ) ( ) 1([0; ]),   ([0; ]),k n k nC l C l∆+∆ − +ϕ ∈ ψ ∈ а в силу лемм 3, 4 – условия согласования (18) и (32).

Д о с т а т о ч н о с т ь. При выполнении условий на функции из граничных условий утвержде-
ния, а также условий ( ) ( ) 1([0; ]),   ([0; ])k n k nC l C l∆ ∆+ − +ϕ ∈ ψ ∈  и условий согласования (18) и (32) по-

лучим, что решение u(k)(x) задачи (6)–(8) существует и единственно в классе ( )( ).n kC Q  Утверждение 
доказано.

Решение задачи в полуполосе. В предыдущем пункте была решена задача (6)–(8) в каждой 
из подобластей ( )

.
k

Q  Выведем теперь условия принадлежности решения u(x) задачи (6)–(8) клас-

су ( ) ( 1)( ).n k kC Q Q −


Л е м м а  6. Пусть выполняются условия (4) и u(k–1)(x)  – решение задачи (6)–(8) на множе-

стве ( 1) ,kQ −  и выполнены условия ( )(0) ( )([0; ]),   ([0; ]),   ([0; ]),n n l n m n
lC T C T r C Tα− + − + ∆+∆ ∆µ ∈ µ ∈ ∈  

( )
0 ([0; ]).nr C T+∆α ∈  Тогда функция 

	

( ) ( )
( , 1)

( 1) ( 1)

( ), ( ) ,
( ) =

( ), ( )

k k
k k

k k

u Q
u

u Q
−

− −

 ∈

 ∈

x x
x

x x 	

(34)

будет n + Δ раз непрерывно дифференцируемой на ( ,1) ( 1)k kQ Q −
  и будет решением задачи (6)–(8) 

на этом же множестве тогда и только тогда, когда ( 1) 2 ( 1) 1 2([0; ]),   ([0; ])k n k nC l C l− + − − +∆ ∆ϕ ∈ ψ ∈  
и начальные условия на слое k определены как 
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( ) ( 1) ( 1) ( 1)
1 1 1 1

( ) ( 1) ( 1) ( 1)
1 1 1 1 10

( ) = , = ( ) ( ),

( ) = , = ( ) ( ),     [0; ].

k k k k

k k k k
x

klx u x p x kl g x kl
a

klx u x adp x kl adg x kl x l
a

− − −

− − −

 ϕ − + + 
 

 ψ ∂ − − + + ∈ 
  	

(35)

Д о к а з а т е л ь с т в о. Н е о б х о д и м о с т ь. Пусть решение ( 1, ) ( ,1) ( 1)( ) ( ).k k n k ku C Q Q− +∆ −∈x   
Тогда выполняются условие на гладкость ( 1) ( )

1 1( / , ) ( / , )k ku kl a x u kl a x− =  и на производные этих 
функций до порядка n  +  Δ включительно. Отсюда следует определение начальных функций 
по формуле (35). А из лемм 2–5 следует условие на гладкость функций ( 1) 2 ( 1) 1 2([0; ]),   ([0; ]).k n k nC l C l− + −∆ ∆− +ϕ ∈ ψ ∈

( 1) 2 ( 1) 1 2([0; ]),   ([0; ]).k n k nC l C l− + −∆ ∆− +ϕ ∈ ψ ∈
Д о с т а т о ч н о с т ь. Пусть выполнены условия ( 1) 2 ( 1) 1 2([0; ]),   ([0; ]),k n k nC l C l− + −∆ ∆− +ϕ ∈ ψ ∈  тог

да u(k–1)(x) – решение задачи (6)–(8) на множестве ( 1)kQ −  принадлежит классу ( 1)( ).n kС Q   С уче-

том леммы 2 и определения начальных условий по формуле (34) функция ( ) ( ,1)( ) ( ).k n ku C Q+∆∈x  
Также условий (35) оказывается достаточно для того, чтобы решение ( 1, ) ( )k ku − x  было из класса 

( ,1) ( 1)( )n k kC Q Q+∆ −
 . Лемма доказана.

З а м е ч а н и е. Условия согласования (18), (32) для некоторого k выполняются, если выполня-
ются условия согласования (18), (32) для k – 1. 

Сформулируем лемму о существовании и единственности решения смешанной задачи (6)–(8) 
на всем множестве .Q

Л е м м а  7. Пусть выполняются условия (4) и (0) ([0; ]),n n sC T∆− +µ ∈  ( ) ( )( )
0([0; ]),   ([0; ]),   ([0; ]).l n m s n s n s

lC T r C T r C Tα α− + +∆ ∆ ∆+µ ∈ ∈ ∈
( ) ( )( )

0([0; ]),   ([0; ]),   ([0; ]).l n m s n s n s
lC T r C T r C Tα α− + +∆ ∆ ∆+µ ∈ ∈ ∈  Тогда решение задачи (6)–(8) в классе ( )nC Q  существует 

и единственно тогда и только тогда, когда ( 1) ([0; ]),n sC l∆+ +ϕ∈  1 ( 1) ([0; ])n sC l− + + ∆ψ ∈  и выполня-
ются условия согласования (18), где = , ,j n n s+ ∆  и условия (32), где = ,j m n s+ ∆ при k = 0, а кон-
станты (0) ( ),  lC Cν ν  выбираются из условий (19) и (33) соответственно.

Д о к а з а т е л ь с т в о. Напомним, что 0= ( 1) / , .T s l a s+ ∈  Доказательство данной леммы 
проводится по индукции по номеру области k, исходя из леммы 6 и утверждения. Процедура на-

чинается с множества (0) ,Q  в котором с использованием начальных условий (7) строится решение 
по формуле Даламбера. Далее из граничных условий (8) и лемм 3, 4 показывается, что решения 

граничных задач существуют и единственны. Из леммы 5 находится решение в области (0,4) .Q  

Лемма 6 позволяет выбрать новые начальные условия на множестве (1) ,Q  и далее процесс будет 
продолжаться до номера области s.

В работах [4] и [5] были доказаны теоремы о разрешимости смешанной задачи для уравнения 
типа Клейна – Гордона – Фока с косыми производными в граничных условиях. При этом полу-
ченные результаты существенно зависели от коэффициентов граничных условий. Покажем, что 
результаты упомянутых работ следуют из доказанной леммы 7. В случае характеристических 
производных, рассмотренных в [5], выполняется 1,   0,   1,n n m n m= = = = =  откуда 1,n m∆ = ∆ =  
а следовательно, значение Δ = 1 и скорость, с которой ухудшается гладкость решения, также рав-
на единице. Для случая нехарактеристической первой производной, рассмотренной в [4], спра-
ведливы соотношения = 1,   = = = = 1,n n n m m  следовательно, Δ = 0 и ухудшения гладкости не 
происходит.

Используя результаты леммы 7, можно доказать теорему о разрешимости задачи (1)–(3) для 
неоднородного уравнения.

Те о р е м а. Пусть выполняются условия (4) и 1 (0)( ),   ([0; ]),n s n n sf C Q C T− + −∆ ∆+∈ µ ∈  
( ) ( )( )

0([0; ]),   ([0; ]),   ([0; ]).l n m s n s n s
lC T r C T r C Tα α− + +∆ ∆ ∆+µ ∈ ∈ ∈  Тогда решение задачи (1)–(3) 

в классе ( )nC Q  существует и единственно тогда и только тогда, когда ( 1) ([0; ]),n sC l∆+ +ϕ∈  
1 ( 1) ([0; ]),n sC l− + + ∆ψ ∈  и выполняются условия согласования (18), где = , ,j n n s+ ∆  и условия (32), 
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где = ,j m n s+ ∆  при k – 0, а константы (0) ( ),  lC Cν ν  выбираются из условий (19) и (33) соответ-
ственно, где выражение ( )

0( )j xµ  и его производные заменяются на



| |
( )( )

0 0 00 1| | 0 1
( ) ( ) ( , ),   {0, }.pj

j
n

w
x r x x j j l

x x

α
α

α α
α ≤

∂
µ − ∈

∂ ∂
∑

Д о к а з а т е л ь с т в о данного утверждения следует из лемм 1 и 7, так как условие 
1 ( )n sf C Q− ∆+∈  гарантирует выполнение условий существования гладкого решения wp. В си-

лу условий (4), Δm, Δn, а следовательно, и max( ),, nm∆ = ∆ ∆  определены и постоянны для всех 
0 [0; ].x T∈

Заключение. Рассмотрена смешанная задача для волнового уравнения с дифференциальны-
ми полиномами в граничных условиях. Доказано существование единственного решения в по-
луполосе при достаточных условиях гладкости на исходные функции задачи при выполнении 
необходимых и достаточных условий согласования на заданные функции задачи и специального 
выбора произвольных констант, которые возникают при разрешении граничных условий.
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СЛОЖНОСТЬ РАСПОЗНАВАНИЯ ЖЕСТКОСТИ  
В КЛАССЕ (2t + 1)-РЕГУЛЯРНЫХ ГРАФОВ

Аннотация. Известно, что в общем случае проблема распознавания t-ЖЕСТКОСТИ графа является coNP-
полной. Кроме того, для многих подклассов графов задача распознавания t-ЖЕСТКОСТИ остается NP-трудной, 
в частности, в классе r-регулярных графов, где r  ≥  3t для любого целого числа t  ≥  1. Сложность распознавания 
t-ЖЕСТКОСТИ r-регулярных графов остается открытой, когда 2t ≤ r < 3t, а когда r = 2t + 1 сложность распознава-
ния является особенно интригующей. В последнем случае была выдвинута гипотеза, что она остается NP-трудной. 
В данной статье мы устанавливаем справедливость этой гипотезы.

Ключевые слова: вершинный разрез графа, t-ЖЕСТКОСТЬ графа, coNP-полнота проблемы распознавания
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THE COMPLEXITY OF THE DECISION PROBLEM OF TOUGHNESS 
IN THE CLASS OF (2t + 1)-REGULAR GRAPHS

Abstract. It is known that the decision problem of t-TOUGHNESS of a graph is coNP-complete in general. Moreover, in 
many subclasses of graphs, the decision problem of t-TOUGHNESS remains NP-hard, in particular, in the class of r-regular 
graphs, where r ≥ 3t for any integer number t ≥ 1. The complexity of the decision problem of t-TOUGHNESS for r-regular 
graphs remains open when 2t ≤ r < 3t, and when r = 2t + 1 the complexity of the decision problem is particularly intriguing. 
In the latter case it has been conjectured, that it remains NP-hard. In this paper, we establish the validity of this conjecture.

Keywords: vertex cut of a graph, t-toughness of a graph, coNP-completeness of the decision problem
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Мы будем рассматривать всюду простые конечные неориентированные графы. Через c(G) 
будем обозначать число компонент связности графа G. В 1973 г. В. Хватал ввел новый инвариант 
графа, который в отличие от связности графа учитывает, как удаление любого вершинного раз-
реза влияет на количество полученных компонент связности. Он обнаружил некоторые взаимо
связи между этим параметром и существованием гамильтонова цикла в графе, а также получил 
несколько результатов относительно этого нового инварианта. Жесткость графа является крити-
ческой мерой его устойчивости к удалению вершин, отражающей, сколько компонент остается 
после таких удалений, количественно определяет уязвимость графа и имеет важное значение 
для понимания его структурных свойств и при анализе уязвимости коммуникационной сети 
к сбоям.

Происхождение этого понятия было вызвано следующим наблюдением: если граф G имеет 
гамильтонов цикл, то при удалении из графа произвольного множества S мощности s, получен-
ный граф G – S имеет не более s связных компонент. Результатом похожего характера является 
известный критерий Татта о 1-факторе, который утверждает, что граф G четного порядка имеет 
совершенное паросочетание тогда и только тогда, когда для каждого подмножества ( )S V G⊆  
© Бенедиктович В. И., 2025
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мощности s число компонентов G – S нечетного порядка не превышает s. В обеих этих ситуаци-
ях число компонент G – S является критическим.

Напомним, что подмножество ( )S V G⊂  называется вершинным разрезом графа G, если вы-
полняется условие c(G – S) > 1.

О п р е д е л е н и е. Для рационального числа t неполный граф G называется t-жестким, если 
для любого вершинного разреза ( )S V G⊂  выполняется неравенство | | ( ).S t c G S⋅≥ −  

Жесткостью неполного графа G является максимальное ,t ∈  такое, что G является t-жест-
ким и обозначается через τ(G). Следовательно, для неполного графа G

( ) min : ( ), ( ) 1 .
( )

S
G S V G c G S

c G S
 

τ = ⊂ − > 
− 

Поскольку полный граф Kn порядка n ≥ 1 не имеет вершинного разреза, то для него полагают 
τ(Kn) = +∞. 

На практике проще применять альтернативное определение жесткости графа. Пусть G – граф 
порядка n и вершинной связности κ(G), отличный от полного графа. Положим max ( )p

S p
c c G S

=
= −  

и .p
p

pt
c

=  Тогда G является t-жестким для 
( )

0 min p
G p

t t
κ ≤

≤ ≤  и его жесткость равна 
( )

( ) min .p
G p

G t
κ ≤

τ =  

Заметим, что при этом нет необходимости рассматривать значения p, которые больше n – α(G), 
где α(G) – число независимости графа G, поскольку иначе имеем ( ) ,p n Gt t −α>  что вытекает из 
того, что для любого вершинного разреза S графа G справедливо неравенство ( ) ( ).c S GG α− ≤

Согласно Пламеру, вершинный разрез S V⊂  графа G, на котором достигается минимум 
 ( ),( ) /G S c G Sτ = −  называется жестким множеством. Иногда 1-жесткий граф называют про-

сто жестким графом. Например, граф Петерсена является 4/3-жестким графом, цикл длины не 
меньше 4 является 1-жестким. 

Из определения немедленно следует, что для неполного графа G справедливо неравенство 

( )( ) .
2
GG κ

τ ≤

Исторически сложилось, что большая часть исследований в области изучения жесткости гра-
фов основывалась на ряде гипотез, выдвинутых В. Хваталом. Самая сложная из них все еще 
остается открытой – существует ли конечная константа t0, такая, что каждый t0-жесткий граф 
является гамильтоновым. Последние 50 лет исследования по нахождению жесткости графов так-
же были сосредоточены на вопросах ее вычислительной сложности. Сложность проблемы рас-
познавания жесткости графа впервые также была поднята В. Хваталом. Проблема распознавания 
жесткости формулируется следующим образом. 

Проблема t-ЖЕСТКОСТЬ графа.
Ус л о в и е: дан граф G и положительное рациональное число t. 
Вопрос: справедливо ли неравенство τ(G) ≥ t? 
Ответ на него дает следующее утверждение.
Те о р е м а  1 [1]. Проблема t-ЖЕСТКОСТЬ графа является coNP-полной.
Отметим, что д о к а з а т е л ь с т в о этой теоремы разбивается на 2 этапа: сначала к задаче НЕ-

1-ЖЕСТКОСТЬ полиномиально сводится задача k-НЕЗАВИСИМОЕ МНОЖЕСТВО, которая, 
как известно, является NP-полной, т. е. для заданного графа G строится граф G′ такой, что число 
независимости α(G) ≥ k тогда и только тогда, когда τ(G′) < 1. Затем задача НЕ-1-ЖЕСТКОСТЬ 
полиномиально сводится к задаче НЕ-t-ЖЕСТКОСТЬ, т. е. для графа G′ строится граф G″ такой, 
что τ(G′) < 1 тогда и только тогда, когда τ(G″) < t.

Оказывается, что для многих подклассов графов задача распознавания t-ЖЕСТКОСТЬ гра-
фа остается NP-трудной. Например, распознать t-жесткость графа является NP-трудной задачей 
даже в классе графов, имеющих достаточно высокую минимальную степень, чтобы гарантиро-
вать свойство t-жесткости графа в следующем смысле.
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Те о р е м а  2 [2]. Пусть t ≥ 1 – рациональное число. Если минимальная степень 
1

,t
t

n 
 + 

δ ≥  

то G является t-жестким. С другой стороны, для любого фиксированного ε  >  0 проблема 

t-ЖЕСТКОСТЬ для графа G с 
1

nt
t

 − ε +
≥ 


δ  является уже coNP-полной.

Другим интересным классом графов является класс двудольных графов. Нетрудно заметить, 
что τ(G) ≤ 1 для любого двудольного графа G – достаточно в качестве вершинного разреза S вы-
брать долю меньшей мощности. Тем не менее проблема 1-ЖЕСТКОСТЬ не становится легче для 
двудольных графов. В 1996 г. Д. Кратч и другие смогли свести проблему 1-ЖЕСТКОСТЬ для про-
извольного графа к проблеме 1-ЖЕСТКОСТЬ для двудольных графов, используя классическую 
конструкцию Нэш-Вильямса.

Те о р е м а  3 [3]. Проблема t-ЖЕСТКОСТЬ остается coNP-полной в классе двудольных графов.
Как следствие получается, что проблема 1-ЖЕСТКОСТЬ графа также является NP-трудной 

в классе K3-свободных графов.
Еще одним важным классом графов, который исследовался на нахождение жесткости, яв-

ляется класс регулярных графов. Отметим, что жесткость r-регулярного графа G не превосхо-

дит  r/2, поскольку справедливо неравенство 
( )( ) .
2 2
G rG κ

τ ≤ ≤  Сначала проблема 1-ЖЕСТКОСТЬ 
изучалась для кубических графов [4], а затем результаты исследований были обобщены в виде 
следующего утверждения.

Те о р е м а  4 [5]. Для любого целого числа t ≥ 1 и любого целого r ≥ 3t проблема t-ЖЕСТКОСТЬ 
является coNP-полной в классе r-регулярных графов.

Сложность распознавания t-жесткости r-регулярных графов остается открытой, когда 
2t ≤ r < 3t, а сложность распознавания в случае r = 2t + 1 является особенно интригующей. Там 
же [5] была выдвинута следующая гипотеза.

