Howe duality of Higgs – Hahn algebra for 8D harmonic oscillator
https://doi.org/10.29235/1561-2430-2019-55-2-216-224
Abstract
In the light of the Howe duality, two different, but isomorphic representations of one algebra as Higgs algebra and Hahn algebra are considered in this article. The first algebra corresponds to the symmetry algebra of a harmonic oscillator on a 2-sphere and a polynomially deformed algebra SU(2), and the second algebra encodes the bispectral properties of corresponding homogeneous orthogonal polynomials and acts as a symmetry algebra for the Hartmann and certain ring-shaped potentials as well as the singular oscillator in two dimensions. The realization of this algebra is shown in explicit form, on the one hand, as the commutant O(4) ⊕ O(4) of subalgebra U(8) in the oscillator representation of universal algebra U (u(8)) and, on the other hand, as the embedding of the discrete version of the Hahn algebra in the double tensor product SU(1,1) ⊗ SU(1,1). These two realizations reflect the fact that SU(1,1) and U(8) form a dual pair in the state space of the harmonic oscillator in eight dimensions. The N-dimensional, N-fold tensor product SU(1,1)⊗N аnd q-generalizations are briefly discussed.
About the Authors
А. N. LavrenovBelarus
Alexandre N. Lavrenov – Ph. D. (Physics and Mathematics), Assistant Professor, Assistant Professorof the department of the Chair of Information Technologies in Education
18, Sovetskaya Str., 220050, Minsk, Republic of Belarus
I. A. Lavrenov
Belarus
Ivan A. Lavrenov – Leading Specialist
25, Ya. Kupala Str., 220030, Minsk, Republic of Belarus
References
1. Granovskii Ya. I., Zhedanov, A. S. Exactly Solvable Problems and their Quadratic Algebras. Donetsk, DonFTI, 1989. 40 р. (in Russian).
2. Zhedanov A. S. Hidden symmetry of the Askey – Wilson polynomials. Theoretical and Mathematical Physics, 1991, vol. 89, no. 2, pp. 1146–1157. https://doi.org/10.1007/bf01015906
3. Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M. Quadratic algebras and dynamical symmetry of the Schrödinger equation. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki = Journal of Experimental and Theoretical Physics, 1991, vol. 99, no. 2, pp. 353–361 (in Russian).
4. Granovskii Y. I., Lutsenko I. M., Zhedanov A. S. Mutual integrability, quadratic algebras, and dynamical symmetry. Annals of Physics, 1992, vol. 217, no. 1, pp. 1–20. https://doi.org/10.1016/0003-4916(92)90336-k
5. Lutsenko I. M. Jacobi algebra and potentials generated by it. Theoretical and Mathematical Physics, 1992, vol. 93, no. 1, pp. 1081–1090. https://doi.org/10.1007/bf01016465
6. Higgs P. W. Dynamical symmetries in a spherical geometry. I. Journal of Physics A: Mathematical and General, 1979, vol. 12, no. 3, pp. 309–323. ttps://doi.org/10.1088/0305-4470/12/3/006
7. Leemon H. I. Dynamical symmetries in a spherical geometry. II. Journal of Physics A: Mathematical and General, 1979, vol. 12, no. 4, pp. 489–501. https://doi.org/10.1088/0305-4470/12/4/009
8. Kurochkin, Yu. A., Analogue of the Runge – Lenz vector and the energy spectrum in the Kepler problem on a threedimensional sphere. Doklady akademii nauk BSSR[Doklady of the Academy of Sciences of BSSR], 1979, vol. 23, no. 11, pp. 987–990 (in Russian).
9. Bogush A. A., Kurochkin Yu. A., Otchik V. S. On the Kepler quantum-mechanical problem in Lobachevsky space] Doklady akademii nauk BSSR[Doklady of the Academy of Sciences of BSSR], 1980, vol. 24, no. 1, pp 19–22 (in Russian).
10. Bogush A. A., Kurochkin Yu. A., Otchik V. S. Algebra of conserved operators for the Kepler–Coulomb problem in the spaces of constant curvature. Physics of Atomic Nuclei, 1998, vol. 61, no. 10, pp. 1778–1781.
