Preview

Известия Национальной академии наук Беларуси. Серия физико-математических наук

Пашыраны пошук

Методы интегрирования стохастических дифференциальных уравнений смешанного типа, управляемых дробными броуновскими движениями

https://doi.org/10.29235/1561-2430-2019-55-2-135-151

Анатацыя

Разработаны новые методы точного интегрирования стохастических дифференциальных уравнений смешанного типа, содержащих стандартное броуновское движение, дробное броуновское движение с показателем Харста H> 1/2 и снос. Решения уравнений понимаются в интегральном смысле, где, в свою очередь, интеграл по стандартному броуновскому движению понимается как интеграл Ито, а интеграл по дробному броуновскому движению – как потраекторный интеграл Янга. Полученные в статье методы интегрирования можно отнести к двум типам. Методы первого типа основаны на приведении уравнений к уравнениям более простого вида, в частности к простейшим и линейным неоднородным уравнениям. В работе получены необходимые и достаточные условия приводимости, применимые к одномерным уравнениям, а также приведены примеры, охватывающие, в частности, стохастические уравнения Бернулли. Метод второго типа основан на переходе к уравнению Стратоновича и применим к многомерным уравнениям. В дополнение к указанным методам интегрирования получены аналоги дифференциальных уравнений Колмогорова для математических ожиданий и плотностей распределений решений в предположении, что коэффициенты стохастического дифференциального уравнения смешанного типа порождают коммутирующие дифференциальные потоки.

Аб аўтарах

М. Васьковский
Белорусский государственный университет
Беларусь


И. Качан
Белорусский государственный университет
Беларусь


Спіс літаратуры

1. Stochastic Calculus for Fractional Brownian Motion and Applications / F. Biagini [et al.]. – London: Springer-Verlag, 2008. – 330 p. https://doi.org/10.1007/978-1-84628-797-8

2. Cheridito, P. Regularizing fractional Brownian motion with a view towards stock price modeling / P. Cheridito. – Zurich, ETH, 2001. – 121 p.

3. Guerra, J. Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion / J. Guerra, D. Nualart // Stochastic Analysis and Applications – 2008. – Vol. 26, № 5. – P. 1053–1075. https://doi.org/10.1080/07362990802286483

4. Mishura, Y. S. Stochastic Calculus for Fractional Brownian Motion and Related Processes / Y. S. Mishura. – Berlin; Heidelberg: Springer-Verlag, 2008. – 411 p. https://doi.org/10.1007/978-3-540-75873-0

5. Mishura, Y. S. Existence and uniqueness of the solution of stochastic differential equation involving Wiener process and fractional Brownian motion with Hurst index H > 1/2 / Y. S. Mishura, G. M. Shevchenko // Comm. Statist. Theory Methods. – 2011. – Vol. 40, № 19/20. – P. 3492–3508. https://doi.org/10.1080/03610926.2011.581174

6. Shevchenko, G. Mixed stochastic delay differential equations / G. Shevchenko // Theory Probab. Math. Statist. – 2014. – Vol. 89. – P. 181–195. https://doi.org/10.1090/s0094-9000-2015-00944-3

7. Леваков, А. А. Существование слабых решений стохастических дифференциальных уравнений со стандартным и дробным броуновскими движениями и с разрывными коэффициентами / А. А. Леваков, М. М. Васьковский // Дифференц. уравнения. – 2014. – т. 50, № 2. – С. 189–203. https://doi.org/10.1134/s037406411402006x

8. Леваков, А. А. Существование слабых решений стохастических дифференциальных уравнений со стандартным и дробным броуновскими движениями, с разрывными коэффициентами и с частично вырожденным оператором диффузии / А. А. Леваков, М. М. Васьковский // Дифференц. уравнения. – 2014. – т. 50, № 8. – С. 1053–1069. https://doi.org/10.1134/s0374064114080056

9. Васьковский, М. М. Существование слабых решений стохастических дифференциальных уравнений с запаздыванием со стандартным и дробным броуновскими движениями / М. М. Васьковский // Вес. Нац. акад. навук Беларусi. Сер. фiз.-мат. навук. – 2015. – № 1. – С. 22–34.

10. Леваков, А. А. Существование решений стохастических дифференциальных включений со стандартным и дробным броуновскими движениями / А. А. Леваков, М. М. Васьковский // Дифференц. уравнения. – 2015. – т. 51, № 8. – С. 997–1003.

11. Леваков, А. А. Свойства решений стохастических дифференциальных уравнений со стандартным и дробным броуновскими движениями / А. А. Леваков, М. М. Васьковский // Дифференц. уравнения. – 2016. – т. 52, № 8. – С. 1011–1019.

12. Васьковский, М. М. Устойчивость и притяжение решений нелинейных стохастических дифференциальных уравнений со стандартным и дробным броуновскими движениями / М. М. Васьковский // Дифференц. уравнения. – 2017. – т. 53, № 2. – С. 160–173.

13. Gard, T. C. Introduction to Stochastic Differential Equations / Gard T. C. – New York; Basel: Marcel Dekker Inc., 1988. – 234 p.

14. Леваков, А. А. Стохастические дифференциальные уравнения / А. А. Леваков. – Минск: БГУ, 2009. – 231 с.

15. Russo, F. Stochastic calculus with respect to continuous finite quadratic variation processes / F. Russo, P. Vallois // Stochastics Rep. – 2000. – Vol. 70, № 1/2. – P. 1–40. https://doi.org/10.1080/17442500008834244

16. Оксендаль, Б. Стохастические дифференциальные уравнения. Введение в теорию и приложения / Б. Оксендаль. – М.: Мир, 2003. – 408 с.

17. Baudoin, F. Operators associated with a stochastic differential equation driven by fractional Brownian motions / F. Baudoin, L. Coutin // Stochastic Processes and their Applications. – 2007. – Vol. 117, № 5. – P. 550–574. https://doi.org/10.1016/j.spa.2006.09.004

18. Vaskouski, M. Asymptotic expansions of solutions of stochastic differential equations driven by multivariate fractional Brownian motions having Hurst indices greater than 1/3 / M. Vaskouski, I. Kachan // Stochastic Analysis and Applications. – 2018. – Vol. 36, № 6. – P. 909–931. https://doi.org/10.1080/07362994.2018.1483247

19. Vyoral, M. Kolmogorov equation and large-time behavior for fractional Brownian motion driven linear SDE's / M. Vyoral // Appl. Math. – 2005. – Vol. 50, № 1. – P. 63–81. https://doi.org/10.1007/s10492-005-0004-4


##reviewer.review.form##

Праглядаў: 1701


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)