Г и п о т е з а. Для любого целого числа t ≥ 1 проблема t-ЖЕСТКОСТЬ остается NP-трудной 
для (2t + 1)-регулярных графов.

В данной статье мы устанавливаем справедливость этой гипотезы.
Напомним, что t-регулярный остовной подграф называется t-фактором. Связный 2-регуляр-

ный остовной подграф является гамильтоновым циклом, а 1-фактор графа G также называется 
его совершенным паросочетанием.

Реберная k-раскраска графа – это такое разбиение его ребер на k (цветных) классов, что ни-
какие смежные ребра не принадлежат одному и тому же классу. Наименьшее возможное коли-
чество цветов в раскраске ребер графа называется его хроматическим индексом. Так как ребра 
k-регулярного графа не могут быть раскрашены менее чем в k цветов, хроматический индекс 
k-регулярного реберно k-раскрашенного графа равен k. Очевидно, что дополнение 1-фактора ку-
бического графа является его 2-фактором. В общем случае такой 2-фактор может иметь циклы 
произвольной длины, но особый интерес представляют 2 случая – когда все циклы имеют чет-
ную длину и когда существует в точности один (т. е. гамильтонов) цикл. Оказывается, первый 
случай тесно связан с раскраской его ребер. При этом 2-фактор, в котором все циклы имеют чет-
ную длину, называется четным 2-фактором. 

Если ∆ – максимальная степень вершин графа, то по теореме Визинга хроматический индекс 
равен либо ∆, либо ∆ + 1. Этот факт разбивает графы на два класса: класс 1 и класс 2 соответ-
ственно. В [6] было обнаружено, что хорошо известная проблема четырех красок эквивалентна 
тому, что простые связные планарные кубические графы без мостов относятся к классу 1, т. е. 
имеют хроматический индекс 3. Простые связные кубические графы без мостов могут относить-
ся и к классу 2, т. е. иметь хроматический индекс 4.

Те о р е м а  5 [7]. Кубический граф G реберно 3-раскрашиваем тогда и только тогда, когда 
он имеет четный 2-фактор.

Те о р е м а  6. Задача 1-ЖЕСТКОСТЬ остается coNP-полной для 2-связных реберно 3-рас-
крашиваемых кубических графов.
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Рис. 1. Граф Hv с правильной реберной 3-раскраской

Fig. 1. Graph Hv with a regular edge 3-coloring

Д о к а з а т е л ь с т в о. Как было уже сказано, задача 1-ЖЕСТКОСТЬ остается coNP-пол
ной для кубических графов (теорема 1.8 [4]). Поэтому мы полиномиально сведем задачу 
1-ЖЕСТКОСТЬ для кубического графа G к задаче 1-ЖЕСТКОСТЬ для 2-связного реберно 
3-раскрашиваемого кубического графа H = H(G) с помощью аналогичного метода, который ис-
пользовался в доказательстве теоремы 1.8 [4]. А именно: каждой вершине ( )v V G∈  мы ставим 
в соответствие в графе H граф Hv, изображенный на рис. 1, который состоит из двух подграфов Av 
и Bv, соединенных ребром e, с указанной на рис. 1 раскраской его ребер в цвета 1, 2 и 3.

Каждому ребру vw графа G мы ставим в соответствие в графе H два ребра, которые соединя-
ют вершину степени 2 в Av с вершиной степени 2 в Bw, а также вершину степени 2 в Aw с верши-
ной степени 2 в Bv. Эти добавленные ребра мы раскрасим в графе H в цвет 1. В результате, оче-
видно, получим 2-связный реберный 3-раскрашиваемый кубический граф H = H(G). Поскольку 
такое соответствие является частным случаем соответствия, предложенного в доказательстве 
теоремы 1.8 [4], то будет справедливо следующее

У т в е р ж д е н и е. G является 1-жестким тогда и только тогда, когда H(G) является 
1-жестким.

Таким образом, задача 1-ЖЕСТКОСТЬ остается coNP-полной для 2-связных реберно 3-рас-
крашиваемых кубических графов. Теорема доказана.

Те о р е м а  7. Для любого целого числа t ≥ 1 проблема t-ЖЕСТКОСТЬ остается coNP-полной 
для (2t + 1)-регулярных графов.

Д о к а з а т е л ь с т в о. Сведем задачу 1-ЖЕСТКОСТЬ для 2-связных реберно 3-раскрашивае
мых кубических графов к задаче t-ЖЕСТКОСТЬ для (2t + 1)-регулярных графов, где t ≥ 1 – це-
лое число. 

Пусть G  – любой 1-жесткий 2-связный 3-реберно-раскрашиваемый кубический граф. 
Согласно теореме 5 ребра графа G можно разбить на 1-фактор и четный 2-фактор, состоящий из 
четных циклов.

Построим H = H(G) следующим образом. Каждая вершина ( )v V G∈  в графе G заменяется на 
полный граф Kt в графе H. Такой граф будем обозначать через .v

tK  Для смежных вершин u и v 
в графе G m-соединением графов v

tK  и w
tK  в графе H будем называть ребра паросочетания Pvw 

между вершинами графов v
tK  и .w

tK  При этом ребро uv графа G назовем m-ребром. Аналогично, 
для смежных вершин u и v в графе G c-соединением графов v

tK  и w
tK  в графе H будем называть 

ребра полного двудольного графа ( ), ( ), ( )vw v w
t t t tK K V K V K=  в графе H между вершинами графов 

v
tK  и .w

tK  При этом ребро uv графа G назовем c-ребром. Тогда в 1-факторе графа G каждое ребро 
vw мы заменим m-соединением в графе H, а в четном 2-факторе графа G мы попеременно заме-
ним каждое ребро vw на c-соединение и m-соединение в графе H. Таким образом, c-соединение 
представляет собой совокупность t2 ребер, а m-соединение представляет собой совокупность 
t независимых ребер, и каждый подграф v

tK  в графе H имеет одно c-соединение и два m-соеди-
нения с тремя другими различными подграфами u

tK  графа H, где .
G

u v  Следовательно, построен-

ный граф H является (2t + 1)-регулярным.
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Покажем, что из 2-связности исходного графа G следует, что построенный граф H является 
2t-связным. Для этого по теореме Уитни достаточно показать, что любая пара различных вер-
шин графа H может быть соединена по крайней мере 2t непересекающимися цепями. Возможны 
следующие случаи.

С л у ч а й  1. Пара различных вершин x, y графа H лежит в одном и том же графе .v
tK  Тогда 

в самом графе v
tK  имеется t – 1 xy-цепь плюс для c-ребра vw t xy-цепей вида { | }w

txzy z K〈 〉 ∈  и для 
двух m-ребер vu две xy-цепи вида { | , , , },u

t vuxzsy z s K xz sy P〈 〉 ∈ ∈  всего 2t + 1 цепь.
С л у ч а й  2. Пара вершин x и y графа H лежит в разных графах v

tK  и ,w
tK  причем вершины 

v и w графа G лежат на одном и том же четном цикле C 2-фактора графа G. 
П о д с л у ч а й  2.1. Вершины v и w несмежны в графе G. Пусть vu, wg – m-ребра, а vf, wh – 

c-ребра цикла C. Тогда можно построить t непересекающихся xy-цепей вида

{ }| , , ,v u h
t t vu txzs ry z K s K zs P r K〈 〉 ∈ ∈ ∈ ∈

и t непересекающихся xy-цепей вида 

{ }| , , , ,g fw
t wgt tyzs rx z K s K zs P r K〈 〉 ∈ ∈ ∈ ∈

всего получаем 2t непересекающихся xy-цепей (рис. 2). 
П о д с л у ч а й  2.2. Вершины v и w графа G смежны, причем ребро vw графа G является 

c-ребром, а ребра vu, wh – m-ребра цикла C. В этом случае построим 2t – 1 непересекающихся 
xy-цепей вида

{ } { }; | , |v w
t txy xzy z K xzy z K〈 〉 ∈ 〈 〉 ∈

и одну цепь вида

| ,     ,     ,     ,u h
t t vu whxz ry z K r K xz P ry P〈 〉 ∈ ∈ ∈ ∈

всего получаем 2t непересекающихся xy-цепей (рис. 3, a).
П о д с л у ч а й  2.3. Вершины v и w графа G смежны, причем ребро vw графа G является 

m-ребром, а ребра vu, wh  – c-ребра цикла C. В этом случае построим t непересекающихся xy-
цепей вида

{ }| , ,v w
t t vwxzsy z K s K zs P〈 〉 ∈ ∈ ∈

Рис. 2. 2t непересекающихся xy-цепей (v и w несмежны)

Fig. 2. 2t disjoint xy-paths (v and w are not adjacent)
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а b

Рис. 3. 2t непересекающихся xy-цепей (v и w смежны)

Fig. 3. 2t disjoint xy-paths (v and w are adjacent)

и t непересекающихся xy-цепей вида

{ }| , ,u h
t txz sy z K s K〈 〉 ∈ ∈

всего получаем 2t непересекающихся xy-цепей (рис. 3, b).
С л у ч а й  3. Пара вершин x и y графа H лежит в разных графах v

tK  и ,w
tK  причем вершины 

1 2 1 2,   ,   ,v C w C C C∈ ∈ ≠  где C1, C2  – различные четные циклы 2-фактора графа G. Поскольку 
исходный граф G 2-связен, то, согласно теореме Уитни, существуют две непересекающиеся vw-
цепи. Нетрудно видеть, что (если нужно, взяв дополнение цепей в циклах C1 и C2) можно по-
строить две vw-цепи таким образом, чтобы каждой концевой вершине v и w было инцидентно 
одно c-ребро, принадлежащее одной из двух vw-цепей. Причем эти два конечных c-ребра могут 
принадлежать только одной vw-цепи, а у второй vw-цепи конечными ребрами могут быть оба 
m-ребра. Тогда так же, как и выше, для каждой пары m- и c-ребер, инцидентных вершинам v и w 
в графе G, можно построить 2t непересекающихся xy-цепей в графе H.

Таким образом, H является 2t-связным.
Чтобы завершить доказательство, теперь покажем, что G является 1-жестким тогда и только 

тогда, когда H является t-жестким. 
Предположим, что G не является 1-жестким, т. е. существует вершинный разрез ( ,)X V G⊆  удов-

летворяющий неравенству ( ) .c G X X− >  Пусть ( )Y V H⊆  состоит из полных графов ,   ,x
tK x X∈  

соответствующих вершинам из X. Легко видеть, что Y также является вершинным разрезом, 

причем ( ) ( ) ,
Y

c H Y c G X X
t

− = − > =  и, следовательно, H не является t-жестким, противоречие.

Обратно, предположим, что граф H не является t-жестким. Тогда существует вершинный 

разрез ( ),Y V H⊆  удовлетворяющий неравенству ( ) .
Y

c H Y
t

− >  Будем говорить, что граф v
tK  в H 

не расщепляется разрезом Y, если он не пересекается с Y. 
Покажем, что без ограничения общности можно считать, что каждый полный граф v

tK  в графе H 
полностью содержится в разрезе Y или не расщепляется им.

Действительно, выберем разрез ( ),Y V H⊆  такой, что ( )  
Y

c H Y
t

− >  и разрез Y расщепляет наи-
меньшее число графов ,v

tK  входящих в граф H. Если разрез Y не расщепляет ни один граф ,v
tK  то 

доказывать нечего, поэтому предположим, что A является некоторым графом ,v
tK  который расщеп

ляется разрезом Y, и пусть B1 и B2 обозначают графы ,w
tK  которые m-соединены с A. Возможны 

следующие случаи.
С л у ч а й  1. B1 и B2 не расщепляются разрезом Y. Пусть ( ).Y Y A Y′ = −   Тогда  ,Y Y′ <  в то вре

мя как ( ) ( ),c H Y c H Y′− = −  поскольку граф A по-прежнему c-соединен с теми же графами ,u
tK  

что и A – Y. Таким образом, мы имеем 
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 ,
( ) ( )

Y Y
t

Yc cH H Y
′

< <
′− −

 или ( ) .c
Y

H Y
t
′

′− >

Поскольку Y является разрезом и ( ) ( ),c H Y c H Y′− = −  то Y′ также является разрезом в H. 
Поскольку Y′ расщепляет меньшее количество графов Kt, чем Y, то это нарушает условие выбора Y.

Случай 2.1. B1 и B2 расщепляются Y и 1 2 .A Y B Y B Y t+ + <    Положим Y′ = Y – 
1 2( ).( ) ( )Y Y A Y B Y B Y′ − −= −   

Тогда Y Y′ <  и ( ) ( ),c H Y c H Y′− = −  поскольку A – Y, B1  – Y и B2  – Y принадлежат одной 
и той же компоненте связности графа H – Y, и A (соответственно, B1 и B2) c-соединен со сво-
ими смежными графами Kt, кроме B1 и B2 (соответственно, A). Таким образом, мы получа-

ем  ,
( ) ( )

Y Y
t

Yc cH H Y
′

< <
′− −

 или ( ) .c
Y

H Y
t
′

′− >  Поскольку Y является вершинным разрезом

и ( ) ( ),c H Y c H Y′− = −  то Y′ также является вершинным разрезом в H. Снова Y′ расщепляет мень-
шее число графов Kt, чем Y, что нарушает условие выбора Y.

С л у ч а й  2.2. B1 и B2 расщепляются Y и 1 2 .A Y B Y B Y t+ + ≥    Положим 
( ) ,Y Y A Y Z′ = − −  где 1 2( ) ( )Z B Y B Y⊆      – любое подмножество мощности 

0.Z t A Y= − >  Поскольку H является 2t-связным и Y является вершинным разрезом в H, име-
ем 2 .Y Y t t t t′ = − ≥ − =  Заметим, что ( ) ( ) 1,c H Y c H Y′− − −≥  так как стягивая две компоненты, 
содержащие A – Y, B1 – Y и B2 – Y, мы можем потерять не более одной компоненты. Поскольку 

( ) ,
Y

c H Y
t

− >  получаем  ,
( ) ( ) 1

Y Y t
t

c H Y c H Y
′ −

≤ <
′− − −

 или ( )   1.
Y

c H Y
t
′

′− > ≥  Таким образом,

Y′ является вершинным разрезом в H. Поскольку Y′ расщепляет меньшее количество графов Kt, 
чем Y, то это нарушает условие выбора Y.

Чтобы закончить доказательство теоремы 7, предположим, что ( )X V G⊆  обозначает подмно-
жество вершин в G, которые соответствуют графам ,x

tK  входящим в Y. Тогда X является вершин-

ным разрезом в G и имеет место ( ) ( ) ,
Y

c G X c H Y X
t

− = − > =  и, следовательно, G не является 

1-жестким графом, противоречие. Это доказывает теорему 7.
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EIGENVALUES OF THE GENERALIZED HELICITY OPERATOR 
FOR SPIN 3/2 PARTICLE IN THE PRESENCE OF THE MAGNETIC FIELD 

AND THE PROJECTIVE OPERATORS METHOD

Abstract. The eigenvalue problem for generalized helicity operator for a spin 3/2 particle in presence of the uniform 
magnetic field is solved. After separating the variables in the basis of cylindrical coordinates (r, ϕ, z) and the tetrad, the system 
of 16 first-order differential equations in the variable r is derived. This system is studied with the use of the method of pro-
jective operators, constructed with the use of the third projection of the spin for the particle. In accordance with thе method 
by Fedorov – Gronskiy, all 16 variables may be expressed in terms of only 4 distinguished functions, which are constructed 
in terms of confluent hypergeometric functions. Further the problem reduces to studying the linear algebraic homogeneous 
system for 16 algebraic variables. In the end, we derive algebraic equations of the second and the fourth order, their roots de-
termine the possible eigenvalues of the helicity operator.

Keywords: spin 3/2 particle, external magnetic field, generalized helicity operator, cylindric symmetry, projective oper-
ators, eigenvalue problem, exact solutions
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ЗАДАЧА О СОБСТВЕННЫХ ЗНАЧЕНИЯХ ОБОБЩЕННОГО ОПЕРАТОРА СПИРАЛЬНОСТИ  
ДЛЯ ЧАСТИЦЫ СО СПИНОМ 3/2 В МАГНИТНОМ ПОЛЕ  

И МЕТОД ПРОЕКТИВНЫХ ОПЕРАТОРОВ

Аннотация. Решена задача о собственных значениях обобщенного оператора спиральности для частицы со спи-
ном 3/2 во внешнем однородном магнитном поле. После разделения переменных в уравнении на собственные значе-
ния в цилиндрической системе координат (r, ϕ, z) и соответствующей тетраде найдена система дифференциальных 
уравнений первого порядка в переменой r для 16 функций. Эта система решена на основе применения метода проек-
тивных операторов, построенных на основе третьей проекции оператора спина частицы. В соответствии с методом 
Федорова – Гронского все 16 переменных могут быть выражены только через 4 различающиеся функции, удовлетво-
ряющие уравнениям вырожденного гипергеометрического типа. Дальнейшая задача сводится к анализу однородной 
алгебраической системы уравнений для 16 неизвестных величин. В итоге найдены уравнения 2-го и 4-го порядков, 
корни которых определяют собственные значения оператора спиральности.

Ключевые слова: частица со спином 3/2, внешнее магнитное поле, обобщенный оператор спиральности, ци-
линдрическая симметрия, проективные операторы, задача на собственные значения, точные решения
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Helicity operator, the basic formulas. As it is known, in presence of the external magnetic field, it 
is useful to use the possibilities to diagonalize additionally the helicity operator. In Cartesian basis, this 
operator for a spin 3/2 particle is determined by the formula [1–9] (the presence of the external magnetic 
field will be taken into account below) 

	

   23 31 12 23 31 12
1 2 3 1 2 3

1 1 2 2 3 3 cart cart( ),    = .

i I I j j j

S S S

                  
        	 (1)

Taking in mind expessions for matrices in Cartesian basis, from the formula (1) we derive1: 

	

3 1 2

1 2 3 3 2

3 1 2 3 1

1 2 3 2 1

0 0 0 0 0 0
0 0 0 01= .

