Using IIR filters to build high-order finite difference schemes for the unsteady Schrödinger equation
https://doi.org/10.29235/1561-2430-2019-55-4-413-424
Abstract
About the Author
A. N. HureuskiRussian Federation
Aliaksei N. Hureuski – Senior Lecturer of the Department Web-Technologies and Computer Modeling.
4, Nezavisimosti Ave., 220030, Minsk
References
1. Samarskii A. A. The theory of Finite Difference schemes. Moscow, Nauka Publ., 1989. 616 p. (in Russian).
2. Han F., Dai W. New higher-order compact finite difference schemes for 1D heat conduction equations. Applied Mathematical Modelling, 2013, vol. 37, no. 16-17, pp. 7940–7952. https://doi.org/10.1016/j.apm.2013.03.026
3. Gordin V. A., Tsymbalov E. A. Compact differential schemes for the diffusion and Schrödinger equations. Approximation, stability, convergence, effectiveness, monotony. Journal of Computational Mathematics, 2014, vol. 32, no. 3, pp. 348 370. https://doi.org/10.4208/jcm.1403-cr14
4. Volkov V. M., Hureuski A. N. Spectpal-like resolution of finite-difference schemes for the heat conduction equation. VestsіNatsyianal’naiakademііnavuk Belarusі. Seryia fіzіka-matematychnykhnavuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2017, no. 3, pp. 7–14 (in Russian).
5. . Volkov V. M., Gurevskii A. N., Zhukova I. V. Optimization of compact finite difference schemes with spectral-like resolutionа for the non-stationary Schrodinger equation on the base of digital signal processing methods. Vestnik BGU. Seriya 1. Fizika. Matematika. Informatika = Vestnik BSU. Series 1: Physics. Mathematics. Informatics, 2015, no. 3, pp. 84–89 (in Russian).
6. Carena A., Curri V., Gaudino R., Poggiolini P., Benedetto S. A time-domain optical transmission system simulation package accounting for nonlinear and polarization-related effects in fiber. IEEE Journal on Selected Areas in Communications, 1997, vol. 15, no. 4, pp. 751–765. https://doi.org/10.1109/49.585785
7. Sergienko A. G. Digital signal processing. Saint Petersburg, BHV-Petersburg Publ., 2011. 768 p. (in Russian).
8. Askar S. S., Karawia A. A. On Solving Pentadiagonal Linear Systems via Transformations. Mathematical Problems in Engineering, 2015, vol. 2015, pp. 1–9. https://doi.org/10.1155/2015/232456
9. Akhmanov S. A., Vysloukh V. A., Chirkin A. S. Optics of Femtosecond Laser Pulses. Moscow, Nauka Publ., 1988. 312 p. (in Russian).
10. Agrawal G. Nonlinear Fiber Optics. 3rd ed. Academic Press, 2001. 481 p.
11. Sinkin O. V, Holzlohner R., Zweck J., Menyuk C. R. Optimization of the split-step Fourier method in modeling optical-fiber communications systems. Journal of Lightwave Technology, 2003, vol. 21, no. 1, pp. 61 68. https://doi.org/10.1109/JLT.2003.808628
12. Volkov V. M., Gurevskii A. N. Optimization of compact finite difference schemes with spectral-like resolutions in the split-step method for the nonlinear Schrödinger equation. Vestsі BDPU. Seryya 3, Fіzіka. Matematyka. Іnfarmatyka. Bіyalogіya. Geagrafіya [Bulletin of BSPU. Series 3, Physics. Mathematics. Informatics. Biology. Geography], 2016, no. 4, pp. 11–17 (in Russian).
13. Lele S. K. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 1992, vol. 103, no. 1, pp. 16–42. https://doi.org/10.1016/0021-9991(92)90324-r
14. Hureuski A. N. Optimizing the spectral characteristics of the finite-difference schemes for the unsteady Schrödinger equation. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2019, vol. 55, no. 1, pp. 62–68 (in Russian). https://doi.org/10.29235/1561-2430-2019-55-1-62-68