Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

To the 150th anniversary of the creation of the Periodic system of elements

https://doi.org/10.29235/1561-2430-2019-55-2-242-254

Abstract

The results of the discovery of the Periodic law by D. I. Mendeleev are considered, and the actual formulation of this law is given. Some examples of the use of symmetry groups in modern science are given. It is shown that the SO(4,2) group allows presenting the contents of the Periodic system of elements in full coincidence with the experimentally established structure of electronic shells of corresponding atoms without involving any additional quantum numbers characterizing the properties of atoms. adynamic substantiation of the use of representations of the dynamic symmetry group of the quantum system, isovalent to hydrogen, for a mathematical description of the properties of the symmetry of the Periodic system of elements is proposed. Using it, the splitting of the infinite-dimensional unitary representations of the group SO(4,2) into the finite-dimensional multiplets, determined by the quantum numbers describing the states of electrons, was implemented. A problem of inclusion of isotopes of elements in the Periodic system of elements is discussed.

About the Authors

A. L. Gurskii
Belarusian State University of Informatics and Radioelectronics
Belarus

Alexander L. Gurskii – Dr. Sc. (Physics and Mathematics), Professor of the Department of Information Security

6, P. Brovka Str., 220013, Minsk, Republic of Belarus



L. I. Hursky
Belarusian State University of Informatics and Radioelectronics
Belarus

Leonid I. Hurski – Corresponding Member, Dr. Sc. (Engineering), Professor, Senior Researcher

6, P. Brovka Str., 220013, Minsk, Republic of Belarus



References

1. Menshutkin N. A. (named after D. I. Mendeleev). The ratio of properties with the atomic weight of elements. Zhurnal Russkogo khimicheskogo obshchestva[Journal of the Russian Chemical Society], 1869, vol. 1, pp. 60–77 (in Russian).

2. Mendeleev D. I. Basic Chemistry.2 vol. Moscow, Leningrad, Goskhimizdat Publ., 1947 (in Russian).

3. Levitan B. M. Almost Periodic Functions. Moscow, Gostekhteoretizdat Publ., 1953. 396 p. (in Russian).

4. Bohr N. Atomic Theory and the Description of Nature. Cambridge, Cambridge University Press, 1934. 120 p.

5. Zommerfel’d A. Atom Structure and Spectra. 2 vol. Moscow, Gostekhizdat Publ., 1956 (in Russian).

6. Barut A. O. Group Structure of the Periodic System. Structure of Matter, Rutherford Centennial Symposium, New Zealand, 1972, pp. 169–179.

7. Novaro O. A., Barrondo M. Approximate symmetry of the periodic table. Journal of Physics B: Atomic and Molecular Physics, 1972, vol. 5, no. 6, pp. 1104–1110. https://doi.org/10.1088/0022-3700/5/6/012

8. Konopelchenko B. G. Group SО(2,4) + R and Mendeleev Table. Novosibirsk, 1972. 7 p. (in Russian).

9. Zhuvikin G. V., Hefferlin R. Symmetry principles for periodic systems of molecules. JR-PHYS-SC/SPBU 1. Joint Report №1 of the Physics Departaments Southern College, Collegedate, USA, St. Petersburg University. St. Peterburg, Russia, 1994. 84 p.

10. Hurski L. I., Komarov L. I. Virial in atom statistical model. Doklady Akademii nauk Belarusi= Doklady of the Academy of Sciences of Belarus, 1997, vol. 41, no. 4, pp. 49–52 (in Russian).

11. Hurski L. I., Komarov L. I., Solodukhin A. M. The symmetry group of the Mendeleev periodic element system // Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 1998, no. 2, pp. 58–65 (in Russian).

12. Gurskii L. I., Komarov L. I., Solodukhin A. M. Group of symmetry of the Periodic system of chemical elements. International Journal of Quantum Chemistry, 1999, vol. 72, no. 5, pp. 499–508. https://doi.org/10.1002/(sici)1097-461x(1999)72:5<499::aid-qua3>3.0.co;2-e

13. Fet A. I. Chemical Symmetry Group. Novosibirsk, Nauka Publ., 2010. 238 p. (in Russian).

14. Hurski L. I. Dynamic symmetry group of the quantum system isovalent to hydrogen and symmetry properties of multielectron atoms. Vestnik fonda fundamental’nykh issledovanii = Vestnik of the Foundation for Fundamental Research, 2004, no. 3 (29), pp. 61–79 (in Russian).

15. Gurskii A. L., Hurski L.I. Group classification of the elements and D. I. Mendeleev’s periodic law. Doklady BGUIR, 2015, no. 8 (94), pp. 38–43(in Russian).

16. Fundamental Problems of Natural Science is the Theoretical Basis of Professional Education of Specialists in Nano-, Micro-, and Radioelectronics According to Mathematics Disciplines. Nizhny Novgorod, 2015, Part 2, pp. 403–407; Part 3, pp. 407–411; Part 4, pp. 411–415; Part 5, pp. 415–419 (in Russian).