0 0 0 02
0 0 0 0

i
i i i

I I
i i i

i i i

∂ ∂ − ∂
∂ + ∂ −∂ − ∂ ∂

Σ ⊗ + ⊗
∂ ∂ − ∂ ∂ − ∂

∂ + ∂ −∂ − ∂ ∂ 	

(2)

After the transition to cylindric coordinateds we get

3

3

cart

3

3

0 0

0 0
1=
2

0 0

0 0

i
r

i
r

i
r

i
r

ie
r

ie
r

I
ie
r

ie
r

− φ
φ

φ
φ

− φ
φ

φ
φ

 ∂ ∂ − ∂ 
 

 ∂ + ∂ −∂ 
 Σ ⊗ +

 ∂ ∂ − ∂ 
 

 ∂ + ∂ −∂ 
   

3

3

0 0 0 0
cos0 0 sin

.sin0 0 cos

cos sin0 sin cos 0

r

r

r r

i i
r

I
i i

r

i i
r r

φ

φ

φ φ

φ − ∂ φ∂ + ∂ 
 

+ ⊗ φ ∂ − φ∂ − ∂ 
 

φ φ   − φ∂ + ∂ φ∂ − ∂   
   

Transition to 16-dimensional form. Let us start with the transformation relating Cartesian basis 
with cylindrical one 

	

/2 /2 /2 /2
1 2 1 2 3

/2 /2 /2 /2
1 2 1 2 3

cyl cart /2 /2 /2 /2
1 2 1 2 3

/2 /2
1

(cos sin ) ( sin cos )

(cos sin ) ( sin cos )
= ( ) =

(cos sin ) ( sin cos )

(cos s

i i i i

i i i i

i i i i

i i

e e f f e f f e f

e e g g e g g e g
B L

e e h h e h h e h

e e d

φ φ φ φ

− φ − φ − φ − φ

φ φ φ φ

− φ − φ

φ + φ − φ + φ

φ + φ − φ + φ
Ψ ⊗ Ψ

φ + φ − φ + φ

φ + /2 /2
2 1 2 3

.

in ) ( sin cos )i id e d d e d− φ − φφ − φ + φ 	

(3)

We turn to the helicity equation in Cartesian basis; after performing needed calculations we arrive at the 
system (in Cartesian basis) 

3 0 0 0 3 0 0 0= 2 ,     = 2 ,c i c c c i c c
r r

i i
f e g f g e f g

r r
φ φ− φ + φ∂ ∂   

+∂ + ∂ − σ − ∂ + ∂ + σ   
   

3 0 0 0 3 0 0 0= 2 ,     = 2 ;c i c c c i c c
r r

i i
h e d h d e h d

r r
φ φ− φ + φ∂ ∂   

+∂ + ∂ − σ ∂ + ∂ + σ   
   

1 The use of anti-Hermitian generators means that the eigenvalues of the introduced helicity operator will be purely ima
ginary.
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3 1 3 2 1 3 1
cos2 2 sin = 2 ,c c i c c c

r r
i

f i f e g i f f
r r

φ− φ
φ

∂ φ   +∂ − ∂ + ∂ − + φ∂ + ∂ σ     

3 1 3 2 1 3 1
cos2 2 sin = 2 ,c c i c c c

r r
i

g i g e f i g g
r r

φ+ φ
φ

∂ φ   ∂ − ∂ + ∂ + + φ∂ + ∂ σ     

3 1 3 2 1 3 1
cos2 2 sin = 2 ,c c i c c c

r r
i

h i h e d i h h
r r

φ− φ
φ

∂ φ   +∂ − ∂ + ∂ − + φ∂ + ∂ σ     

3 1 3 2 1 3 1
cos2 2 sin = 2 ;c c i c c c

r r
i

d i d e h i d d
r r

φ+ φ
φ

∂ φ   −∂ − ∂ + ∂ + + φ∂ + ∂ σ     

3 2 3 1 2 3 2
sin2 2 cos = 2 ,c c i c c c

r r
i

f i f e g i f f
r r

φ− φ
φ

∂ φ   +∂ + ∂ + ∂ − − φ∂ − ∂ σ     

3 2 3 1 2 3 2
sin2 2 cos = 2 ,c c i c c c

r r
i

g i g e f i g g
r r

φ+ φ
φ

∂ φ   −∂ + ∂ + ∂ + − φ∂ − ∂ σ     

3 2 3 1 2 3 2
sin2 2 cos = 2 ,c c i c c c

r r
i

h i h e d i h h
r r

φ− φ
φ

∂ φ   +∂ + ∂ + ∂ − − φ∂ − ∂ σ     

3 2 3 1 2 3 2
sin2 2 cos = 2 ;c c i c c c

r r
i

d i d e h i d d
r r

φ+ φ
φ

∂ φ   −∂ + ∂ + ∂ + − φ∂ − ∂ σ     

3 3 3 1 2 3
cos sin2 sin 2 cos = 2 ,c i c c c c

r r r
i

f e g f i f f
r r r

φ− φ
φ φ

∂ φ φ     +∂ + ∂ − − φ∂ + ∂ + φ∂ − ∂ σ         

3 3 3 1 2 3
cos sin2 sin 2 cos = 2 ,c i c c c c

r r r
i

g e f g i g g
r r r

φ+ φ
φ φ

∂ φ φ     −∂ + ∂ + − φ∂ + ∂ + φ∂ − ∂ σ         

3 3 3 1 2 3
cos sin2 sin 2 cos = 2 ,c i c c c c

r r r
i

h e d h i h h
r r r

φ− φ
φ φ

∂ φ φ     +∂ + ∂ − − φ∂ + ∂ + φ∂ − ∂ σ         

3 3 3 1 2 3
cos sin2 sin 2 cos = 2 .c i c c c c

r r r
i

d e h d i d d
r r r

φ+ φ
φ φ

∂ φ φ     −∂ + ∂ + − φ∂ + ∂ + φ∂ − ∂ σ         

We can see that it is enough to study only the system for the variables fa, ga: 

3 0 0 0 3 0 0 0= 2 ,      = 2 ,c i c c c i c c
r r

i i
f e g f g e f g

r r
φ φ− φ + φ∂ ∂   

+∂ + ∂ − σ − ∂ + ∂ + σ   
   

3 1 3 2 1 3 1
cos2 2 sin = 2 ,c c i c c c

r r
i

f i f e g i f f
r r

φ− φ
φ

∂ φ   +∂ − ∂ + ∂ − + φ∂ + ∂ σ     

3 1 3 2 1 3 1
cos2 2 sin = 2 ,c c i c c c

r r
i

g i g e f i g g
r r

φ+ φ
φ

∂ φ   ∂ − ∂ + ∂ + + φ∂ + ∂ σ     

	
3 2 3 1 2 3 2

sin2 2 cos = 2 ,c c i c c c
r r

i
f i f e g i f f

r r
φ− φ

φ
∂ φ   +∂ + ∂ + ∂ − − φ∂ − ∂ σ      	

(4)

3 2 3 1 2 3 2
sin2 2 cos = 2 ,c c i c c c

r r
i

g i g e f i g g
r r

φ+ φ
φ

∂ φ   −∂ + ∂ + ∂ + − φ∂ − ∂ σ     

3 3 3 1 2 3
cos sin2 sin 2 cos = 2 ,c i c c c c

r r r
i

f e g f i f f
r r r

φ− φ
φ φ

∂ φ φ     +∂ + ∂ − − φ∂ + ∂ + φ∂ − ∂ σ         

3 3 3 1 2 3
cos sin2 sin 2 cos = 2 .c i c c c c

r r r
i

g e f g i g g
r r r

φ+ φ
φ φ

∂ φ φ     −∂ + ∂ + − φ∂ + ∂ + φ∂ − ∂ σ         
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Now we should take into account the transformation between Cartesian and cylindrical tetrad bases; we 
will follow only transformations on the variables fa, ga: 

	

( )
( )

( )
( )

( 1/2)( 1/2)
1 1 20 0

( 1/2)( 1/2)
1 1 20 0

( 1/2) ( 1/2)
2 1 2 3 3

( 1/2) ( 1/2)
2 1 2 3 3

= cos sin ,= ,
     

= cos sin ,= ,

= sin cos , = ,
     

= sin cos , = ,

c ic i

c ic i

c i c i

c i c i

f e f ff e f

g e g gg e g

f e f f f e f

g e g g g e g

− φ− φ

+ φ+ φ

− φ − φ

+ φ + φ

φ − φ

φ − φ

φ + φ

φ + φ 	

(5)

and inverse ones 

	

( )
( )

( )
( )

( 1/2)( 1/2) 1 1 20 0
( 1/2) ( 1/2)

0 0 1 1 2

( 1/2) ( 1/2)2 1 2 3 3
( 1/2)( 1/2)

3 32 1 2

= cos sin ,= ,
     

= , = cos sin ,

= sin cos , = ,
     

= .= sin cos ,

i c ci c

i c i c c

i c c i c

i ci c c

f e f ff e f

g e g g e g g

f e f f f e f

g e gg e g g

+ φ+ φ

− φ − φ

+ φ + φ

− φ− φ

φ + φ

φ + φ

− φ + φ

− φ + φ
	

(6)

With the use of (5) and (6) we can transform the subsystem (4) to the other form (we will omit technical 
details and write down the final system of 8 equations; besides, we have taken into account that factors 

ikz ime e φ  are in the field function)

0 0 0 0 0 0
1 / 2 1/ 2( 2 ) = 0,      ( 2 ) = 0.m mg g f ik f f g ik
r r
           

3 1 2
1 2 1

2 1
2 1 3 2

(1 2 ) (2 1)( 2 ) 2 = 0,
2

(2 1)( 2 ) 2 2 = 0,
2

m f m g igf ik kf g
r r r

m g igf ik kf if g
r r

         

        

1 2 3
1 1 2

2 1
2 2 1 3

(1 2 ) (2 1)( 2 ) 2 = 0,
2

(1 2 ) ( 2 ) 2 2 = 0,
2

m f if m gf g ik kg
r r r
m f iff g ik kg ig
r r

        

         

3 1 2 2 3 3

3 3 3 1 2 2

2 1 2 2 1( 2 ) 2 = 0,
2

(1 2 ) 2 1 2( 2 ) 2 = 0.
2

m i mik f f if f g g
r r r

m m if f ik g g ig g
r r r

− +′ ′− σ + + + + + +

− +′ ′+ + − σ − + + +

Thus we arrive at the system of 8 equations. Further we will present this system in the matrix form, 
applying the truncated column Ψcul: 

	

0

0

1

1
cyl cyl cyl

2

2

3

3

= 2 ,      = ,

f
g
f
g

A
f
g
f
g

Ψ σΨ Ψ

	

(7)

where (let d/dr = R) 
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2 1 0 0 0 0 0 0
2

1 2 0 0 0 0 0 0
2

2 1 1 20 0 2 0
2

1 2 2 10 0 2 0
2

.2 10 0 2 2 0
2

1 20 0 2 0 2
2

2 1 2 2 10 0 0 2 0
2

2 1 2 1 20 0 0 0 2
2

mik R
r

m R ik
r

m i mik R k
r r r

m i mR ik k
r r r

A i mk ik R iR
r r

i mk R ik iR
r r

m i miR ik R
r r r

m i miR R ik
r r r

+
+

−
+ −

+ −
+

− +
+ − − −

= +
− − + −

−
− + − −

− +
+ +

+ −
+ + −

(8)
Let us transform this system to the cyclic basis [7–9]. Starting with the relations 

	
1

cycl cyl= ,     = = ,     = ,     = ,kB BA kA kA ABU U U U U −Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ  

 	 (9)

in 16-dimensional form 16 16= T ×Ψ Ψ  we have the needed repesentation; we use its truncated 8-form 

	

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 1/ 2 0 / 2 0 0 0

0 0 0 1/ 2 0 / 2 0 0
= .
1 / 2 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0 0 1/ 2 0 / 2 0 0 0

0 0 0 1/ 2 0 / 2 0 0

i

i
T

i

i





	

(10)

Transition of the system to the cyclic basis is done by the rule

	
1 1= ,     ( ) = 2 ,     = ;T TAT A TAT− −Ψ Ψ Ψ σΨ 	 (11)

for the matrix A  we obtain an explicit expression: then we get new equations

0 0 0 0 0 0
1 / 2 1 / 2= 2 ,     = 2 ,d m d mikf g f f ikg g

dr r dr r
+ −   + + σ − − σ   

   

1 2 1 1
1 / 2 1 / 23 2 = 2 ,d m d mikf f g f

dr r dr r
− −   + + + + σ   

   

1 1 2 1
3 / 2 1 / 22 = 2 ,d m d mf ikg g g

dr r dr r
− +   − + + + σ   

   

	
1 2 3 2 2

3 / 2 1 / 2 1 / 22 2 = 2 ,d m d m d mf ikf f g f
dr r dr r dr r

− + +     − + + + + + σ     
      	

(12)
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2 1 2 3 2
1 / 2 1 / 2 3 / 22 2 = 2 ,d m d m d mf g ikg g g

dr r dr r dr r
− − +     − + − − + + σ     

     

2 3 3 3
1 / 2 3 / 22 = 2 ,d m d mf ikf g f

dr r dr r
− +   − − + + σ   

   

3 2 3 3
1 / 2 1 / 22 3 = 2 .d m d mf g ikg g

dr r dr r
+ +   − + − − σ   

     
With the use of shortening notations 

1/2 1/2 3/2

1/2 1/2 3/2

1 / 2 1 / 2 3 / 2= ,     = ,     = ,

1/ 2 1 / 2 3 / 2= ,     = ,     = ,

m m m

m m m

d m d m d ma a a
dr r dr r dr r
d m d m d mb b b
dr r dr r dr r

− + +

− + −

− + +
+ + +

− + −
− − −

we reduce the last system to the form 

	

1/2 0 0 1/2 0 0

1/2 2 1/2 1 1

3/2 1 1/2 2 1

3/2 1 1/2 3 1/2 2 2

1/2 2 1/2 1 3/2 3 2

1/2 2 3/2 3

= (2 ) ,     = (2 ) ,

2 = (2 3 ) ,

2 = (2 ) ,

2 2 = (2 ) ,

2 2 = (2 ) ,

2 = (2

m m

m m

m m

m m m

m m m

m m

a g ik f b f ik g

a f a g ik f

b f a g ik g

b f a f a g ik f

b f b g a g ik g

b f a g

+ −

− −

− +

− + +

− − +

− +

σ − σ +

+ σ −

+ σ −

+ + σ −

+ + σ +

+ 3

1/2 3 1/2 2 3

) ,

2 = (2 3 ) .m m

ik f

b f b g ik g+ +

σ +

+ σ + 	

(13)

Method of projective operators. In order to solve the system (13) we will apply the method of projec-
tive operators [10]. To this end, let us start with the matrix (in the cyclic basis) 12 12 12= = ,Y J I I jσ ⊗ + ⊗  
whence it follows 

	

0 1 2 3

0 1 2 3

cycl

0 1 2 3

0 1 2 3

3
2 2 2 2

3
2 2 2 2= .

3
2 2 2 2

3
2 2 2 2

i i i if f f f

i i i ig g g g
Y

i i i ih h h h

i i i id d d d

− − −

−
Ψ

− − −

−
	

(14)

It is more convenient to have a 16-dimensional form of generator Y 

	

(0) 0 1 2 3

(1) 0 1 2 3
( ) (0) (1) (2) (3)

(2) 0 1 2 3

(3) 0 1 3 3

= = ,     = ,     = ,     = ,     = ;

A

A
A n A A A A

A

A

f f f f
g g g g
h h h h
d d d d




     

 	

(15)

for the relevant matrix Y we get the explicite expression. In which we can separate two similar 
8-dimensional structures with respect to the variables: 
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	 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3, , , , , , , , , , , , , , , ;f g f g f g f g h d h d h d h d  	  (16)

so the truncated matrix Y is defined by 

	

0

0

1

1

2

2

3

3

/ 2 0 0 0 0 0 0 0
0 / 2 0 0 0 0 0 0
0 0 3 / 2 0 0 0 0 0
0 0 0 / 2 0 0 0 0

= .
0 0 0 0 / 2 0 0 0
0 0 0 0 0 / 2 0 0
0 0 0 0 0 0 / 2 0
0 0 0 0 0 0 0 3 / 2

i f
i h

i f
i h

Y
i f

i h
i f

i h

−

−
−

Ψ
−

− 	

(17)

We verify that the minimal equation is valid [10]

	
2 2( 1 / 4)( 9 / 4) = ( / 2)( / 2)( 3 / 2)( 3 / 2) = 0,Y Y Y i Y i Y i Y i+ + + − + − 	 (18)

which permits us to introduce four projective operators 

	

2 2
1 2

2 2
3 4

9 9= ,     = ,
2 2 4 2 2 4

1 3 1 3= ,     = ,
6 4 2 6 4 2

i i i iP Y Y P Y Y

i i i iP Y Y P Y Y

     + − + − + +     
     
     + + + − + −     
      	

with the properties 2
1 2 3 4 = , = ;i iP P P P I P P+ + +  correspondingly, the wave function can be 

decomposed into the sum of 4 parts, 1 2 3 4=Ψ Ψ + Ψ + Ψ + Ψ . Their explicit form is readily found. 
Correspondingly, the truncated projective constituents are determined by the relations 

	

0

0

1

1
1 2 3 4

2

2

3

3

( ) 0 0 0
0 ( ) 0 0
0 0 0 ( )
( ) 0 0 0

= ,     = ,     = ,     = .
( ) 0 0 0
0 ( ) 0 0
0 ( ) 0 0
0 0 ( ) 0

f r
g r

f r
g r
f r

g r
f r

g r

Ψ Ψ Ψ Ψ

	

(19)

We divide 8 equations into 4 groups:

