MATTER CREATION AND PRIMORDIAL CMB SPECTRUM IN THE INFLATIONLESS MILNE-LIKE COSMOLOGIES
Abstract
The primordial spectrum of scalar particleʼs density perturbations is calculated. On the assumption of spectrum universality, i.e., a mean energy density and a typical value of inhomogeneity can be chosen arbitrarily, the form of the spectrum turns out to be completely defined. It is close to the flat Harrison – Zeldovich spectrum, but with the suppression of low-frequency modes.
About the Authors
S. L. CherkasBelarus
Ph. D. (Physics and Mathematics), Senior Researcher
11, Bobruiskaya Str., 220050, Minsk
V. L. Kalashnikov
Austria
Ph. D. (Physics and Mathematics), Senior Researcher, Institute of Photonics
27/387, Gusshausstrasse, A-1040, Vienna
References
1. Singh P., Lohiya D. Constraints on Lepton Asymmetry from Nucleosynthesis in a Linearly Coasting Cosmology. Journal of Cosmology and Astroparticle Physics, 2015, vol. 2015, no. 5, pp. 061. Doi: 10.1088/1475-7516/2015/05/061
2. Dev A., Safonova M., Jain D., Lohiya D. Cosmological tests for a linear coasting cosmology. Physics Letters, vol. 548, no. 1-2, pp. 12–18. Doi: 10.1016/S0370-2693(02)02814-9
3. Benoit-Lévy A., Chardin. G. The Dirac-Milne cosmology. International Journal of Modern Physics: Conference Series, 2014, vol. 30, p. 1460272. Doi: 10.1142/S2010194514602725
4. Melia F. On recent claims concerning the Rh = ct Universe. Monthly Notices of the Royal Astronomical Society, 2015, vol. 446, no. 2, pp. 1191–1194. Doi: 10.1093/mnras/stu2181
5. Shafer D. L. Robust model comparison disfavors power law cosmology. Physical Review D, 2015, vol. 91, no. 10. Doi: 10.1103/physrevd.91.103516
6. Melia F. The Linear Growth of Structure in the Rh = ct Universe. Monthly Notices of the Royal Astronomical Society, 2017, vol. 464, no. 2, pp. 1966–1976. Doi: 10.1093/mnras/stw2493
7. Bengochea G. R., Leon G. Puzzling initial conditions in the Rh = ct model. The European Physical Journal C, 2016, vol. 76, no. 11, p. 626. Doi: 10.1140/epjc/s10052-016-4485-y
8. Tutusaus I., Lamine B., Blanchard A., Dupays A., Zolnierowski Y., Cohen-Tanugi J., Ealet A., Escoffier S., Le Fèvre O., Ilić S., Pisani A., Plaszczynski S., Sakr Z., Salvatelli V., Schücker T., Tilquin A., Virey J.-M. Power law cosmology model comparison with CMB scale information. Physical Review D, 2016, vol. 94, no. 10, p. 103511. Doi: 10.1103/PhysRevD.94.103511
9. Milne E. A. Relativity, Gravitation and World-Structure. Oxford, The Clarendon Press, 1935. 385 p.
10. Cherkas, S. L., Kalashnikov, V. L. Universe driven by the vacuum of scalar field: VFD model. Baryshev, Yu. V., Taganov, I. N., Teerikorpi P. (eds.). Practical cosmology : proceedings of the International conference “Problems of practical cosmology”, held at Russian geographical society, 23–27 June 2008, vol. 2. Saint-Petersburg, Russ. geogr. soc., 2008, pp. 135–140.
11. Melia F. Cosmological perturbations without inflation. Classical and Quantum Gravity, 2016, vol. 34, no. 1, p. 015011. Doi: 10.1088/1361-6382/34/1/015011
12. Birrell N. D., Davies P. C. W. Quantum Fields in Curved Space. Cambridge, Cambridge Univ. Press, 1982. 352 p. Doi: 10.1017/CBO9780511622632
13. Cherkas S. L., Kalashnikov V. L. Quantum mechanics allows setting initial conditions at a cosmological singularity: Gowdy model example. Theoretical Physics, 2017, vol. 2, no. 3, pp. 124–135. Doi: 0.22606/tp.2017.23003
14. Faddeev L. D., Slavnov A. A. Gauge fields: an introduction to quantum theory. California, Addison-Wesley, 1980. 240 p.
15. Anischenko S. V., Cherkas S. L., Kalashnikov V. L. Cosmological production of fermions in a flat Friedman universe with linearly growing scale factor: exactly solvable model. Nonlinear Phenomena in Complex Systems, 2010, vol. 13, no. 3, pp. 315–319.
16. Cherkas S. L., Kalashnikov V. L., Determination of the UV cut-off from the observed value of the Universe acceleration. Journal of Cosmology and Astroparticle Physics, 2007, vol. 2007, no. 1, p. 028. Doi: 0.1088/1475-7516/2007/01/028