11. Gritsev V. V., Kurochkin, Y. A. The Higgs algebra and the Kepler problem in R 3. Journal of Physics A: Mathematical and General, 2000, vol. 33, no. 22, pp. 4073–4080. https://doi.org/10.1088/0305-4470/33/22/310
12. Gritsev V. V., Kurochkin Y. A., Otchik V. S. Nonlinear symmetry algebra of the MIC-Kepler problem on the sphere S 3. Journal of Physics A: Mathematical and General, 2000, vol. 33, no. 27, pp. 4903–4910. https://doi.org/10.1088/0305-4470/33/27/307
13. Granovskii Y. I., Lutsenko I. M., Zhedanov A. S. Quadratic algebra as a ‘hidden’ symmetry of the Hartmann potential. Journal of Physics A: Mathematical and General, 1991, vol. 24, no. 16, pp. 3887–3894. ttps://doi.org/10.1088/0305-4470/24/16/024
14. Zhedanov A. S. Hidden symmetry algebra and overlap coefficients for two ring-shaped potentials. Journal of Physics A: Mathematical and General, 1993, vol. 26, no. 18, pp. 4633–4642. https://doi.org/10.1088/0305-4470/26/18/027
15. Gal’bert O. F., Granovskii Y. I., Zhedanov A. S. Dynamical symmetry of anisotropic singular oscillator. Physics Letters A, 1991, vol. 153, no. 4–5, pp. 177–180. https://doi.org/10.1016/0375-9601(91)90789-b
16. Granovskii Ya. I., Zhedanov A. S., Lutsenko I. M. Quadratic algebras and dynamics in curved spaces. I. Oscillator. Theoretical and Mathematical Physics, 1992, vol. 91, no. 2, pp. 474–480. https://doi.org/10.1007/bf01018846
17. Granovskii, Ya. I., Zhedanov, A. S., Lutsenko, I. M. Quadratic algebras and dynamics in curved spaces. II. The Kepler problem. Theoretical and Mathematical Physics, 1992, vol. 91, no. 3, pp. 604–612. https://doi.org/10.1007/bf01017335
18. Frappat, L., Gaboriaud J., Vinet, L., Vinet, S., Zhedanov, A. S. The Higgs and Hahn algebras from a Howe duality perspective. Physics Letters A, 2019, vol. 383, no. 14, pp. 1531–1535. https://doi.org/10.1016/j.physleta.2019.02.024
19. Bellucci S., Toppan J.,Yeghikyan V. The second Hopf map and Yang-Coulomb system on a 5D (pseudo)sphere. Journal of Physics A: Mathematical and General, 2010, vol. 43, no. 4, p. 045205. https://doi.org/10.1088/1751-8113/43/4/045205
20. Davtyan L. S., Mardoyan L. G., Pogosyan G. S., Sissakian A. N., Ter-Antonyan V. M. Generalized KS transformation: from five-dimensional hydrogen atom to eight-dimensional isotropic oscillator. Journal of Physics A: Mathematical and General, 1987, vol. 20, no. 17, pp. 6121–6126. https://doi.org/10.1088/0305-4470/20/17/044
21. Mardoyan L. G., Sissakian A. N., Ter-Antonyan V. M. 8D oscillator as a hidden SU(2)-monopole. Dubna, JINR, 1998. 4 p. (Preprint / Joint Institute for Nuclear Research E2-98-14).
22. Mardoyan L. G., Sissakian A. N., Ter-Antonyan V. M. Hidden symmetry of the Yang-Coulomb system. Modern Physics Letters A, 1999, vol. 14, no. 19, pp. 1303–1307. https://doi.org/10.1142/s0217732399001395
23. Mardoyan, L. G. Dyon-oscillator duality. Hidden symmetry of the Yang-Coulomb monopole. Superintegrability in Classical and Quantum Systems, 2004, vol. 37, pp. 99–108. https://doi.org/10.1090/crmp/037/09
24. Marquette I. Generalized five-dimensional Kepler system, Yang-Coulomb monopole, and Hurwitz transformation. Journal of Mathematical Physics, 2012, vol. 53, no. 2, pp. 022103–12. https://doi.org/10.1063/1.3684955
25. Pletyukhov M. V., Tolkachev E. M. 8D oscillator and 5D Kepler problem: The case of nontrivial constraints. Journal of Mathematical Physics,1999, vol. 40, no. 1, pp. 93–100. https://doi.org/10.1063/1.532761
26. Pletyukhov M. V., Tolkachev E. M. Hurwitz transformation and oscillator representation of a 5D isospin particle. Reports on Mathematical Physics,1999, vol. 43, no. 1–2, pp. 303–311. https://doi.org/10.1016/s0034-4877(99)80039-1
27. Pletyukhov M. V., Tolkachev E. M. SO(6,2) dynamical symmetry of the SU(2) MIC-Kepler problem. Journal of Physics A: Mathematical and General, 1999, vol. 32, no. 23, pp. L249–L253. https://doi.org/10.1088/0305-4470/32/23/101
28. Gaboriaud J., Vinet L., Vinet S., Zhedanov A. S. The generalized Racah algebra as a commutant. Journal of Physics: Conference Series, 2019, vol. 1194, pp. 012034. https://doi.org/10.1088/1742-6596/1194/1/012034
29. Gaboriaud J., Vinet L., Vinet S., Zhedanov A. S. The Racah algebra as a commutant and Howe duality. Journal of Physics A: Mathematical and Theoretical, 2018, vol. 51, no. 50, pp. 50LT01. https://doi.org/10.1088/1751-8121/aaee1a
30. Howe R. Remarks on Classical Invariant Theory. Transactions of the American Mathematical Society, 1989, vol. 313, no. 2, pp. 539–570. https://doi.org/10.2307/2001418
31. Rowe D. J., Carvalho M. J., Repka J. Dual pairing of symmetry and dynamical groups in physics. Reviews of Modern Physics, 2012, vol. 84, no. 2, pp. 711–757. https://doi.org/10.1103/revmodphys.84.711