1 1/2 0 0 3/2 1 1/2 2 1,      = (2 ) ,      2 = (2 ) ,m m mP a g ik f b f a g ik g+ − +σ − + σ −

3/2 1 1/2 3 1/2 2 22 2 = (2 ) ;m m mb f a f a g ik f− + ++ + σ −

2 1/2 0 0 1/2 2 1/2 1 3/2 3 2,     = (2 ) , 2 2 = (2 ) ,m m m mP b f ik g b f b g a g ik g− − − +σ + + + σ +

1/2 2 3/2 3 32 = (2 ) ;m mb f a g ik f− ++ σ +

3 1/2 3 1/2 2 3 4 1/2 2 1/2 1 1,     2 = (2 3 ) ;      ,     2 = (2 3 ) .m m m mP b f b g ik g P a f a g ik f+ + − −+ σ + + σ −

According to the method by Fedorov – Gronskiy [10], each projective constituent is determined only 
by one function of the variable r:
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0

0

1

1
1 1 2 2 3 3 4 4

2

2

3

3

0 0 0
0 0 0
0 0 0

0 0 0
= ( ),      = ( ),      = ( ),      = ( );

0 0 0
0 0 0
0 0 0
0 0 0

f
g

f
g

r r r r
f

g
f

g

Ψ ϕ Ψ ϕ Ψ ϕ Ψ ϕ

	

(20)

inside the columns some numerical coefficients stay. Besides, near each equation we have to impose 
additional differential constraints which permit us to transform the equations to the algebraic form:

1 1/2 2 0 1 0 1/2 2 1 1,     = (2 ) = ,m mP a g ik f a c+ +ϕ σ − ϕ ⇒ ϕ ϕ

3/2 4 1 1/2 2 2 1 1 3/2 4 2 1 1/2 2 1 12 = (2 ) = , = ,m m m mb f a g ik g b c a c− + − +ϕ + ϕ σ − ϕ ⇒ ϕ ϕ ϕ ϕ

3/2 4 1 1/2 2 3 1/2 2 2 1 2 3/2 4 2 1 1/2 2 1 12 2 = (2 ) = , = ;m m m m mb f a f a g ik f b c a c− + + − +ϕ + ϕ + ϕ σ − ϕ ⇒ ϕ ϕ ϕ ϕ

2 1/2 1 0 2 0 1/2 1 3 2,     = (2 ) = ,m mP b f ik g b c− −ϕ σ + ϕ ⇒ ϕ ϕ

1/2 1 2 1/2 1 1 3/2 3 3 2 2 1/2 1 3 2 3/2 3 4 22 2 = (2 ) = , = ,m m m m mb f b g a g ik g b c a c− − + − +ϕ + ϕ + ϕ σ + ϕ ⇒ ϕ ϕ ϕ ϕ

1/2 1 2 3/2 3 3 2 3 1/2 1 3 2 3/2 3 4 22 = (2 ) = ,      = ;m m m mb f a g ik f b c a c− + − +ϕ + ϕ σ + ϕ ⇒ ϕ ϕ ϕ ϕ

3 1/2 2 3 1/2 2 2 3 3 1/2 2 5 3,     2 = (2 3 ) = ;m m mP b f b g ik g b c+ + +ϕ + ϕ σ + ϕ ⇒ ϕ ϕ

4 1/2 1 2 1/2 1 1 4 1 1/2 1 6 4,     2 = (2 3 ) = .m m mP a f a g ik f a c− − −ϕ + ϕ σ − ϕ ⇒ ϕ ϕ

In this way, from the above we arrive at the following algebraic system

	

1 0 0 2 1 1 2 1

2 1 1 3 1 2 2 3 0 0

3 2 3 1 4 3 2 3 2 4 3 3

5 3 5 2 3 6 2 6 1 1

= (2 ) ,      2 = (2 ) ,

2 2 = (2 ) ,      = (2 ) ,

2 2 = (2 ) ,      2 = (2 ) ,

2 = (2 3 ) ,      2 = (2 3 ) ,

c g ik f c f c g ik g

c f c f c g ik f c f ik g

c f c g c g ik g c f c g ik f

c f c g ik g c f c g ik f

σ − + σ −

+ + σ − σ +

+ + σ + + σ +

+ σ + + σ − 	

(21)

and at the first-order constraints 

	

1/2 2 1 1 1/2 1 3 2 3 1

1/2 1 6 4 3/2 4 2 1 6 2

3/2 3 4 2 1/2 2 5 3 5 4

= ,      = ,      let = ;
= ,      = ,      let = ;
= ,      = ,      let = .

m m

m m

m m

a c b c c c
a c b c c c
a c b c c c

+ −

− −

+ +

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ 	

(22)

Whence we derive the 2-nd-order equations for separate functions 

	

( ) ( )
( ) ( )
( ) ( )

2 2
1/2 1/2 1 1 3/2 1/2 2 1

2 2
1/2 1/2 1 2 3/2 1/2 4 2

2 2
1/2 3/2 4 3 1/2 3/2 2 4

= 0,      = 0,

= 0,      = 0,

= 0,      = 0.

m m m m

m m m m

m m m m

a b c b a c

b a c a b c

b a c a b c

+ − − −

− + + +

+ + − −

− ϕ − ϕ

− ϕ − ϕ

− ϕ − ϕ
	

(23)

Explicitly they read 
2 2 2 2

2 2 2 2
1 1 2 1 1 22 2 2 2

2 2 2 2
2 2 2 2
1 2 4 2 1 42 2 2 2

2

2

1 (1 2 ) 1 (1 2 )= 0,      = 0 = ,
4 4

1 (1 2 ) 1 (1 2 )= 0,      = 0 = ,
4 4

1 (3 2 )

d d m d d mc c c c
r dr r drdr r dr r

d d m d d mc c c c
r dr r drdr r dr r

d d m
r drdr

   − −
+ − − ϕ + − − ϕ ⇒      

   
   + +

+ − − ϕ + − − ϕ ⇒      
   

+
+ −

2 2 2
2 2
4 3 2 42 2 2

1 (3 2 )= 0,      = 0.
4 4

d d mc c
r drr dr r

   −
− ϕ + − − ϕ      

   
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2 2 2 2
2 2 2 2
1 1 2 1 1 22 2 2 2

2 2 2 2
2 2 2 2
1 2 4 2 1 42 2 2 2

2

2

1 (1 2 ) 1 (1 2 )= 0,      = 0 = ,
4 4

1 (1 2 ) 1 (1 2 )= 0,      = 0 = ,
4 4

1 (3 2 )

d d m d d mc c c c
r dr r drdr r dr r

d d m d d mc c c c
r dr r drdr r dr r

d d m
r drdr

   − −
+ − − ϕ + − − ϕ ⇒      

   
   + +

+ − − ϕ + − − ϕ ⇒      
   

+
+ −

2 2 2
2 2
4 3 2 42 2 2

1 (3 2 )= 0,      = 0.
4 4

d d mc c
r drr dr r

   −
− ϕ + − − ϕ      

   

Therefore, there exists only one independent parameter 2 2 2
2 4 1= = ;c c c  and the above equations take the 

form 

	

2 2 2 2
2 2
1 1 1 22 2 2 2

2 2 2 2
2 2
1 3 1 42 2 2 2

1 ( 1 / 2) 1 ( 1 / 2)= 0,      = 0,

1 ( 3 / 2) 1 ( 3 / 2)= 0,      = 0.

d d m d d mc c
r dr r drdr r dr r

d d m d d mc c
r dr r drdr r dr r

   − +
+ − − ϕ + − − ϕ      

   
   + −

+ − − ϕ + − − ϕ      
    	

(24)

In the variable x = ic1r, they turn to a Bessel form 

	

2 2

1 1 ( 1/2)2 2

2 2

2 22 2

2 2

3 3 ( 3/2)2 2

2 2

2 2

1 ( 1 / 2)1 = 0,      = ( );

1 ( 1 / 2)1 = 0,      = ( 1 / 2)( );

1 ( 3 / 2)1 = 0,      = ( );

1 ( 3 / 2)1

m

m

d d m J x
x dxdx x

d d m J m x
x dxdx x

d d m J x
x dxdx x

d d m
x dxdx x

 



 

 
      

 
 

       
 
 

      
 
 

  


4 4 ( 3/2)= 0,      = ( ).mJ x 

   
 	

(25)

This analysis can be readily extended to the case of the presence of the external magnetic field. In 
fact, we should make one formal change field 2 ;( e/ t  2  )lm m eBr eB B⇒ + ⇒  so we get operators 

	

2 2

1/2 1/2

2 2

3/2 1/2

2 2

1/2 3/2

1 / 2 / 2 1 / 2 / 2= ,      = ,

3 / 2 / 2 1 / 2 / 2= ,      = ,

1/ 2 / 2 3 / 2 / 2= ,      = .

d m Br d m Bra a
dr r dr r
d m Br d m Bra b
dr r dr r
d m Br d m Brb b
dr r dr r

µ− µ+

µ+ µ−

µ+ µ−

− + + +
+ +

+ + − +
+ −

+ + − +
− −

	

(26)

Correspondingly, the equations (25) become more complicated; at this there arise the constraints 

	
2 2 2 2
2 1 4 1= 2 , = 2 ,c c B c c B+ − 	 (27)

therefore we have four 2-nd-order equations 2
1 :(let  = )c X

	

2 2
2 2

12 2

2 2
2 2

22 2

2 2
2 2

32 2

2 2
2 2

2 2

1 1 ( 1 / 2) ( 1 / 2) = 0,
4

1 1 ( 1 / 2) ( 1 / 2) = 0,
4

1 1 ( 3 / 2) ( 3 / 2) = 0,
4

1 1 ( 3 / 2) ( 3 / 2)
4

d d mB r B m X
r drdr r

d d mB r B m X
r drdr r

d d mB r B m X
r drdr r

d d mB r B m X
r drdr r

 −
+ − − − + − ϕ  

 
 +

+ − − − − − ϕ  
 
 +

+ − − − − − ϕ  
 
 −

+ − − − + − 4 = 0.

ϕ  

  	

(28)
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They have one and the same structure. Let us consider in detail the last equation. In the variable r2 = x, 
we get 

2 2 2

42 2
1 ( 3 / 2) ( 3 / 2) = 0,

16 44
d d B m B m X

x dx xdx x

 − + +
+ − − − ϕ 

  

which belongs to a hypergeometric type. In the vicinity of x = 0 and x → ∞ their solutions behave 

4 4= ,      = | 3 / 2 | /2;      = ,      = / 4;A Dxx A m e D Bϕ ± − ϕ ±

for the bound states we are to use positive values of A and (assuming that B > 0) a negative value of D. 
General solutions are searched in the form 4 4= ( );A Dxx e F xϕ  further we derive 

2

42
( 3 / 2) 4 (2 1)[(2 1) 2 ] = 0.

4
d d B m X D Ax A Dx F

dxdx

 + + − + + + + − 
  

In the variable 2Dx = –z, we obtain equation

	

2

4 4 42
( 3 / 2) | 3 / 2 | 1(| 3 / 2 | 1 ) = 0

2 2
d d m m Xz F m z F F

dz Bdz
+ + − + + − + − − + 

  	
(29)

of hypergeometric type. The polynomial condition α = –n4 leads to 

	
4 4

( 3 / 2) | 3 / 2 | 1 = 0,      = 0,1,2,...;
2 2

m m Xn n
B

+ + − +
+ +

	
(30)

with notation 

	
4 4

( 3 / 2) | 3 / 2 | 1= ,
2

m mN n+ + − +
+

 	
the quantization rule reads 4= 2 < 0.X BN−  Three remaining equations are studied similarly. Thus we 
get the following results 

	

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

( 1 / 2) | 1 / 2 | 1, = , = 2 < 0;
2

( 1 / 2) | 1 / 2 | 1, = , = 2 < 0;
2

( 3 / 2) | 3 / 2 | 1, = , = 2 < 0;
2

( 3 / 2) | 3 / 2 | 1, = , = 2 < 0.
2

m mF N n X BN

m mF N n X BN

m mF N n X BN

m mF N n X BN

+ + − +
+ −

− + + +
+ −

− + + +
+ −

+ + − +
+ −

	

(31)

Solving the algebraic system for the case of a free particle. For a free particle, we have one pa-
rameter, 1 6,..., = ;c c C  and the matrix form of the system is AΦ = 0, 

(2 ) 0 0 0 0 0 0
(2 ) 0 0 0 0 0 0

0 0 (2 3 ) 2 0 0 0

0 0 (2 ) 0 2 0 0

= .0 0 2 0 (2 ) 2 0

0 0 0 2 (2 ) 0 2

0 0 0 0 2 0 (2 )

0 0 0 0 0 2 (2 3 )

ik C
C ik

ik C C

C ik C

A C ik C C

C C ik C

C ik C

C C ik

− σ −
− σ +

− σ −

− σ −

− σ −

− σ +

− σ +

− σ +
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The equation det A = 0 leads to 2 2 2 2 2 2 3(9 9 4 )( 4 ) = 0.C k C k− − σ − − σ  The roots are as follows 

	
2 2 2 2 2 2 2 2

1 2 3 4
3 3 1 1= ,      = ,      = ,      = .
2 2 2 2

C k C k C k C kσ − − σ + − σ − − σ −
	

(32)

Solutions of the algebraic system at these four values can be readily found.
Solving the algebraic system in the presence of the magnetic field. In the presence of the mag-

netic field, taking in mind the identities 3 1 6 2 5 4 1= ,   = = 2 ,   = = 2 ,   = ,c c c c X B c c X B c X+ −  in 
dimensionless quantities / = ,   / = ,   / = < 0,   = 2 < 0,X k X K B X b X BNσ Σ −  we get

0 0 0 0

2 1 1

1 2 1

1 3 2 2

2 1 3 2

2 3 3

3 2 3

= (2 ) , = (2 ) ,

2 1 2 1 2 = (2 3 ) ,

1 2 2 = (2 ) ,

2 1 2 2 = (2 ) ,

2 2 1 2 = (2 ) ,

2 1 2 = (2 ) ,

1 2 2 1 2 = (2 3 ) .

g iK f f iK g

b f bg iK f

b f g iK g

b f f g iK f

f g bg iK g

f bg iK f

b f bg iK g

Σ − Σ +

+ + + Σ −

+ + Σ −

+ + + Σ −

+ + − Σ +

+ − Σ +

− + − Σ +

It can be presented in the matrix form AΦ = 0; from the equation det A = 0 we obtain 

	 ( )2 2 2 2 2 2 2 2( 4 1) 36 96 ( 4 1)(9 4 9) = 0;K b ibK K K+ Σ − − − Σ + + Σ − + Σ −
	

(33)

this equation is factorized. The roots for the simple equation are 
2 2

1 2
1 1= 1 ,      = 1 ,      multiplicity 2.
2 2

K KΣ + − Σ − −

Let us transform the equation 2 24 1 = 0K + Σ −  to initial parameters: 

= ,      = ,
2 2

kK
i BN i BN

σ
Σ

then we obtain 2 22 4 = 0.BN k+ + σ  In the variable Z =  iσ, this equation reads 2 22 4 = 0.BN k Z+ −  
The numerical study at two sets of parameters gives 

0.866025, 0.866025,
1.11803, 1.11803,
1.32288, 1.32288,
1.5, 1.5,
1.65831, 1.65831,

= 1,   = 1,   = 1,...,10,    = 10,   = 11.80278, 1.80278,
1.93649, 1.93649,
2.06155, 2.06155,
2.17945, 2.17945,
2.29129, 2.29129;

B k N B k












2.29129, 2.29129,
3.20156, 3.20156,
3.90512, 3.90512,
4.5, 4.5,
5.02494, 5.02494,

,   = 1,...,10,   5.5, 5.5,
5.93717, 5.93717,
6.34429, 6.34429,
6.72681, 6.72681,
7.08872, 7.08872.

N












The second equation is 

	 ( )4 2 2 2 2 216 40( 1) 96 9 ( 1) 4 = 0;K ibK K bΣ + − Σ − Σ + − − 	
its solutions are readily found in the analytical form. However, the numerical study will be more 
convenient. To this end let us turn back to initial variables; which give (it is convenient to use the new 
variable Z = iσ): 
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	 ( )( )4 2 2 2 216 40(2 ) 96 9 2 ( 1) 2 ( 1) = 0.Z BN k Z BkZ B N k B N k− + − + − + + +
	

(34)

The numerical example study gives 

1.86147, 1.5, 0.332551, 3.02892,
3.04142, 1.37523, 0.775656, 3.641,
3.75612, 1.5, 1.07434, 4.18178,
4.33759, 1.63742, 1.30616, 4.66885,
4.84306, 1.77134, 1.5, 5.1144,

= 1, = 1, = 1,...,10, 5.29713, 1.89911, 1.6692B k N

− −
− −
− −
− −
− −
− − 8, 5.52696,

5.71326, 2.0206, 1.82126, 5.9126,
6.09982, 2.13628, 1.9603, 6.27581,
6.46245, 2.24675, 2.08921, 6.61998,
6.80517, 2.35254, 2.20996, 6.94775.

