1. Bautin N. N., Leontovich E. A. Methods and Techniques for Qualitative Study of the Dynamic Systems on Plane. Moscow, Nauka Publ., 1990. 486 p. (in Russian).
2. Andronov A. A., Vitt A. A. Oscillation Theory. Moscow, Nauka Publ., 1981. 918 p. (in Russian).
3. Barbashin E. A., Tabueva V. A. Dinamicheskie sistemy s tsilindricheskim fazovym prostranstvom. Moscow, Nauka Publ., 1969. 350 p. (in Russian).
4. Cherkas L. A. Dulac function of polynomial autonomous systems on the plane. Differentsial’nye uravneniya = Differential Equations, 1997, vol. 33, no. 5, pp. 689-699 (in Russian).
5. Cherkas L. A., Grin’ A. A., Bulgakov V. I. Constructive Methods for Studying Limit Cycles of Autonomous SecondOrder Systems (Numerical-Algebraic Approach). Grodno, Yanka Kupala State University of Grodno, 2013. 489 p. (in Russian).
6. Cherkas L. A., Grin A. A. Dulac function for dynamical systems on a cylinder. Vesnik of Yanka Kupala State University of Grodno. Series 2. Mathematics. Physics. Informatics, Somputer Technology and its Sontrol = Vesnik Hrodzenskaha Dziarzhaunaha Universiteta Imia Ianki Kupaly. Seryia 2. Matematyka. Fizika. Infarmatyka, Vylichal’naia Tekhnika i Kiravanne, 2007, no. 2, pp. 3-8 (in Russian).
7. Cherkas L. A., Grin’ A. A. The function of limit cycles of the second kind for autonomous systems on a cylinder. Differential Equations, 2011, vol. 47, no. 4, pp. 462-470 https://doi.org/10.1134/s0012266111040021.
8. Cherkas L. A., Grin A. A., Schneider K. R. A new approach to study limit cycles on a cylinder. Dynamics of Continuous, Discrete and Impulsive Systems. Series A: Mathematical Analysis, 2011, vol. 18, no. 6a, pp. 839-851.
9. Grin A. A. Estimate of the number of limit cycles for one Abel equation. Vesnik of Yanka Kupala State University of Grodno. Series 2. Mathematics. Physics. Informatics, Somputer Technology and its Sontrol = Vesnik Hrodzenskaha Dziarzhaunaha Universiteta Imia Ianki Kupaly. Seryia 2. Matematyka. Fizika. Infarmatyka, Vylichal’naia Tekhnika i Kiravanne, 2015, no. 2 (192). pp. 28 - 35 (in Russian).
10. Grin A. A., Schneider K. R. Study of the bifurcation of a multiple limit cycle of the second kind by means of a DulacCherkas function. International Journal of Bifurcation and Chaos, 2016, vol. 26, no. 14, pp. 76-85. https://doi.org/10.1142/s0218127416502291
11. Alvarez M. J., Gasull A., Giacomini H. A. New uniqueness criterion for the number of periodic orbits of Abel equations Gasull. Journal of Differential Equations, 2007, vol. 234, no. 1, pp. 161-176. https://doi.org/10.1016/j.jde.2006.11.004
12. Grin A. A., Schneider K. R. Construction of generalized pendulum equations with prescribed maximum number of limit cycles of the second kind. Dynamics of Continuous, Discrete and Impulsive Systems. Series A: Mathematical Analysis, 2019, no 26, pp. 69-88.
13. Ilyashenko Y. Centennial history of Hilbert’s 16th problem. Bulletin of the American Mathematical Society, 2002, vol. 39, no. 3, pp. 301-354. https://doi.org/10.1090/s0273-0979-02-00946-1
14. Grin A. A., Kuz’mich A. V. Accurate estimates of the number of limit cycles of autonomous systems with three points of rest on a plane. Differential Equation, 2017, vol. 53, no. 2, pp. 171-179. https://doi.org/10.1134/s0012266117020033
15. Grin A. A., Kuz’mich A. V. Accurate estimates of the number of limit cycles of autonomous systems with three points of rest on a plane. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2016, no. 4, pp. 7-17 (in Russian).
16. Kuz’mich A. A., Grin A. A. On the exact number of limit cycles of some autonomous systems with three points of rest on a plane. Vesnik of Yanka Kupala State University of Grodno. Series 2. Mathematics. Physics. Informatics, Somputer Technology and its Sontrol = Vesnik Hrodzenskaha Dziarzhaunaha Universiteta Imia Ianki Kupaly. Seryia 2. Matematyka. Fizika. Infarmatyka, Vylichal’naia Tekhnika i Kiravanne, 2017, no. 2, pp. 30-40 (in Russian).
17. Grin A. A., Rudevich S. V. Dulac - Cherkas Test for Determining the Exact Number of Limit Cycles of Autonomous Systems on the Cylinder. Differential Equation, 2019, vol. 55, no. 3, pp. 319-327. https://doi.org/10.1134/s0012266119030054