COMPLEX ALGEBRAIC NUMBERS OF LARGE HEIGHT IN THE CIRCLES OF SMALL RADIUS
Abstract
It is shown that on the real line and in the complex plane there are intervals I of short length and circles K of small radius within which there are no algebraic numbers of small height. If the length of the intervals and the radius of the circles increase, then it is already possible to obtain nontrivial estimates for the number of algebraic numbers in I and in K.
About the Author
M. V. LamchanovskayaBelarus
References
1. Schmidt W. M. T-numbers do exist // Symposia Math. IV. Inst. Naz. di Alta Math. Rome, 1968. London, 1970. Р. 3-26.
2. СпринджукВ. Г Проблема Малера в метрической теории чисел. Минск, 1967.
3. Варден Б. Л. ван дер. Алгебра. М., 1979.
4. Фельдман н. И. // Изв. АН СССР. Сер. мат. 1951. Т. 15 (1). С. 53-74.