− −
− −
− −
− −

Conclusions. The eigenvalue problem for the generalized helicity operator for a spin 3/2 particle 
in the presence of the uniform magnetic field has been solved. After separating the variables in the ba-
sis of cylindrical coordinates, the system of 16 differential equations in the variable r is derived. This 
system is solved with the use of the method of projective operators. All 16 variables were expressed 
in terms of only 4 distinguished functions, which are constructed in terms of confluent hypergeomet-
ric functions. Further the problem reduces to studying the linear algebraic system for 16 algebraic 
variables. In  the end, we derive equations of the second and the fourth order, their roots determine 
the possible eigenvalues of the helicity operator. The developed method can be extended to the field 
with spin 2.
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METHODOLOGY FOR MEASURING THE TRANSITION  
ELECTROMAGNETIC FORM FACTOR IN THE CONVERSION DECAY ω → π0e+e–  

WITH THE CMD-3 DETECTOR

Abstract. This paper presents an improved methodology for measuring the transition electromagnetic form factor in 
the conversion decay ω → π0e+e– using data collected by the CMD-3 detector at the VEPP-2000 e+e– collider. The key im-
provement involves the application of a kinematic reconstruction technique under two distinct hypotheses: the signal hypoth-
esis (ω → π0e+e–) and the dominant background hypothesis (ω → π+π–π0). This approach allows for a powerful suppression 
of 3π background, virtually eliminating it, and significantly narrows the invariant mass distribution of two photons from π0 
decay in signal events. The refined π0 mass peak enhances the separation of the signal process from the remaining QED back-
ground (e+e– → e+e–γγ). To demonstrate the effectiveness of the method, it was applied to a subset of the data with an integrat-
ed luminosity of 13 pb⁻¹, accumulated near ω-meson mass. The analysis shows a significant improvement in the precision of 
the form factor F(q) measurement. The developed methodology paves the way for a more precise determination of the form 
factor slope parameter 2−

ωΛ  when applied to the full dataset, which has an integrated luminosity of approximately 50 pb⁻¹. 
Keywords: conversion decay, ω-meson, transition electromagnetic form factor, background subtraction, CMD-3 detector
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МЕТОДИКА ИЗМЕРЕНИЯ ПЕРЕХОДНОГО ЭЛЕКТРОМАГНИТНОГО ФОРМ-ФАКТОРА  
В КОНВЕРСИОННОМ РАСПАДЕ ω → π0e+e– НА ДЕТЕКТОРЕ КМД-3

Аннотация. Представлена усовершенствованная методика измерения переходного электромагнитного 
форм-фактора в конверсионном распаде ω → π0e+e– с использованием данных, накопленных детектором КМД-3 на 
e+e–-коллайдере ВЭПП-2000. Ключевое нововведение метода заключается в применении метода кинематической ре-
конструкции в рамках двух различных гипотез: для сигнального канала (ω → π0e+e–) и основного фонового процес-
са (ω → π+π–π0). Данный подход позволяет эффективно подавлять фон от 3π событий, практически полностью его 
устраняя, а также приводит к существенному сужению распределения инвариантной массы двух фотонов от распада 
π⁰ в сигнальных событиях. Более узкий пик массы π⁰ значительно улучшает разделение сигнала от оставшегося 
квантово-электродинамического фона (e+e– → e+e–γγ). Для демонстрации эффективности методика была применена 
к части данных с интегральной светимостью 13 pb⁻¹, накопленной в области массы ω-мезона. Проведенный анализ 
свидетельствует о существенном повышении точности измерения форм-фактора F(q). Разработанная методика по-
зволяет рассчитывать на более точное определение параметра наклона форм-фактора 2−

ωΛ  после применения к пол-
ному массиву данных с интегральной светимостью около 50 pb⁻¹.
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Для цитирования. Методика измерения переходного электромагнитного форм-фактора в конверсионном рас-
паде ω → π0e+e– на детекторе КМД-3 / Д. Н. Григорьев, В. Ф. Казанин, В. Л. Иванов, Д. В. Шёлковый от имени КМД-3 
коллаборации  // Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-матэматычных навук. – 2025. – Т. 61, 
№ 4. – С. 320–329. https://doi.org/10.29235/1561-2430-2025-61-4-320-329

Introduction. The study of transition electromagnetic form factors in conversion decays provides 
crucial insight into the electromagnetic structure of light mesons. These form factors, F(q), describe 
the deviation of the decay amplitude from that of a point-like particle and are studied as a function of 
the squared four-momentum transfer q2, which is measured via the invariant mass of the lepton-antilepton 
pair born from a virtual photon, so that q = m(l+l–). In the low-energy region, the experimental data on 
the properties of light mesons are generally well described by the Vector Dominance Model (VDM) [1].

One of the most significant potential deviations from VDM predictions was reported for the con-
version decay (ω  →  π0e+e–). An initial indication was presented in [2], and a later measurement by 
the NA60 collaboration [3] reported a discrepancy with VDM exceeding 4 standard deviations, primar-
ily at high momentum transfers. Interestingly, a good agreement with VDM was observed in the similar 
process η → π0μ+μ– [3]. Conversely, a result from the A2 collaboration at MAMI for (ω → π0e+e–) decay 
[4] was closer to the VDM prediction, highlighting the need for further independent studies with differ-
ent experimental setups and systematic uncertainties.

This work is performed at the VEPP-2000 e+e– collider [5] with the CMD-3 detector [6]. The unique 
round beam technique developed at BINP has allowed VEPP-2000 to achieve record luminosity in 
the center-of-mass energy region up to 2 GeV. By the end of 2024 data-taking period, the CMD-3 de-
tector had collected an integrated luminosity of approximately 50 pb⁻¹ in the vicinity of ω-meson mass, 
significantly surpassing the statistics of all previous experiments in this energy range.

Our previous preliminary analysis [7], based on 13 pb⁻¹, utilized machine learning techniques, spe-
cifically Boosted Decision Trees (BDT), to suppress the dominant ω → π0e+e– (3π) background by ex-
ploiting the longitudinal segmentation of the CMD-3 liquid xenon (LXe) calorimeter for e/π separation 
[8]. The result, a form factor slope parameter 2 1.0 0.4−

ωΛ = ±  (GeV/c2)–2, was consistent with VDM but 
limited by statistical and systematic uncertainties. A significant remaining background, especially at 
large track opening angles (high q), originated from QED processes (e+e– → e+e–γγ), which were sup-
pressed by a cut on the spatial angle between the e+e– pair and the most energetic photon and subse-
quently subtracted using fits to the diphoton invariant mass spectrum.

This paper describes a refined methodology designed to overcome these limitations. The core im-
provement is the implementation of a kinematic reconstruction procedure under two explicit hypotheses: 
the signal hypothesis (2γ from π0 and e+e–) and 3π background hypothesis (π+,π–,π0 → 2γ). This tech-
nique provides a more powerful suppression of 3π background and, crucially, yields a much narrower 
and more precisely reconstructed invariant mass distribution for π0 candidate in signal events. The en-
hanced resolution of π0 peak is instrumental in cleanly separating the signal from the QED background, 
where two photons do not necessarily originate from a π0 decay and thus exhibit a broad invariant mass 
distribution. This methodological advance, applied to the full 50 pb–1 dataset, allows for a more accurate 
and precise measurement of the transition form factor across the entire physically accessible q range.

Event Selection. The response of the CMD-3 detector to both signal and background processes 
was simulated using a detailed GEANT4-based Monte Carlo (MC) simulation. The generator of signal 
events takes into account initial state radiation.

Events for the study of the ω → π0e+e– decay were selected with the following criteria, designed to 
identify the final state with two oppositely charged tracks and at least two photons: 

– two tracks with zero total charge, originating from the beam interaction region; 
– each track must have at least 10 hits in the drift chamber (DC); 
– the transverse momentum of each track must be greater than 40 MeV/c to avoid particles making 

multiple loops in the DC and ensure reliable reconstruction; 
– the polar angle of tracks is restricted to the range of π/2 – 0.85 < π/2 + 0.85 rad to ensure they pass 

through the regions of high DC efficiency; 
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– the distance from the track vertex to the beam interaction point must be less than 1 cm in the radial 
direction and less than 8 cm along the beam axis. 

– the tracks must be non-collinear in the r – ϕ plane: 1 2| | || 0.15 rad.π− φ − φ >
Photon candidates are defined as clusters in the electromagnetic calorimeters with energies greater 

than 30 MeV and with polar angle in the range of 0.5 < θ < π –0.5. To suppress spurious clusters from 
interactions of charged particles in the calorimeters, the spatial angle between a photon and the extrapo-
lated entry point of any charged track into the calorimeter must be greater than 0.4 rad.

To further isolate the signal mostly from QED events, several kinematic criteria are applied: 
– the angle between two selected photons is required to be between 0.6 and 1.5 rad, which is typical 

for photons from a π0 decay in the experiment;
– the spatial angle between e+e– pair direction and most energetic photon 0( , ) 3.05 rad.e e+ −Ψ γ <  
This selection strategy is based on the kinematic features of the signal process and effectively sup-

presses a significant portion of the background while preserving the signal efficiency. A detailed de-
scription of the selection criteria can be found in [9].

Background Suppression. The primary challenge in isolating the rare conversion decay ω → π0e+e– 
is the overwhelming background from the dominant decay channel ω  →  π+π–π0 (3π), which has 
a branching fraction approximately three orders of magnitude larger. The kinematic signature of the sig-
nal decay is characterized by a low-mass e+e– pair, which often results in a small opening angle between 
the charged tracks. Consequently, a powerful cut on the track opening angle Δψ < 1.0 rad was tradition-
ally applied to suppress 3π background, where pions have a significantly larger average opening angle.

However, this approach inherently limits the analysis to the low q region. The most interesting phys-
ics, potentially revealing deviations from the Vector Dominance Model, is expected at high q values, 
which correspond to events with a large invariant mass of the e+e– pair and, consequently, a large open-
ing angle between the tracks. Therefore, an alternative method for suppressing 3π background across 
the entire angular range is required.

The first step in our background rejection strategy utilizes the well-established technique of particle 
identification based on the analysis of energy deposition patterns in the longitudinally segmented liquid 
xenon (LXe) calorimeter. The distinct electromagnetic showers produced by electrons and positrons dif-
fer markedly from the hadronic showers produced by pions. A Boosted Decision Tree (BDT) classifier 
was trained using the energy deposition in all 12 cathode gaps of the LXe calorimeter, the total energy 
deposition, and the energy deposition in the CsI calorimeter. The output of this classifier, BDT (e, π) pro-
vides powerful separation between electrons and pions, as it is described in detail in [8]. The distribution 
of this classifier for both data and simulation is shown in Fig. 1. A selection criterion on this parameter 
effectively suppresses a significant fraction of 3π background. 

a                                                                                       b

Fig. 1. Distribution of the BDT (e, π) classifier output for charged tracks in selected events.  
The simulation (a) shows the separation between signal e± (blue) and background π± from ω → π+π–π0 (black). 

The distribution for experimental data (b) is overlaid with the selection cut applied
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Another source of background is the radiative decay ω  →  π0γ with subsequent conversion of 
the monochromatic photon into an e+e– pair in the detector material before the sensitive volume. The ki-
nematics of this background is nearly identical to those of the signal process. The resolution of the drift 
chamber is insufficient to reliably distinguish the conversion vertex. The contribution of this background 
was estimated from a dedicated data-driven analysis using events of quantum electrodynamics (QED) 
at beam energies of 680 and 750 MeV, where the ω-meson production cross-section is negligible, and 
was found to be 48 ± 1 % (syst.) relative to the signal [9]. The vast majority of this type of events has 
q < 50 MeV/c2. This contribution was statistically subtracted in the analysis.

Despite the effectiveness of the BDT-based selection, the remaining 3π background and the unex-
pectedly large QED background (e+e– → e+e–γγ) at large opening angles (Δψ > 2.3 rad) remained signif-
icant limitations in our previous analysis, preventing the use of the full angular range.

To further suppress the background from the ω → π+π–π0 (3π) decay, we applied a kinematic recon-
struction method. Unlike traditional approaches, we did not apply a strict constraint on the invariant 
mass of two photons during this procedure. This allowed us to preserve statistics and use this variable 
later for effective separation between signal events and QED background.

To enhance the selection power, the kinematic reconstruction was performed under two alternative 
hypotheses. The first hypothesis assumes that the final state consists of two photons and an electron-pos-
itron pair (the signal hypothesis). The second hypothesis assumes that the final state contains two pho-
tons and two charged pions (the background hypothesis).

In events with more than two reconstructed photons, the pair that yielded the smallest χ2 value in 
the kinematic fit was selected for the analysis. This approach automatically identifies the most likely pho-
ton pair from the π0 decay and minimizes the contribution from accidental combinatorial backgrounds.

The kinematic reconstruction was performed using a dedicated software package developed by 
the CMD-3 collaboration and described in [10]. This package efficiently varies the measured particle 
parameters (momenta, angles, cluster energies) within their errors to achieve the best fulfillment of con-
servation laws with minimal χ2.

The distributions of χ2 for the signal and background hypotheses after the full event selection show 
clear separation (Fig. 2). It is markable that the good agreement between MC and data there is not only 
for the halo of the distributions but also for long tails as well. Events for which the reconstruction under 
the signal hypothesis provides a better description 2 2 )( sig bkgχ < χ  are retained for further analysis. Namely, 
the selection of signal events requires the conditions for successful kinematic reconstruction in both hy-
potheses and the following criteria: 2 50sigχ <  and 2 100.bgχ >  This method provides an additional order 
of magnitude suppression of the ω → π+π–π0 background, effectively eliminating this background source. 

Fig. 2. 2D distribution of 2
sigχ  from the kinematic reconstruction under the signal vs 2

bgχ  from the kinematic  
reconstruction under background. Blue dots correspond to 3π events, cyan dots correspond to QED events,  

orange dots correspond to signal events, with black dots the experimental data is shown
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Fig. 3. Distributions of χ2 under the background hypothesis ( 2
bgχ  are left plots) and under the signal one ( 2

sigχ  are right plots) 
for events passing the full selection (excluding the final χ2 cut) in three intervals of the transferred momentum q:  

q < 50 MeV/c2 (top), 150 < q < 200 MeV/c2 (middle), and 350 < q < 400 MeV/c2 (bottom). The distributions  
from signal simulation (orange), 3π background simulation (blue), QED background simulation (cyan), and experimental data 

(black points) are compared. The plots demonstrate good agreement between data and the sum of MC distributions  
(signal + two backgrounds) for both kinematic reconstruction hypotheses and all q-intervals, validating the simulation

To further validate the performance of the kinematic reconstruction, a detailed study of the χ2 distri-
butions was performed on both simulated and experimental events. Events passing all selection criteria, 
except for the final χ2 requirements, were divided into intervals of the transferred momentum q. In each 
interval, distributions of the χ2 value under both hypothesis were examined, as these quantities exhibit 
a significant dependence on q. The distributions from signal Monte Carlo simulation, 3π background 
simulation, and QED background simulation were compared to the distribution from experimental da-
ta. As it is shown in Fig. 3, which presents 2

bgχ  at the left column and 2
sigχ  at the right column distri-

butions for three representative q intervals (top to bottom: q < 50 MeV/c2, 150 < q < 200 MeV/c2, and 
350 < q < 400 MeV/c2), excellent agreement is observed between the simulation and data across all inter-
vals. This consistency provides strong confidence that the simulation accurately describes the behavior 
of the experimental events.

This powerful suppression of 3π background means that the dominant remaining background orig-
inates from the QED process e+e– → e+e–γγ, which has an identical final state to the signal. To confirm 
this, mγγ distribution from data at the beam energy of 360 MeV, which is below the ω-meson mass and 
thus free from resonant contributions was compared to a pure QED simulation. As it is shown in Fig. 4, 
the good agreement between two distributions demonstrates that the remaining background is indeed 
dominated by QED events.
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Fig. 4. Comparison of two-photon invariant mass distribution from experimental data (points)  
and simulated QED events (histogram) at the center-of-mass energy of 360 MeV.  

The agreement confirms that the background after all selections is dominated by the QED process e+e– → e+e–γγ

a                                                                                   b

Fig. 5. mγγ distribution over all selected events for experimental data  
before the kinematic reconstruction procedure (a)  

and after it (b). Red lines show the fit of distributions

Subsequent analysis of two-photon invariant mass provides the primary tool for separating the sig-
nal from the non-resonant QED background (e+e–  →  e+e–γγ). It is important to note that the kinematic 
reconstruction technique does not directly suppress this particular QED background, as the final state 
contains e+e– pair as the signal. However, by constraining the event kinematics under the signal 
hypothesis, the reconstruction significantly narrows the invariant mass distribution (mγγ) for the photon 
pairs originating from a true π0 decay. This results in a much sharper peak at π0 mass for signal events,  
as it is shown in Fig. 5, decreasing the width of the peak from 10.3 to 4.2 MeV. In contrast, the mγγ distri
bution for QED background events remains smooth and featureless, as the photons are not from π0 
decay. The enhanced contrast between the narrow signal peak and the smooth background distribution 
substantially improves the statistical separation and allows for a more precise extraction of the signal 
yield through fitting procedures in each q interval. 

Results. The analysis methodology described above was applied to the same dataset used in our pre-
vious work [7] to enable a direct comparison of results. After applying all selection criteria, the accepted 
events were divided into intervals of q value. For each q interval, the invariant mass spectrum of two 
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Fig. 6. Invariant mass distribution of two photons for events in q interval of 350 – 400 MeV/c2.  
On the top plot is the QED background component from simulation. Bottom plot represent experimental data, 

 the solid curve shows the total fit. The background shape is taken from simulation

photons was constructed. This distribution was fitted with a sum of two components: a narrow Gaussian 
peak centered at π0 mass for signal events, and a smooth polynomial function for the QED background  
(e+e–  →  e+e–γγ). The QED background becomes dominant after suppressing 3π events, making the 
invariant mass analysis the primary tool for signal extraction.

Figure 6 shows the invariant mass distribution of two photons for events in q interval of 350–
400 MeV/c2, comparing data and simulation. The background shape was determined from simulation 
and fixed during the fit to experimental data. The number of signal events was determined by integrating 
the fitted Gaussian peak in π0 mass region (Fig. 6).

The number of signal events extracted in each q interval is presented in Table. The statistical errors 
were calculated from the fit uncertainties.

