Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

MAGNETORESISTANCE AND HALL EFFECT IN Mn0.5SV0 4SS SOLID SOLUTION

Abstract

In the 80-300 K temperature range and magnetic fields with induction of up to 2.1 T are studied the characteristics of magnetoresistive properties and Hall effect of Mn0,55V0,45S solid solution. It was found that the Mn0,55V0,45S composition is a semiconductor with high p-type carrier concentration and low values of their mobility; a magnetoresistive effect is observed; solid solution has a noncollinear antiferromagnetic structure at temperatures ranges T < TN = 130 K; in the vicinity of the temperature T ~ 180 K in Mn0,55V0,45S there is a phase transition of semiconductor-semimetal type due to delocalization of charge carriers and the formation of micro areas with ferromagnetic ordering in an antiferromagnetic matrix. Magnetoresistive effect in this case, most likely is due to the magnetic inhomogeneity and can be interpreted in the framework of the electronic and magnetic phase separation consistent with the theory of current flow in heavily doped semiconductors.

About the Authors

S. S. Aplesnin
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk
Russian Federation


O. F. Demidenko
Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk
Belarus


G. I. Makovetskii
Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk
Belarus


O. B. Romanova
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk
Russian Federation


L. I. Ryabinkina
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk
Russian Federation


K. I. Yanushkevich
Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk
Belarus


References

1. Петраковский Г А., Рябинкина Л. И., Абрамова Г М. и др. // Письма в ЖЭТФ. 1999. Т. 69. С. 895; Петраковский Г А., Рябинкина Л. И., Абрамова Г. М. и др. // Письма в ЖЭТФ. 2000. Т. 72. С. 99.

2. Рябинкина Л. И., Романова О. Б., Аплеснин С. С. // Изв. РАН. Сер. физ. 2008. Т. 8. С. 1115.

3. Аплеснин С. С., Рябинкина Л. И., Романова О. Б. и др. // ЖЭТФ. 2008. Т. 133. С. 875.

4. Мотт н. Ф. Переходы металл-изолятор. М., 1979.

5. нагаев Э. Л. // УФН. 1996. Т. 166. С. 833.

6. Petrakovskii G. A., Loseva G. V., RyabinkinaL. I., Aplesnin S. S. // JMMM. 1995. Vol. 147. P. 140-144.

7. Ведяев А. В. // УФН. 2002. Т. 172. С. 1458.

8. Аплеснин С. С. Основы спинтроники. Красноярск, 2007.

9. Петраковский Г. А., Лосева Г. В., Рябинкина Л. И. и др. // ФТТ. 1996. № 38. С. 2131.

10. Лосева Г. В., Рябинкина Л. И., Аплеснин С. С. и др. // ФТТ. 1997. № 39. С. 1428.

11. BurletP. Le titre de docteure’es-sciences physiques. Universite de Grenoble, 1968.

12. Янушкевич К. И. Твердые растворы монохалькогенидов 3^-металлов. Минск, 2009.

13. Heikens Н. Н., Wiegers G. A., Bruggen c. F. van // Solid State Commun. 1977. Vol. 24. P. 205.

14. Шкловский Б. И., Эфрос А. Л. Электронные свойства легированных полупроводников. М., 1979.


Review

Views: 800


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)