Rational interpolation of the function |x|α by an extended system of Chebyshev – Markov nodes
https://doi.org/10.29235/1561-2430-2019-55-4-391-405
Abstract
In this paper, we study the approximations of a function |x|α, α > 0 by interpolation rational Lagrange functions on a segment [–1,1]. The zeros of the even Chebyshev – Markov rational functions and a point x = 0 are chosen as the interpolation nodes. An integral representation of an interpolation remainder and an upper bound for the considered uniform approximations are obtained. Based on them, a detailed study is made:
a) the polynomial case. Here, the authors come to the famous asymptotic equality of M. N. Hanzburg;
b) at a fixed number of geometrically different poles, the upper estimate is obtained for the corresponding uniform approximations, which improves the well-known result of K. N. Lungu;
c) when approximating by general Lagrange rational interpolation functions, the estimate of uniform approximations is found and it is shown that at the ends of the segment [–1,1] it can be improved.
The results can be applied in theoretical research and numerical methods.
About the Authors
E. A. RovbaBelarus
Evgeniy A. Rovba – Dr. Sc. (Physics and Mathematics), Professor, Head of the Department of Fundamental and Applied Mathematics, Faculty of Mathematics and Informatics.
22, Ozheshko Str., 230023, Grodna
V. Yu. Medvedeva
Belarus
Victoria Yu. Medvedeva – Undergraduate.
22, Ozheshko Str., 230023, Grodna
References
1. Lebesgue H. Sur I’approximation des fonctions. Bulletin des Sciences Mathématiques, no. 22, 1898, pp. 278–287.
2. Landay E. Über die Approximation einer stetigen Funktion durch eine ganze rationale Funktion. Rendiconti del Circolo Matematico di Palermo, 1908, vol. 25, no. 1, pp. 337–345. https://doi.org/10.1007/bf03029135
3. De la Vallee Poussin Ch. J. Sur l’approximation des fonctions d’une variable réelle et de leurs dérivées par des polynomes et des suites limitées de Fourier . Bull. Ac. de Belgique, no. 3, 1908, pp. 3–64.
4. Bernshtein S. N. Proof of the WeierstrassTheorem, based on probability theory. Vol. 1. Writings, 1912, pp. 105–106.
5. Bernshtein S. N. On the best approximation |x| by polynomials of a given degree. Vol. 1. Moscow, Publishing House Acad. sciences USSR, 1952, pp. 157–206 (in Russian).
6. Bernshtein S. N. Sur la meilleure approximation de |x|p par des polynomes de degres tre's eleves. Izvestiya AN SSSR. Seriya matematicheskaya [Mathematics of the USSR-Izvestiya], 1938, vol. 2, no. 2, pp. 169–190 (in Russian).
7. Nikolskii S. M. On the best mean approximation by polynomials of the functions |a – x|s. Izvestiya AN SSSR. Seriya matematicheskaya [Mathematics of the USSR-Izvestiya], 1947, vol. 11, pp. 139–180 (in Russian).
8. Raitsin R. A. On the best approximation in the mean by polynomials and entire functions of finite degree of functions having an algebraic singularity. Izvestiya vysshikh uchebnykh zavedenii. Matematika [Russian Mathematics], 1969, no. 13.pp. 59–61 (in Russian).
9. Brutman L., Passow E. On the divergence of Lagrange interpolation to |x|. Journal of Approximation Theory, 1995, vol. 81, no. 1, pp. 127–135. https://doi.org/10.1006/jath.1995.1037
10. Byrne G. J., Mills T. M., Smith S. J. On Lagrange interpolation with equidistant nodes. Bulletin of the Australian Mathematical Society, 1990, vol. 42, no. 1, pp. 81–89. https://doi.org/10.1017/s0004972700028161
11. Li X., Saff E. B. Local convergence of Lagrange interpolation associated with equidistant nodes. Journal of Approximation Theory, 1994, vol. 78, no. 2, pp. 213–225. https://doi.org/10.1006/jath.1994.1073
12. Ganzburg M. The Bernstein Constant and Polynomial Interpolation at the Chebyshev Nodes. Journal of Approximation Theory, 2002, vol. 119, no. 2, pp. 193–213. https://doi.org/10.1006/jath.2002.3729
13. Revers M. On the asymptotics of polynomial interpolation to |x|α at the Chebyshev nodes. Journal of Approximation Theory, 2013, vol. 165, pp. 70–82.
14. Ganelius T. H. Rational approximation to xα on [0,1]. Analysis Mathematica, 1979, no. 5, pp. 19–33. https://doi.org/10.1007/bf02079347
15. Andersson J.-E. Rational approximation to functions like xα in integral norms. Analysis Mathematica, 1988, vol. 14, no. 1, pp. 11–25. https://doi.org/10.1007/bf02350637
16. Vyacheslavov N. S. Approximation of the function |x| by rational functions. Mathematical Notes, 1974, vol. 16, no. 1, pp. 680–685.
17. Vyacheslavov N. S. On the least deviations of the function sign x and its primitives from the rational functions in the Lp metrics, 0 <p ⩽∞. Mathematics of the USSR-Sbornik, 1977, vol. 32, no. 1, pp. 19–31. https://doi.org/10.1070/sm1977v032n01abeh002313
18. Shtal' G. Best uniform rational approximation of |x|on [−1,1]. Russian Academy of Sciences. Sbornik Mathematics, 1993, vol. 76, no. 2, pp. 461–487. https://doi.org/10.1070/sm1993v076n02abeh003422
19. Lungu K. N. On best approximations by rational functions with a fixed number of poles. Mathematics of the USSR-Sbornik, 1971, vol. 15, no. 2, pp. 313–324. https://doi.org/10.1070/sm1971v015n02abeh001547
20. Lungu K. N. Best approximations by rational functions with a fixed number of poles. Siberian Mathematical Journal, 1984, vol. 25, no. 2, pp. 289– 296.https://doi.org/10.1007/bf00971467
21. Rovba E. A. On approximation by rational functions with a given number of poles. Sovremennye problem teorii funktsii: materialy Vsesoyuznoi shkoly po teorii funktsii, Baku, 21 maya – 1 iyunya 1977 g. [Modern Problems of the Theory of Functions: Materials All-Union. schools on the theory of functions, Baku, May 21 – June 1, 1977]. Baku, 1980, pp. 234–239 (in Russian).
22. Rovba E. A. On approximation of periodic analytic functions with characteristic features of rational functions.Vestsі Akademіі navuk BSSR. Seryya fіzіka-matematychnykh navuk = Proceedings of the Academy of Sciences of BSSR. Physics and Mathematics series, 1974, no. 6, pp. 43–49 (in Russian).
23. Rusak V. N. Rational Functions as an Approximation Apparatus. Minsk, BSU, 1979. 176 p. (in Russian).
24. Fikhtengol'ts G. M. Course of Differential and Integral Calculus. Vol. 2. St. Petersburg, Lan` Publ., 1997. 800 p. (in Russian).
25. Pekarskii A. A, Kovalevskaya E. V. Building extreme works Blaschke. Vesnik Grodnenskogo gosudarstvennogo universiteta imeni Yanki Kupaly. Seriya 2 = Vesnik of the Yanka Kupala Grodno State University. Series 2, vol. 7, no. 1, 2017, pp. 6–13 (in Russian).