Number of signal events in different q intervals

q interval (MeV/c2) Nsig ± ΔNsig (stat.) Form factor, F(q)

0–50 1257.8 ± 59.5 1.02 ± 0.06
50–100 155.5 ± 12.8 1.03 ± 0.09
100–150 96.7 ± 9.9 1.17 ± 0.12
150–200 55.9 ± 7.9 0.99 ± 0.14
200–250 47.6 ± 7.3 1.01 ± 0.15
250–300 40.3 ± 7.0 1.16 ± 0.20
300–350 38.2 ± 8.1 1.71 ± 0.36
350–400 35.6 ± 8.9 3.11 ± 0.78
450–500 0.6 ± 3.1 3.57 ± 18.49

To determine the transition electromagnetic form factor, the number of signal events was normalized 
using the following expression from [1]:
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Fig. 7. The squared transition form factor as a function of e+e– pair invariant mass.  
Points represent measured values with statistical errors, the solid curve shows the fit with pole parameterization,  

and the dashed curve represents the Vector Dominance Model prediction
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where A is a normalization constant; α is the fine structure constant; me, mω, and mπ are the masses of 
electron, ω-meson, and π0-meson, respectively; Fωπ(q

2) is the transition form factor.
The resulting values of the transition form factor as a function of e+e– pair invariant mass are shown 

in Fig. 7. Vertical error bars represent statistical uncertainties, while horizontal bars indicate the bin 
widths. The distribution was fitted with the pole parameterization:
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From this fit, we obtained the slope parameter 2 1.3 0.2−
ωπΛ = ±  (GeV/c2)–2, which is consistent with 

the Vector Dominance Model prediction. The improved analysis technique has reduced systematic un-
certainties associated with the background subtraction, particularly from 3π channel.

Summary. In summary, we have developed and demonstrated a novel methodology for the ana
lysis of the conversion decay ω → π0e+e–. The core of this approach is the application of a kinematic 
reconstruction procedure under two exclusive hypotheses, which provides a powerful suppression of 
the dominant ω  →  π+π–π0 background by an additional order of magnitude, virtually eliminating it 
across the entire physical range of the momentum transfer q.

After this suppression, the QED process e+e– → e+e–γγ becomes the dominant background source. 
Its kinematics is identical to the signal, making its rejection without severe loss of signal efficiency 
impossible. The key to separating the signal from this irreducible background lies in the analysis of 
two-photon invariant mass spectrum. The kinematic reconstruction under the signal hypothesis dras-
tically improves the resolution of π0 peak, enhancing the contrast between the narrow signal distribu-
tion and the smooth QED background. This, in turn, enables a more precise statistical extraction of 
the signal yield through fitting procedures in each q bin, a task that requires a large dataset for sufficient 
precision.
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The result for the form factor slope parameter –2
ωΛ  presented herein, based on a partial dataset of 

13 pb–1, serves primarily to illustrate the effectiveness of the method and should be considered prelim-
inary. The application of this refined methodology to the full CMD-3 dataset of approximately 50 pb–1 
will allow for a significantly more precise measurement of the transition form factor F(q) over the en-
tire q2 range.
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ПАРАМЕТРИЧЕСКОЕ РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ 
В СИММЕТРИЧНОЙ ГЕОМЕТРИИ БРЭГГА

Аннотация. Проведен детальный анализ теоретических моделей, используемых для интерпретации экспери-
ментов по генерации параметрического рентгеновского излучения (ПРИ) релятивистскими заряженными частицами 
в симметричной геометрии Брэгга. Продемонстрировано, что динамическая теория ПРИ находится в хорошем со-
гласии с экспериментальными результатами, полученными в области энергий электронов 900 МэВ на синхротро-
не «Сириус». Важнейшим преимуществом динамической теории ПРИ перед кинематической оказалось правильное 
описание первичной экстинкции и интерференции между двумя типами волн (быстрой и медленной), генерируемых 
в процессе параметрического рентгеновского излучения в кристалле. В ультрарелятивистской области энергий по-
лучено аналитическое выражение для полного числа квантов, испускаемых электроном в телесный угол, где интен-
сивность ПРИ оказывается максимальной.

Ключевые слова: параметрическое рентгеновское излучение, динамическая дифракция, кинематическая диф-
ракция, геометрия Брэгга
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PARAMETRIC X-RAY RADIATION IN SYMMETRIC BRAGG GEOMETRY 

Abstract. A detailed analysis of theoretical models used to interpret experiments with parametric X-ray radiation (PXR) 
emitted by relativistic charged particles in symmetric Bragg geometry is carried out. It is shown that the dynamical theory of 
PXR is in good agreement with the experimental results obtained at the Sirius synchrotron for 900 MeV electrons. The most 
important advantage of the PXR dynamical theory over the kinematical one is the correct description of the primary extinc-
tion and interference between two types of waves (fast and slow), generated within parametric X-ray radiation in a crystal. 
At ultrarelativistic energies, an analytical expression is obtained for the total number of quanta emitted by an electron into 
the solid angle where PXR intensity has a maximum.

Keywords: parameric X-ray radiation, dynamical diffraction, kinematical diffraction, Bragg geometry
For citation. Anishchenko S. V. Parametric X-ray radiation in symmetric Bragg geometry. Vestsі Natsyyanalʼnai 

akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of 
Belarus. Physics and Mathematics series, 2025, vol. 61, no. 4, pp. 330–342 (in Russian). https://doi.org/10.29235/1561-
2430-2025-61-4-330-342

Введение. Одной из важнейших задач современной физики является создание источников 
рентгеновского излучения для фундаментальных и прикладных исследований [1]. В этой свя-
зи становится актуальной разработка источников параметрического рентгеновского излучения 
(ПРИ), генерируемого при прохождении равномерно движущихся заряженных частиц через кри-
сталл [2, 3]. Несомненным преимуществом указанных источников перед многими другими яв-
ляется плавная перестройка частоты генерации, осуществляемая поворотом кристалла.

Известно, что в рентгеновском диапазоне частот много больших характерных атомных, ди-
электрическая проницаемость вещества имеет универсальный вид 2 2( ) 1 /p     (ωp – плаз-
менная частота). Как следствие, показатель преломления в рассматриваемом диапазоне меньше 
единицы. По этой причине эффект Вавилова – Черенкова в рентгеновском диапазоне отсутству-

© Анищенко С. В., 2025
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ет. Тем не менее в работе [4] впервые было показано, что при релятивистском движении заря-
женной частицы в кристалле возможно образование спонтанного и индуцированного излучения 
Вавилова – Черенкова. Эффект обусловлен тем, что в кристалле вследствие дифракции показа-
тель преломления может стать больше единицы. Более детальная теория эффекта была дана в ра-
ботах [5, 6]. Причем в [5] рассмотрение проводилось для кристаллической пластики конечной 
толщины, что позволило правильно учесть переходные эффекты, которые, как известно [7], при-
сутствуют в излучении Вавилова – Черенкова при наличии границ раздела (подробнее см. в [8]).

Рентгеновское излучение, испускаемое равномерно движущейся заряженной частицей в кри-
сталле, получило название параметрического [4–6]. Отметим, что механизм генерации параме-
трического излучения во многом аналогичен тому, который имеет место в приборах микровол-
новой электроники: лампах бегущей и обратной волны [9]. В возникновении ПРИ важнейшую 
роль играют эффекты, обусловленные динамической дифракцией электромагнитных волн в кри-
сталле [10]. Согласно [8] динамическая дифракция приводит к сильному непертурбативному вза-
имодействию электромагнитных волн, испускаемых под малыми и большими углами к скоро-
сти частицы и связанных друг с другом условием Брэгга – Вульфа. Указанное взаимодействие 
в узких спектрально-угловых диапазонах приводит к существенному изменению электродина-
мических свойств периодической среды по сравнению с аморфным веществом. В результате ста-
новятся возможными явление первичной экстинкции (бездиссипативное затухание электромаг-
нитных волн в кристалле в геометрии Брэгга) и изменение показателей преломления [4], часть 
из которых становится больше единицы. Благодаря первичной экстинкции происходит эффек-
тивное отражение псевдофотонов от кристалла в геометрии Брэгга. Превышение показателями 
преломления единицы делает возможным черенковский синхронизм между частицей и электро-
магнитными волнами, испускаемыми не только под большими, но и малыми углами к скоростям 
частиц [11].

Несмотря на то что важнейшую роль в генерации параметрического рентгеновского излуче-
ния играет динамическая дифракция, в литературе можно встретить и другой подход к описа-
нию ПРИ, получивший название кинематического [12, 13]. В рамках этого подхода дифракцион-
ное взаимодействие между волнами описывается в соответствии с теорией возмущений. Однако 
если толщина кристалла становится сравнимой с глубиной экстинкции, на которой амплитуды 
волн, участвующих в дифракции, становятся сравнимыми по амплитуде, то указанный подход 
перестает быть применимым. В этом случае для корректного описания экспериментов необхо-
димо применять динамическую теорию. Кроме того, в кинематической теории отсутствует ком-
понента ПРИ, испускаемая под малыми углами к скорости частицы, предсказанная динамиче-
ской теорией [11] и надежно обнаруженная экспериментально [14, 15].

Еще одно приближение, часто встречающееся в литературе, связано с независимым рас-
смотрением двух вкладов в ПРИ: дифрагированного переходного, связанного с пересечени-
ем границы кристалл  – вакуум, и квазичеренковского, обусловленного движением частицы 
в кристалле [16, 17]. Такое разделение было бы оправдано в отсутствие интерференционных 
эффектов. В общем случае, однако, интерференция между двумя вкладами имеет место, и для 
корректной интерпретации экспериментов нужно использовать общие формулы динамической 
теории [2, 8, 11].

В этой связи представляется важным провести детальное сравнение предсказаний раз-
личных теорий с результатами экспериментов, в частности проведенных на синхротроне 
«Сириус» и посвященных измерению полного числа квантов ПРИ в симметричной геометрии 
Брэгга [18]. (Подробные обзоры экспериментальных работ по генерации параметрического рент-
геновского излучения в различных геометриях можно найти в монографии [19] и статье [20].) 
Привлекательность именно этого эксперимента для проверки различных теорий ПРИ неслучай-
на. Во-первых, полное число зарегистрированных квантов в нем значительно отклонилось от 
предсказаний кинематической теории. Во-вторых, многократное рассеяние в этом эксперименте 
несущественно, что позволяет избежать дополнительных усложнений, обусловленных взаимо-
действием релятивистских заряженных частиц с атомами среды. И, в-третьих, использование 
в эксперименте [18] толстой кристаллической пластинки существенно упрощает интерпретацию 
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экспериментальных данных – вследствие поглощения рентгеновских лучей их многократные пе-
реотражения от границ кристалл – вакуум не играют роли.

Динамическая теория. В пренебрежении квантово-механической отдачей спектрально-угло-
вое распределение фотонов, испускаемых заряженной частицей, дается следующей формулой: 

	
    1 2

2 2
( ) ( ) * ( )

1 1 2 2 1 22 ( ) ( ) ( ) ( ) ,
Ω 4

s e s s i t t
k k

N E r t v t E r t v t e dt dt   
 

              
 

 

   

	
(1)

где ( )s
k

E +
−




 – решение однородных уравнений Максвелла ( ( )s
k

E +
−




 равны величинам (–) *,s
k

E 



 участвую-
щим в разложении функции Грина уравнений Максвелла [8]), описывающее рассеяние фотона 
с волновым вектором k−



 и поляризацией se  на мишени; ( )r t  и ( )v t  – радиус-вектор и скорость 
частицы; αe l 1/137 – постоянная тонкой структуры. А значит, чтобы найти спектрально-угловое 
распределение ПРИ, нам фактически необходимо решить задачу о дифракции электромагнит-
ных волн на кристалле (рис. 1). Отметим, что задача о рассеянии рентгеновского излучения на 
кристаллической пластинке как в геометрии Лауэ, так и Брэгга рассмотрена, например, в [10].

Рассмотрим в рамках двухволновой динамической теории дифракцию плоской монохромати-
ческой волны с волновым вектором ,k−



 частотой ω = ck и единичным вектором поляризации se  
на кристаллической пластинке толщины L в геометрии Брэгга. Вследствие малости диэлектри-
ческой восприимчивости мы можем пренебречь отраженными волнами от границ кристалл – ва-
куум и рассматривать только 7 волн. Падающая ,k−



 дифрагированная k τ− 



 и прошедшая сквозь 
пластинку волны распространяются в вакууме. (Волновой вектор, прошедшей сквозь кристалл 
волны, совпадает с вектором .k−



) Четыре волны распространяются в среде: двум из них соот-
ветствуют волновые векторы ,sk kµ− ≈ −

 

 а двум другим – s sk k kτµ µ− = − − τ ≈ − − τ

  

   ( τ
  – вектор 

обратной решетки, μ = 1, 2). Расщепление падающей из вакуума волны k−


 на две skµ−


 обуслов-
лено сильной связью между электромагнитными волнами в кристалле [10].

Волновой вектор k τ− 



 дифрагированной волны, колеблющейся с той же частой ω, что и па-
дающая, дается выражением 2 2( )k k k k Nτ− = − − τ − − + τ

   



  


   (символом || обозначаются ком-
поненты векторов, параллельные пластинке; N



 – нормальный к пластинке единичный вектор). 
В частном случае симметричной дифракции 0τ =



  и 2 2 .k k k k Nτ− = − − −
 



 


kВ + τ

θВ

θх

kВk

D

е– τ

Рис. 1. Параметрическое рентгеновское излучение под большими углами  
к скорости заряженной частицы в геометрии Брэгга

Fig. 1. Parametric X-ray radiation at large angles to the particle velocity in Bragg geometry
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Приступим к установлению явного вида волновых векторов в среде. Величина связи между 
волнами, распространяющимися в кристалле, определяется зависящей от частоты диэлектриче-
ской восприимчивостью .( (,  )) i rr e 

    






  Явный вид векторов skµ−


 и sk τµ− 



 в среде можно 
установить, отыскав решения однородных уравнений Максвелла в пространстве Фурье: 

	

2

02

2

02

1 0,

1 0.

s
sk s k s

s
sk s k s

k
E C E

k
E C E

τ

τ

µ
τ− µ − µ

τµ
−τ− µ − µ

 
− − χ − χ =  ω 

 
− − χ − χ =  ω 





 




 


 

 

	

(2)

Здесь k sE− µ




 и k sE
τ− µ




 – амплитуды волн, соответствующие волновым векторам skµ−


 и .sk τµ− 



 
Параметр Cs равен единице, если векторы se  и ,seτ



  являющиеся единичными векторами поля-
ризации падающей волны и дифрагированной, направлены перпендикулярно плоскости дифрак-
ции, образованной векторами k



 и k τ




 (случай σ-поляризации). Если векторы se  и seτ




 лежат 
в плоскости дифракции, то Bcos(2 ),s s sC e eτ= = θ

   где θB – угол Брэгга (случай π-поляризации). 
Для обозначения двух поляризаций будем использовать следующие обозначения: s = σ (σ-поля-
ризация) и s = π (π-поляризация).

Система уравнений (2) разрешима, если ее детерминант равен нулю, а волновые векторы 
,skµ−



 как следствие, имеют следующий вид [2, 8, 11]: 

	 0
,s

sk k N
c





   



 


	
(3)

где 

	
2 2

1 0 1 1 0 1 1
1 1[(1 ) ] [( 1) ] 4 .
4 4s B B sC                 

	
(4)

Здесь 2 2(2 ) /B k kα = τ + τ


  – параметр, который характеризует условия выполнения дифракции Брэг
га (при точном выполнении условий брэгговской дифракции αB = 0); 1 0 1 0/ / 0,,   kN kβ = γ γ γ = − >




 
1 / 0.sk N k   




 Знак «+» соответствует μ = 1, а знак «–» – μ = 2. В частном случае симметричной 
дифракции (β1 = –1) 

	
 1/22 2

B B 0
1 1 ( 2 ) 4 .
4 4s sC           

	
(5)

Обратим внимание, что закон распространения электромагнитных волн в кристалле суще-
ственно меняется при B 1 0 1( 1) /       (см. (4)): поправка к волновому вектору (3) приобретает 
большую мнимую часть 1(Im ) / 2,s sC      что приводит к быстрому бездиссипативному 
затуханию (дифракционному отражению) падающей волны в кристалле в узкой области шири-
ной B 1Δ 4 / .sC      Глубина экстинкции, на которой происходит затухание интенсивно-

сти в e раз, равна 2 .e
s b

cL
C 


 

 Вдали от указанной области величины s  имеют следующие 

асимптотики: 

	

1 B 0
1

0
2

,
2

.
2

s

s

   








	

(6)

Причем вторая ветвь электромагнитных колебаний в асимптотической области совпадает с элек-
тромагнитными колебаниями в аморфной среде.

Для иллюстрации сказанного рассмотрим дифракцию, соответствующую геометрии Брэгга, 
σ-поляризованного рентгеновского излучения с энергией квантов, равной ℏω l 6,46 кэВ, падаю-
щего под углом π/4 на поверхность кремниевой пластинки. Пусть кристаллографические плоско-
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сти кремния с индексами Миллера (4,0,0) параллельны поверхности пластинки, что при указан-
ной энергии квантов соответствует симметричной дифракции и углу Брэгга θB = π/4. Выбор опи-
санной симметричной схемы дифракции не случаен. Именно она была реализована в одном из 
экспериментов по генерации ПРИ, проведенных на томском синхротроне «Сириус» [18]. При ука-
занной схеме дифракции диэлектрические восприимчивости равны 5 7

0 2,36 10 8,25 10 i− −χ ≈ − ⋅ + ⋅  
и 5 ,1,03 10−

τχ = ⋅  а глубины экстинкции Le и поглощения )( 2 / Ima bL c     – 5 и 74 мкм соот-
ветственно. (Значение χτ получено путем умножения модуля диэлектрической восприимчивости 

51,21 10−
τχ = ⋅  [21] при 0 К на температурный фактор Дебая – Уолера e–W l 0,85, рассчитанного 

для 293 К.)
Однородные уравнения Максвелла (2) позволяют найти отношение амплитуд k sE− µ





 и k sE
τ− µ




 
в среде. Однако для построения решения ( )

k
E +

−




 этого недостаточно: нужно еще задать граничные 
условия [2, 8, 11]. В геометрии Брэгга на границе кристалл – ваккум со стороны влета заряжен-
ной частицы амплитуда падающей волны k−



 равняется сумме амплитуд двух волн ,skµ−


 а ам-
плитуда дифрагированной волны k τ− 



  – сумме амплитуд двух волн .sk τµ− 



 На противополож-
ной стороне пластинки сумма амплитуд двух волн skµ−



 равна амплитуде проходящей волны, 
а сумма амплитуд двух волн sk τµ





 равна нулю. Указанные граничные условия дают возможность 
записать решение однородных уравнений Максвелла, описывающее рассеяние волны ikr

se e−




  на 
кристалле в геометрии Брэгга: 
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(7)

где 
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(8)

Подставляя ( )s
k

E +
−
  в (1), получим спектрально-угловое распределение фотонов, испущенных под 

большим углом к скорости частицы в геометрии Брэгга [2, 8, 11]: 
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(9)

Для толстых кристаллов (L p La) коэффициент 1s
τγ


 и экспонента ( )2si k v Te τω− 





 стремятся к нулю, 

а 1
2

1 0
.