17. Gurskii A. L., Hurski L. I. Group SO(4,2) and symmetry properties of D. I. Mendeleev’s Periodic system elements. Doklady BGUIR, 2016, no. 48 (98), pp. 73–79 (in Russian).

18. Madelung E. Mathematical Apparatus of Physics. Moscow, Fizmatgiz Publ., 1961. 620 p. (in Russian).

19. Klechkovskii V. M. Distribution of Atom Electrons and Rule of Sequential Filling of (n+l)-groups. Moscow, Atomizdat Publ., 1968. 433 p. (in Russian).

20. Petrashen M. I., Trifonov E. D. Application of Group Theory in Quantum Mechanic. Moscow, Nauka Publ., 1967. 308 p. (in Russian).

21. Fok V. A. Hydrogen Atom and Non-Euclidean Geometry. Izvestiya Akademii nauk SSSR. Seriya VII. Matematicheskikh i estestvennykh nauk [News of the Academy of Sciences of the USSR. Series VII. Department of Mathematical and Natural Sciences], 1935, no. 2, pp. 169–179 (in Russian).

22. Fok V. A. Theory of Space, Time and Gravity. 2nd ed. Moscow, Fizmatgiz Publ., 1961. 568 p. (in Russian).

23. Fedorov F. I. Lorents Group. Moscow, Nauka Publ., 1979. 384 p. (in Russian).

24. Elliot J., Dober P. Symmetry in Physics. London, Macmillan, 1979.

25. Barut A., Ronchka R. Theory of Group Representations and its Applications. Warszawa, PWN – Polich Scientific Publishers, 1986. https://doi.org/10.1142/0352

26. Bourbaki N. Lie groups and Lie algebras. Berlin, Springer Verlag, 1989.

27. Jemmer M. The Conceptual Development of Quantum Mechanics. McGraw-Hill, 1966. 412 p.

28. Heisenberg W. Gesammelte Werke = Collected works Werner. Berlin, Heidelberg, New York, Springer-Verlag, 1984. 947 p.

29. Pauli W. General Principles of Quantum Mechanics. Berlin, Heidelberg, Springer-Verlag, 1980. https://doi.org/10.1007/978-3-642-61840-6

30. Born M. Atomic Physics.8 th ed. Blackie & Son Ltd, 1969. 269 p.

31. Gell-Mann M. The Eightfold Way: A Theory of Strong Interaction Symmetry. Report No. CTSL-20, California Institute of Technology. March 15, 1961.

32. Néeman Y. Derivation of Strong Interactions from a Gauge Invariance. Nuclear Physics, 1961, vol. 26, no. 2, pp. 222– 229. https://doi.org/10.1016/0029-5582(61)90134-1

33. Gell-Mann M. Symmetries of Barions and Mesons. Physical Review, 1962, vol. 125, no. 3, pp. 1067–1084. https://doi.org/10.1103/physrev.125.1067

34. Malkin I. A., Man’ko V. I. Dynamic Symmetries and Coherent States of Quantum Systems. Moscow, Nauka Publ., 1979. 320 p. (in Russian).

35. Kregar M. The Virial and the Independent Particle Models of the Atom. Physica Scripta, 1984, vol. 29, no. 5, pp. 438– 447. https://doi.org/10.1088/0031-8949/29/5/005

36. Kregar M. The Virial as the Atomic Model Potential Energy Operator. Physica Scripta, 1985, vol. 31, no. 4, pp. 246– 254. https://doi.org/10.1088/0031-8949/31/4/005

37. Landau L. D., Lifshits E. M. Theoretical physics. Vol. 5, pt. 1. Quantum mechanics. Nonrelativistic theory. 4 th ed. Moscow, Nauka Publ., 1989. 768 p. (in Russian).

38. Komarov L. I., Romanova T. S. The algebraic method of solution of the Dirac equation for a particle in a Coulomb potential Journal of Physics B: Atomic Molecular and Optical Physics, 1985, vol. 18, no. 5, pp. 859–865. https://doi.org/10.1088/0022-3700/18/5/007

39. Audi G., Kondev F. G., Wang M., Huang W. J., Naimi S. The NUBASE2016 evaluation of nuclear properties. Chinese Physics C, 2017, vol. 41, no. 3, pp. 03001. https://doi.org/10.1088/1674-1137/41/3/030001

40. Thyssen P., and A. Ceulemans. Shattered Symmetry Group Theory from the Eightfold Way to the Periodic Table. New York, Oxford University Press, 2017. 511 p.

41. Kibler M. R. A Group-Theoretical Approach to the Periodic Table of Chemical Elements: Old and New Developments. The Mathematics of the Periodic Table. New York, Nova Science Publishers, 2005, pp. 237–264.


Review

Views: 1054


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)