GLASS -CERAMIC SCINTILLATION MATERIA LS FOR NEUTRON DETECTION
Abstract
In the present article we discuss a new class of scintillation materials that are prospective for application in high energy physics experiments and for detection of neutrons in a wide energy range.
About the Author
M. V. KorjikBelarus
D. Sc. (Physics and Mathematics), Head of the Laboratory of Experimental High Energy Physics
11, Bobruiskaya Str., 220030, Minsk
References
1. Beall G. H. Design and properties of glass-ceramics. Annual Review of Materials Science, vol. 22, no. 1, pp. 91‒119. Doi: 10.1146/annurev.ms.22.080192.000515
2. Spowart A. R. Neutron scintillating glasses: Part I: Activation by external charged particles and thermal neutrons. Nuclear Instruments and Methods, 1976, vol. 135, no. 3, pp. 441‒453. Doi: 10.1016/0029-554x(76)90057-4
3. Spowart A. R. Neutron scintillating glasses: Part II: The effect of temperature on pulse height and conductivity. Nuclear Instruments and Methods, 1976, vol. 140, no. 1, pp. 19–28. Doi: 10.1016/0029-554x(77)90059-3
4. Fairley E. J., Spowart A. R.Neutron scintillating glasses: Part III: Pulse decay time measurements at room temperature. Nuclear Instruments and Methods, 1976, vol. 150, no. 2, pp. 159‒163. Doi: 10.1016/0029-554x(78)90360-9
5. Saint-Gobain Crystals Catalogue. Available at: https://www.crystals.saint-gobain.com/
6. Pan Z., James K., Cui Y., Burger A., Cherepy N., Payne S., Mu R., Morgan S. Terbium-activated lithium-lanthanumaluminosilicateoxyfluoride scintillating glass and glass-ceramics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2008, vol. 594, no. 2, pp. 215‒219. Doi: 10.1016/j.nima.2008.06.041
7. Holand W., Beall G. H. Glass Ceramics Technology. 2nd ed. Wiley, 2012. Doi: 10.1002/9781118265987
8. Deubener J. Configurational entropy and crystal nucleation of silicate glasses. Physics and Chemistry of Glasses, 2004, vol. 45, no. 2, pp. 61–63.
9. Bliss M, Reeder P. L., Weber M. J., Craig R. A., Sunberg D. S. Relationship between microstructure and efficiency of scintillation glasses. MRS Proceedings, 1994, vol. 348. Doi: 10.1557/PROC-348-195
10. Borisevich A., Dormenev V., Korjik M., Kozlov D., Mechinsky V., Novotny R. W. Optical transmission radiation dmage and recovery stimulation о DSB:Ce3+ inorganic scintillation material. Journal of Physics: Conference Series, 2015, vol. 587, p. 012063. Doi: 10.1088/1742-6596/587/1/012063
11. Auffray E., Akchurin N., Benaglia A., Borisevich A., Cowden C., Damgov J., Dormenev V., Dragoiu C., Dudero P., Korjik M., Kozlov D., Kunori S., Lecoq P., Lee S. W., Lucchini M., Mechinsky V., Pauwels K. DSB:Ce3+ scintillation glass for future. Journal of Physics: Conference Series, 2015, vol. 587, p. 012062. Doi: 10.1088/1742-6596/587/1/012062
12. Novotny R. W., Brinkmann K.-T., Borisevich A., Dormenev V., Korjik M., Kozlov D., Orsich P., Zaunick H.-G., Zimmermann S. Study о the stoichiometric glass and glass ceramic BaO*2SiO2 :Ce (DSB:Ce) scintillation material for calorimetry application. 2015 EEE. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). Conference Paper, 2015. Doi: 10.1109/nssmic.2015.7581952