2
s

s
s

C   
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 





 Как следствие, спектрально-угловое распределение принимает следующий вид: 
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где 

	
1

2
2 0

.
2

s
s

s

C   
 

 




 	
(11)



      Весці Нацыянальнай акадэміі навук Беларусі. Серыя фізіка-матэматычных навук. 2025. T. 61, № 4. С. 330–342	 335

Обратим внимание, что в выражении (10) присутствуют 2 вклада. Первый вклад, пропорцио

нальный 
1 ,
k vτω − 





 обусловлен движением частицы вне кристалла. Именно он ассоциируется 

с дифрагированной переходной компонентой в излучении (в кинематической теории дифрагиро-

ванная переходная компонента отсутствует). Второй вклад 
2

1
sk vτ

∼
ω − 





 связан с движением ча-

стицы в среде. Благодаря ему становится возможным черенковский синхронизм.
Более глубокий анализ спектрально-углового распределения ПРИ можно провести, если в яв-

ном виде задать угловые и частотные зависимости входящих в (10) величин. Пусть отклонение 
от точного условия Брэгга задается с помощью разности Δω = ω – ωB и двух углов θx и θy. Причем 
θy – угол между плоскостью, образованной векторами v  и τ

  и вектором ,k


 а θx – угол, характе-
ризующий угловое отклонение вектора k



 от Bk


 в плоскости дифракции (см. рис. 1). Тогда, рас-
кладывая по малым величинам θx, θy и Δω/ωB, найдем
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(12)

Подстановка αB в коэффициент 2s
τγ


 (см. (10)), зависящий от 1 1 B( ),s s    показыва-
ет, что существует узкая спектральная область, именуемая столиком Дарвина, шириною 
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Δ .
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

 В этой области 2 1s
τγ ∼


 и наблюдается интенсивное отражение псевдо-

фотонов.
Кинематическая теория. В настоящем разделе выведем формулы кинематической теории 

ПРИ из формул динамической. Для этого в выражении (10) сделаем ряд упрощений. Во-первых, 
отбросим член, ответственный за дифрагированную переходную компоненту ПРИ. Во-вторых, 
заменим s  (4) асимптотическими выражениями (6). И, в-третьих, положим коэффициент 2s

τγ


 

медленно меняющимся с частотой по сравнению с резонансным множителем 1 ,
sk vτµω − 





 резко 

возрастающим в условиях черенковского синхронизма 
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



	 (13)

наступающего при 

	
 0 2 2

B B 02 2
B B

Δ 1 1 2 sin2 cos2 .
4sin

x x y
 

            
    	

(14)

Последнее позволяет пренебречь изменением частоты в 2 ,s
τγ


 заменив Δω на Δω0: 

	
2 2 2 2

1 0 0

2 .
2 1 /

s s
s

s e x y

C C     
  

        




 	
(15)

Заметим, что резонансный множитель 1
sk vτµω − 





 не обращается в бесконечность вследствие на-

личия мнимой части у диэлектрической восприимчивости χ0.
Интегрирование (10) с учетом сделанных приближений и суммирование по двум поляриза-

циям приводят к хорошо известной кинематической формуле для углового распределения ПРИ 
в толстом кристалле [12, 13]: 

	

2 2 22
Bkin

B 2 2 2 2 2
B ph

cos 2| | .
Ω 4 sin ( )

x ye
a

x y

dN L
d c

     
 

      





	
(16)
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Здесь 2 2
ph 0

−θ = χ + γ  – параметр, определяющий угловую ширину ПРИ в рамках кинематиче-
ской теории; aL  – характерная глубина поглощения фотонов с учетом их косого падения. В ус-
ловиях уже рассмотренной выше симметричной дифракции на кристаллографических плоско-
стях кремния с индексами Миллера (4,0,0) Bsin 52a aL L= θ ≈  мкм.

Отметим, что учет многократного рассеяния в рамках кинематической теории приводит 
к появлению в выражении для 2

phθ  небольшой поправки [12, 13]: 2 2 2
ph 0 ms ,−θ = χ + γ + θ  опреде-

ляемой среднеквадратичным углом многократного рассеяния θms на длине поглощения La. При 
энергии электронов, равной 900 МэВ, что соответствует условиям проведения экспериментов на 
синхротроне «Сириус», θms Ã 0,4 мрад. В то же время θph  4,9 мрад, т. е. θms ^ θph, а значит, мно-
гократное рассеяние в данном случае не играет никакой роли.

Интегрируя угловое распределение по области, ограниченной угловым радиусом θd, находим 
полное число испущенных квантов, совпадающее с выражением, полученным ранее [12, 13]: 

	

( )2
B B 2

kin ph2
B

1 cos 2
| | ( / ),

32 sin

e
a dN L Y

c
τ

α ω + θ
= χ θ θ

π θ


	
(17)

где 

	
2

2
1( ) 4 1 ln(1 )

1
Y x x

x
 = π − + + + +  	

(18)

– вспомогательная функция.
Сравнение динамической и кинематической теорий с экспериментом. Воспользуемся 

динамической и кинематической теориями для интерпретации экспериментов, проведенных на 
синхротроне «Сириус» [18], в которых регистрировалось полное число квантов в симметрич-
ной геометрии Брэгга, испущенных под большим углом к скорости частиц (рис. 1). (Следует 
отметить, что ранее подробное сравнение предсказаний динамической и кинематической те-
орий проводилось при интерпретации экспериментальных результатов, полученных на ми-
кротроне в Майнце [22].) Энергия электронов, ускоренных в синхротроне и падающих под 
углом π/4, совпадающим с θB, на толстую кремниевую пластинку (L  =  400 мкм), составляла 
900 МэВ. Кристаллографические плоскости с индексами Миллера (4,0,0), на которых происхо-
дила дифракция, располагались параллельно поверхности пластинки. Как следствие, при паде-
нии электронов на мишень возникали две связанные волны с энергией квантов ℏω l  6,5 кэВ. 
Одна распространялась под малыми углами к скоростям частиц, другая – в направлении, опре-
деляемом вектором обратной решетки. Последняя компонента и регистрировалась детектором 
с угловым радиусом θd = 27 мрад. Полное число зарегистрированных квантов, испущенных од-
ним электроном, с учетом ослабления их потока в системе вывода в 2,4 раза оказалось равным 
Nexp = (2,3 ± 0,4) · 10–7 [18].

Численное интегрирование спектрально-углового распределения (10), полученного в рам-
ках динамической теории дифракции с учетом ослабления излучения в 2,4 раза, приводит 
к Ndyn l 2,6 · 10–7 квантам на один электрон. В то же время кинематическая теория дает значение 
Nkin l 3,2 · 10–7, превышающее экспериментальное на 2,3 стандартных отклонений.

Различие в предсказаниях кинематической и динамической теорий не исчерпывается раз-
ницей в полном числе квантов, которая, как показывают расчеты, имеет место во всем диапазо-
не энергий (рис. 2). (Экстраполяция результатов расчетов, выполненных в рамках двух теорий, 
в область больших значений фактора Лоренца (γe > 104) показывает, что предсказываемые зна-
чения полного числа квантов сравниваются только при 4.7 10eγ ≈ ⋅  Ниже указанной величины 
Nkin > Ndyn, выше – Nkin < Ndyn.) Благодаря наличию дифрагированного переходного вклада в из-
лучение, динамическая теория предсказывает существенное возрастание распределения в обла-
сти малых углов , 1 /x y eθ ∼ γ  (рис. 3). Напомним, что в кинематической теории указанная компо-
нента в излучении отсутствует.
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Рис. 2. Зависимость числа испущенных квантов от фактора Лоренца.  
Черная кривая соответствует динамической, серая – кинематической теории

Fig. 2. Dependence of the number of emitted quanta on Lorentz factor.  
Black curve corresponds to the dynamical theory, gray curve corresponds to the kinematical theory

а                                                                                                         b

Рис. 3. Угловые распределения ПРИ, рассчитанные в рамках динамической (а)  
и кинематической (b) теорий

Fig. 3. Angular distributions of PXR calculated in the framework of dynamical (а)  
and kinematical (b) theories

Рассчитаем полное число фотонов, испускаемых в малый угол ph ,1/d eθ ∼ γ θ  отбросив 
квазичеренковский вклад в излучение. Оказывается, в этом случае спектрально-угловое распре-
деление (10) допускает интегрирование в явном виде как по углам, так и по частотам, что позво-
ляет найти полное число испущенных σ-поляризованных 
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и π-поляризованных 
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(20)

квантов. В полученных выражениях Y(x) и 

	
( )2 2 2 21( ) 3 4( 1 ) ( 1 / ) 4(1 ) ( 1 / )

4
X x x x E x x K x= − π − − + − + + −

	
(21)

– вспомогательные функции. Причем X(x), зависящая от эллиптических интегралов 1-го (E) 
и 2-го (K) рода, отвечает за подавление излучения с ростом Imχ0, а функция Y(γeθd), логарифми-
чески возрастающая при γeθd p 1, описывает зависимость числа квантов от фактора Лоренца γe.
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Рис. 4. Зависимость числа квантов, испущенных электроном в малый угловой конус (θd = 2,7 мрад),  
от фактора Лоренца. Черная кривая соответствует результатам моделирования,  

серая – аналитическому выражению, полученному в рамках динамической теории

Fig. 4. Dependence of the number of quanta emitted by an electron into a small angular cone (θd = 2.7 mrad)  
on Lorenz factor. Black curve corresponds to the simulation results, gray curve corresponds  

to the analytical expression obtained in the framework of dynamical theory

Рис. 5. Зависимость числа испущенных квантов, вычисленная в рамках динамической теории,  
от фактора Лоренца. Серая кривая соответствует полному числу квантов,  

черная сплошная – дифрагированному переходному вкладу, черная пунктирная – квазичеренковскому

Fig. 5. Dependence of the number of emitted quanta calculated in the framework of dynamical theory  
on Lorenz factor. Gray curve corresponds to the total number of quanta, solid black curve corresponds  

to the diffracted transition contribution, dotted black curve corresponds to the quasi-Cherenkov contribution

На рис. 4 представлены зависимости числа квантов, испускаемых в малый угол θd = 2,7 мрад 
от энергии частиц, полученные в результате численного интегрирования спектрально-углового 
распределения (10). При больших энергиях отчетливо прослеживается логарифмическая зависи-
мость числа испущенных квантов от фактора Лоренца. Небольшое расхождение между резуль-
татами моделирования и теоретической кривой связаны с наличием в (10) квазичеренковского 
вклада, которым мы пренебрегли при выводе выражения (19). 

Как следует из кривых, изображенных на рис. 4, при энергии электронов, равной 900 МэВ 
(γe l 1760), число испущенных квантов с учетом их поглощения в системе вывода излучения со-
ставляет Ntr l 2,5 · 108 на одну частицу, что примерно в 10 раз меньше числа квантов, зарегистри-
рованного на эксперименте [18] в угле θd = 27 мрад. Учитывая, что при переходе от θd = 27 мрад 
к θd = 2,7 мрад телесный угол уменьшился в 100 раз, мы можем заключить, что средняя угловая 
плотность испущенных квантов при θd Ã 2,7 мрад в 10 раз больше, чем при θd = 27 мрад.

Рассмотрим теперь, какую роль играет интерференция дифрагированной переходной и ква-
зичеренковской компонент. Для этого обратимся к рис. 5, на котором кроме зависимости пол-
ного числа испущенных квантов от фактора Лоренца приведены кривые для каждого из двух 
вкладов. Если бы интерференция между отдельными компонентами отсутствовала, то полное 
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Рис. 6. Угловые распределения ПРИ, рассчитанные в рамках динамической (черные кривые)  
и кинематической (серые кривые) теорий: a – кривые, соответствующие  

θx = 0 мрад; b – θx = 40 мрад

Fig. 6. Angular distributions of PXR calculated in the framework of the dynamical (black curves)  
and kinematical (gray curves) theories: a are the curves corresponding to θx = 0 mrad;  

b are the curves corresponding to θx = 40 mrad

число испущенных квантов равнялось бы сумме двух вкладов. Однако, как это особенно видно 
при γe Ã 1 · 103 – 2 · 103, указанное простое соотношение несправедливо: сумма двух вкладов пре-
вышает полное число квантов на 30 %. Таким образом, интерференция между дифрагированной 
переходной и квазичеренковской компонентами делает в общем случае проблематичным незави-
симое рассмотрение двух вкладов в ПРИ, иногда встречающееся в литературе [16, 17]. Обратим 
внимание также на поведение отдельных вкладов в излучение. В области малых энергий доми-
нирует квазичеренковская компонента. Но с увеличением энергии квазичеренковский вклад пе-
рестает расти. Вклад дифрагированной переходной компоненты продолжает увеличиваться. 
Поскольку дифрагированная переходная компонента в кинематической теории не учитывается, 
то и соответствующий рост в кинематической теории отсутствует (см. рис. 2).

Обратим внимание еще на одно обстоятельство, касающееся применимости кинематической 
теории. В работе [13] подчеркивалось, что кинематическая теория применима, если 1 .e

−
τγ χ   

Действительно, если говорить о качественном совпадении угловых распределений, расчитан-
ных в рамках более общей динамической и приближенной кинематической теорий, то согласие 
имеется, о чем свидетельствуют результаты расчетов (рис. 6), выполненные для вышеописанной 
геометрии и энергии электронов 30 МэВ 3 5 .(1 / 1,7 10 1,03 10 )e

− −
τγ ≈ ⋅ χ ≈ ⋅

  Тем не менее при 
отклонении θx от нуля динамическая теория приводит к более низким значениям углового рас-
пределения квантов, чем кинематическая. Разница же в полном числе квантов, испущенных за-
ряженной частицей в конус с угловым радиусом θd = 270 мрад составляет 30 %: Nkin = 1,35 · 10–6 
и Ndyn = 1,04 · 10–6.

Заключение. При количественном анализе экспериментов по генерации ПРИ в симметрич-
ной геометрии Брэгга чрезвычайно важным оказывается учет двух интерферирующих друг 
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с другом вкладов в излучение: дифрагированного переходного и квазичеренковского, рассчитан-
ных в рамках теории динамической дифракции. Использование кинематического приближения 
и пренебрежение интерференцией между двумя вкладами приводит к значительному расхожде-
нию с экспериментальными данными. Последнее продемонстрировано путем сравнения теорий 
с экспериментальными результатами, полученными на синхротроне «Сириус». Только динами-
ческая теория правильно описывает первичную экстинкцию электромагнитных волн в кристал-
ле и учитывает интерференцию между дифрагированным переходным и квазичеренковским 
вкладами в параметрическое излучение.

Проведенный в настоящей работе анализ позволил получить аналитическое выражение для 
полного числа испущенных квантов в случае, когда дифрагированная переходная компонента 
ПРИ значительно превышает квазичеренковскую. Данное условие реализуется при больших зна-
чениях фактора Лоренца γe в конусе с угловым радиусом порядка Ã1/γe.
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ПОЛЯРИЗАЦИОННЫЕ СВОЙСТВА МЕТАПОВЕРХНОСТИ  
НА ОСНОВЕ ПРЯМОУГОЛЬНЫХ Ω-ЭЛЕМЕНТОВ  

НА ПОДЛОЖКЕ ИЗ СТЕКЛОТЕКСТОЛИТА 

Аннотация. Целью работы является создание с использованием технологий печатных плат нового типа по-
ляризаторов в СВЧ-диапазоне для преобразования падающей линейно поляризованной волны в отраженную 
циркулярно поляризованную. Преобразователь поляризации представляет собой метаповерхность, состоящую 
из массива плоских медных прямоугольных Ω-элементов, на подложке из стеклотекстолита. Найдена оптималь-
ная форма Ω-элементов, при которой в каждом из них под действием падающей волны индуцируются одинаково 
значимые электрический дипольный момент и магнитный момент. Эти оптимальные геометрические параметры 
Ω-элементов позволяют использовать их в поглотителях СВЧ-волн. Показано, что такая форма Ω-резонаторов, об-
разующих метаповерхность, также универсальна для их применения в ТГц-поляризаторах. Исследованы поляри-
зационно-селективные свойства метаматериала на основе стандартного фольгированного медью стеклотекстоли-
та. Метаматериал, образованный прямоугольными Ω-элементами, проявил поляризационно-селективные свойства 
вблизи резонансной частоты в СВЧ-диапазоне и может использоваться как эффективный преобразователь поляри-
зации СВЧ-волн. 

