Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

LARGEST LYAPUNOV ExPONENT OF THE LINEAR DIFFERENTIAL SYSTEM with A PARAMETER-MULTIPLIER AS A FUNCTION OF PARAMETER

Abstract

The largest Lyapunov exponents of linear differential systems dx/ dt = µA(t)x, xєn, t 0, with a real parameter-multiplier as a function of the parameter are considered. It is proved that the largest Lyapunov exponent is a function of a Baire class (*,G), which vanishes at zero and satisfies one of the two cases: 1) it exceeds the linear function; 2) it is equal to the plus infinity on some real semi-axis. In the first case, the sufficiency of the given necessary conditions is proved.

About the Author

M. V. Karpuk
Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
Belarus


References

1. Ляпунов А. М. Собр. соч: в 6 т. М.; Л., 1956. Т. 2.

2. Былов Б. Ф., Виноград Р. Э., Гробман Д. М., немыцкий В. В. Теория показателей Ляпунова и ее приложения к вопросам устойчивости. М., 1966.

3. Зубов В. И. Колебания и волны. Л., 1989.

4. КарпукМ. В. // Дифференц. уравнения. 2014. Т. 50, № 10. С. 1332-1338.

5. Хаусдорф Ф. Теория множеств. М.; Л., 1937.

6. Барабанов Е. А. // Дифференц. уравнения. 2009. Т. 45, № 8. С. 1067-1084.

7. Барабанов Е. А. // Дифференц. уравнения. 2010. Т. 46, № 5. С. 611-625.


Review

Views: 711


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)