Ключевые слова: метаматериал, метаповерхность, прямоугольный омега-элемент, Ω-элемент, циркулярная по-
ляризация электромагнитной волны, печатные платы
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Annotation. The goal of this project is to create a new type of polarizer using printed circuit boards that can convert an 
incident linearly polarized wave into a reflected circularly polarized wave in the microwave range. This device represents 
a metamaterial surface consisting of a metal plate array made up of flat copper rectangular Ω-elements on a glass fiber sub-
strate. By optimizing the shape of these elements, we found that they can also be used as absorbers for microwaves in addition 
to their ability to transform polarization. We showed that this form of Ω-resonators, which make up the metamaterial surface, 
are universal for use in THz polarizers. Finally, we investigated the polarization-selective properties of a metamaterial based 
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Keywords: metamaterial, metasurface, rectangular omega element, Ω-element, circular polarization of an electromag-
netic wave, printed circuit boards

For citation. Podalov M. A., Semchenko I. V., Samofalov A. L., Khakhomov S. A. Polarization properties of a metasur-
face based on rectangular Ω-elements on a glass textolite substrate. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya 
fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics se-
ries, 2025, vol. 61, no. 4, pp. 343–352 (in Russian). https://doi.org/10.29235/1561-2430-2025-61-4-343-352



344	  Proceedings of the National Academy of Sciences of Belarus. Рhysics and Mathematics series, 2025, vol. 61, no. 4, рр. 343–352

Введение. В настоящее время развитие технологий изготовления метаматериалов пережива-
ет бурный рост, в первую очередь в направлении создания метаповерхностей. При этом, несмо-
тря на успешные исследования, широкополосный преобразователь поляризации волны из ли-
нейной в циркулярную (круговую) при отражении волны в СВЧ-диапазоне до настоящего време-
ни реализован в недостаточной степени. Поэтому задача создания такого поляризатора остается 
новой и актуальной, особенно с использованием методов и стандартов современной фотолито-
графии и технологий печатных плат. 

Поляризаторы электромагнитных волн на основе метаматериалов и метаповерхностей в раз-
личных областях спектра могут иметь элементы различной формы, например, это спирали с раз-
личным числом витков, разомкнутые кольца, ориентированные в разных положениях, а также 
Ω-элементы классической или прямоугольной формы [1–9]. Основной диапазон такого рода по-
ляризаторов составляет СВЧ- и в меньшей степени ТГц-полоса спектра.

Стоит отметить, что Ω-элементы и разомкнутые кольца имеют планарную геометрию и срав-
нительно легко могут быть изготовлены с помощью методов современной фотолитографии.

Ранее было сформулировано и экспериментально исследовано условие оптимальности 
Ω-элемента в составе двумерного массива, в первую очередь для создания поглотителя СВЧ- 
и ТГц-волн. Это условие оптимальности определяется одинаковой значимостью индуцируемых 
электрических дипольных моментов и магнитных моментов. В оптимальном элементе эти мо-
менты равны между собой по модулю либо, в зависимости от выбора системы единиц, имеют ко-
эффициент пропорциональности, равный скорости света в вакууме. Длина металлизированной 
полоски, образующей поляризующий элемент, приблизительно равна половине длины волны па-
дающего излучения, что соответствует условию главного частотного резонанса [10–13].

Целью данной статьи является получение, исследование и создание метаматериала (метапо-
верхности), образованного массивом прямоугольных Ω-элементов, с помощью методов совре-
менной фотолитографии на базе стандартного фольгированного медью стеклотекстолита, к при-
меру FR4 (Tg 135). Использование прямоугольных Ω-элементов взамен классических элементов 
в форме греческой буквы Ω упрощает изготовление метаматериала в рамках технологий печат-
ных плат и позволяет достичь более плотного расположения элементов на метаповерхности. 
Такая метаповерхность может быть использована в СВЧ-диапазоне для частотной фильтрации 
и преобразования поляризации волны из линейной в циркулярную, при отражении волны от ме-
таматериала. Возникновение циркулярно поляризованной отраженной волны обусловлено одно-
временным активированием электрического дипольного момента и магнитного момента в каж
дом прямоугольном Ω-элементе. При этом электрический дипольный и магнитный моменты 
играют одинаково важную роль и вносят равные по абсолютной величине вклады в отраженную 
волну. 

Граничные условия и моделирование. Ранее в работах [10, 11] нами были рассчитаны и экс-
периментально исследованы Ω-элементы в СВЧ-диапазоне (2,55–3,8 ГГц). Такие частицы рас-
сматривались также для терагерцового диапазона в качестве элементов эффективных поляриза-
торов либо поглотителей электромагнитных волн [12–15]. На данном этапе исследований разра-
батывается метаповерхность на базе массива прямоугольных Ω-элементов, параметры которых 
оптимизированы для СВЧ-диапазона и стандартизированы для производства с помощью мето-
дов современной фотолитографии. Показано, что метаматериал на основе массива Ω-элементов 
может выполнять функции эффективного преобразователя поляризации электромагнитной вол-
ны в СВЧ-диапазоне.

Проектирование отдельного прямоугольного Ω-элемента и массива на его основе для СВЧ-
диапазона сопряжено с изменением параметров элемента в соответствии с изменением длины 
волны падающего излучения. В частности, длина волны для резонансной частоты 3 ГГц состав-
ляет 10 см, а длина металлизированной полоски, образующей Ω-элемент, будет приблизительно 
равна 5 см. 

После построения объекта моделирования были введены граничные условия и заданы пара-
метры падающей электромагнитной волны. При решении поставленной задачи использовалась 
падающая плоская волна. Согласно общепринятым обозначениям для s-поляризованной волны 
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(TE-волны) вектор E


 колеблется ортогонально плоскости падения и параллельно поверхности
метаматериала. Для p-поляризованной волны (TM-волны) вектор E



 колеблется в плоскости 
падения и в нашем эксперименте под углом 45° к поверхности метаматериала. Поскольку пло-
скость падения волны параллельна плечам Ω-элементов, то p-поляризованная волна наиболее 
эффективно индуцирует электрические дипольные моменты Ω-элементов. В другом случае для 
s-поляризованной волны наиболее эффективно возбуждаются магнитные моменты Ω-элементов,
это происходит под действием вектора магнитного поля B



 падающей волны, который создает 
магнитный поток сквозь прямоугольные Ω-элементы. 

Методика исследования заключается в численном моделировании с помощью метода конеч-
ных элементов электрического тока, возникающего в массиве прямоугольных Ω-элементов под 
действием падающей электромагнитной волны. Рассчитаны электрический дипольный момент 
и магнитный момент Ω-элемента, имеющие взаимно перпендикулярное направление. Учтено 
влияние геометрических параметров Ω-элемента на возможность получения круговой поляриза-
ции отраженной волны при падении линейно поляризованной волны. 

В исследовании использовалась традиционная бианизотропная частица с Ω-связью – метал-
лическая полоска в форме стилизованной греческой буквы Ω, которая в рассматриваемом случае 
в результате приобрела прямоугольную форму, более удобную для изготовления в рамках тех-
нологий печатных плат и позволяющую более плотно располагать микрорезонаторы на метапо-
верхности. 

Параметры Ω-элемента как классической, так и стилизованной прямоугольной формы мо-
гут быть приближенно рассчитаны с учетом модели квазистационарного тока. При этом пред-
полагается, что сила тока не изменяется в зависимости от координаты, отсчитываемой вдоль 
Ω-элемента, а электромагнитные и магнитоэлектрические поляризуемости для оптимального 
(сбалансированного) Ω-элемента должны быть равны друг другу. 

Используя массив оптимальных резонаторов на метаповерхности, можно усилить поляри-
зационные свойства метаматериала в целом. Однако требуется дополнительная оптимизация 
расположения частиц в массиве, поскольку их взаимодействие здесь также значительно влияет 
на свойства поляризатора. На рис. 1 показан дизайн отдельного Ω-резонатора со структурными 
параметрами (а) и дизайн метаповерхности на основе прямоугольного Ω-резонатора со струк-
турными параметрами (b). 

а а

t

c h

Lx

L y

d

b

Рис. 1. Дизайн отдельного Ω-резонатора со структурными параметрами (а) и дизайн метаповерхности  
на основе прямоугольных Ω-резонаторов со структурными параметрами (b)  

Здесь p и m  – векторы электрического дипольного момента и магнитного момента прямоугольного Ω-резонатора

Fig. 1. Design of a single Ω-resonator with structural parameters (а) and design of a metasurface based on rectangular
Ω-resonators with structural parameters (b). Here p  and m  are the manifestation designations of the dipole moment and

magnetic moment of a rectangular Ω-resonator
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Основные структурные параметры прямоугольного Ω-резонатора указаны на рис. 1, а. Шири
на элемента равна с, ширина металлизированной полоски – t, длина элемента – d, толщина медной 
металлизированной полоски h = 35 мкм (в нашем случае она всегда одинакова, так как соответ-
ствует технологическим требованиям к толщине фольги), длина плеча – a (в принципе, плечо мо-
жет отсутствовать). На рис. 1, b приведены параметры массива прямоугольных Ω-резонаторов. 
Период массива по горизонтали равен Lx, период массива по вертикали – Ly. Модель массива ме-
таповерхности образована 15 прямоугольными Ω-элементами. Подложка выполнена из стекло-
текстолита FR4 толщиной 0,51 мм. Параметры толщины медной фольги и стеклотекстолита FR4 
подобраны в соответствии со стандартами, принятыми при производстве серийных односторон-
них печатных плат. 

Результаты моделирования и их анализ. В работе рассмотрен случай с наклонным паде-
нием электромагнитной волны, вектор k



 падающей волны направлен под углом 45° к нормали 
к метаповерхности.

Наклонное падение СВЧ-волны (при ориентации вектора k


 под углом 45° к плоскости Ω-эле
мента) позволяет активировать и электрический дипольный момент, и магнитный момент 
Ω-элементов, поэтому коэффициент эллиптичности отраженной волны будет достигать макси-
мальных значений на расчетной частоте. При этом выполняется условие полуволнового резонан-
са, поэтому коэффициент отражения также принимает максимальное значение. 

Рассмотрим первый случай, соответствующий p-поляризации. Параметрическое моделиро-
вание проводилось с использованием в основном пяти параметров элемента: ширина элемента, 
ширина металлизированной полоски, длина плеча, расстояние между элементами по горизонта-
ли и по вертикали. Из всех изученных параметров наиболее хорошим поляризатором для полу-
чения циркулярно поляризованной отраженной волны оказался массив Ω-элементов с параме-
трами: c = 9 мм, t = 1 мм, d = 20,5 мм, a = 1 мм, Lx = 15 мм и Ly = 27 мм. Метаповерхность с такими 
параметрами показала коэффициент эллиптичности отраженной волны k1 = 0,999 на расчетной 
частоте, равной 3 ГГц (рис. 2). Также на кривой есть второй пик на частоте 2,35 ГГц со значением 
k2 = 0,975. При этом Ω-элемент достаточно хорошо преобразует поляризацию электромагнитной 

k

Частота, ГГц

Рис. 2. График частотной зависимости коэффициента эллиптичности k отраженной волны  
для метаповерхности с параметрами: Lx = 15 мм, Ly = 27 мм, падающая волна p-поляризована

Fig. 2. Graph of the frequency dependence of the ellipticity coefficient k of the reflected wave  
for a metasurface with the parameters: Lx = 15 mm, Ly = 27 mm, the incident wave is p-polarized
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k

Частота, ГГц

Рис. 3. График частотной зависимости коэффициента эллиптичности k отраженной волны  
для метаповерхности с параметрами: Lx = 15 мм, Ly = 28 мм, падающая волна s-поляризована

Fig. 3. Graph of the frequency dependence of the ellipticity coefficient k of the reflected wave  
for a metasurface with the parameters: Lx = 15 mm, Ly = 28 mm, the incident wave is s-polarized

волны при ее отражении от плоско поляризованной падающей волны к циркулярно поляризо-
ванной отраженной волне в достаточно широком частотном интервале. Максимальные значения  
напряженности электрического поля отраженной волны наблюдаются на диапазоне частот 2,1–
2,3 ГГц, что свидетельствует о достаточно хорошем возбуждении электромагнитной волной 
Ω-элемента в районе второго пика коэффициента эллиптичности. 

При анализе второго случая, при s-поляризации, можно заключить, что лучшими поля-
ризационными свойствами обладает массив Ω-элементов с параметрами c = 9 мм, t = 1 мм, 
d = 20,5 мм, a = 1 мм, Lx = 15 мм и Ly = 28 мм. Фактически, по сравнению с первым случаем, 
изменился только параметр массива Ly. Метаповерхность на основе Ω-элементов с такими па-
раметрами показала коэффициент эллиптичности отраженной волны kmax = 0,549 на частоте, 
равной 2,3 ГГц, что соответствует эллиптически-поляризованной отраженной волне (рис. 3). 
В этом случае «виток» Ω-элемента пронизывается вектором магнитного поля падающей вол-
ны, т. е. активируется вектором .B



 Сравнительно небольшой коэффициент эллиптичности 
объясняется недостаточно эффективно работающей электрической составляющей падающей  
волны.

Экспериментальное исследование. Для подтверждения результатов моделирования был из-
готовлен образец метаматериала, состоящего из Ω-элементов прямоугольной формы, изготов-
ленных на основе стеклотекстолита (рис. 4). С образцами были проведены экспериментальные 
исследования в СВЧ-диапазоне, частотный диапазон составил 2–4 ГГц [16]. Схема эксперимента 
показана на рис. 5.

Анализ графиков на рис. 6 показал достаточно хорошую степень соответствия результатов 
экспериментального исследования взаимодействия электромагнитных СВЧ-волн с образцами 
двумерного метаматериала с результатами моделирования. В случае p-поляризации падающей 
волны (а) коэффициент эллиптичности отраженной волны равен k = 0,92 на частоте 3,479 ГГц. 
В случае s-поляризации падающей волны (b) коэффициент эллиптичности отраженной волны 
равен k = 0,55 на частоте 2,437 ГГц. 
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Рис. 4. Экспериментальный образец метаматериала на основе стеклотекстолита 

Fig. 4. Photo of an experimental sample of a metamaterial based on fiberglass

Рис. 5. Схема эксперимента: показан случай p-поляризации падающей волны; при s-поляризации вектор iE


 
ориентирован перпендикулярно плоскости падения; отраженная волна имеет эллиптическую поляризацию, 

близкую к циркулярной (1 – излучающая антенна; 2 – приемная антенна; 3 – образец метаматериала;  
α = 45° – угол падения; rE



 – вектор напряженности электрического поля отраженной волны)

Fig. 5. Experimental setup: the case of p-polarization of the incident wave is shown; for s-polarized incident  
waves, the vector iE



 is oriented perpendicular to the plane of incidence; the reflected wave has an elliptical  
polarization, close to circular one (1 is an emitting antenna; 2 is a receiving antenna; 3 is a metamaterial sample;  

α = 45° is the angle of incidence; rE


 is the electric field strength vector of the reflected wave)
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Рис. 6. Графики результатов экспериментального исследования коэффициента эллиптичности  
отраженной волны k при взаимодействии падающей линейно поляризованной  

электромагнитной волны с образцом двумерного метаматериала, состоящего из Ω-элементов  
прямоугольной формы, изготовленных на основе стеклотекстолита:  

а – p-поляризация падающей волны; b – s-поляризация падающей волны

Fig. 6. Graphs of the results of an experimental study of the ellipticity coefficient of the reflected wave k during 
the interaction of an incident linearly polarized electromagnetic wave with a sample of a two-dimensional  

metamaterial consisting of rectangular Ω-elements made on the basis of fiberglass: a is p-polarization  
of the incident wave; b is s-polarization of the incident wave

Заключение. По результатам моделирования отдельного прямоугольного Ω-элемента и оп
ределения его оптимальной формы сделан вывод о том, что метаповерхность на основе прямо-
угольных Ω-элементов обладает хорошими поляризующими свойствами, рассчитанными для 
СВЧ-диапазона. Такая метаповерхность является эффективным поляризатором электромагнит-
ных волн с коэффициентом эллиптичности отраженной волны, близким к единице, при наклон-
ном падении линейно поляризованной электромагнитной волны под углом 45° к плоскости мета-
поверхности. 
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Возникновение циркулярно поляризованной отраженной волны является результатом одно-
временного возбуждения электрического дипольного момента и магнитного момента в каждом 
прямоугольном Ω-элементе. При этом электрический дипольный момент и ортогональный ему 
магнитный момент имеют одинаково важное значение и вносят вклады в отраженную волну, 
одинаковые по абсолютной величине. 

Одним из преимуществ рассматриваемого прямоугольного Ω-элемента является то, что пре-
образование поляризации СВЧ-волны из падающей линейно поляризованной в циркулярно по-
ляризованную в исследуемом метаматериале будет возможно для отраженной волны, а не для 
волны, проходящей через метаматериал. Это позволит использовать поглощающие метаматериа
лы и снизить потери в интенсивности волн с преобразованной поляризацией. 

Максимальное значение коэффициента эллиптичности, близкое к единице, наблюдается 
у массива прямоугольных Ω-элементов с параметрами: c = 9 мм, t = 1 мм, d = 20,5 мм, a = 1 мм, 
Lx = 15 мм и Ly = 27 мм. Метаповерхность на основе Ω-элементов с такими параметрами показала 
коэффициент эллиптичности отраженной волны k1 = 0,999 на расчетной частоте, равной 3 ГГц, 
и k2 = 0,975 на частоте 2,35 ГГц в случае p-поляризации падающей волны. По результатам пара-
метрического моделирования метаповерхности изготовлен экспериментальный образец.

Показано, что для создания поляризатора в СВЧ-диапазоне вблизи резонансной частоты мо-
жет быть использован двумерный метаматериал на основе Ω-элементов прямоугольной формы 
на базе стеклотекстолита. Этот вывод подтверждается результатами моделирования и экспе-
римента. Для создания метаматериалов и метаповерхностей на основе прямоугольных элемен-
тов, обладающих стилизованной прямоугольной формой, могут быть использованы методы 
печатных плат. Вакуумно-плазменные технологии также могут быть применены для получе-
ния Ω-структурированных метаматериалов и метаповерхностей, содержащих прямоугольные 
элементы.
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