Modified method of parallel matrix sweep
https://doi.org/10.29235/1561-2430-2019-55-4-425-434
Abstract
About the Authors
A. A. ZgirouskiRussian Federation
Andrei A. Zgirouski – Undergraduate
4, Nezavisimosti Ave., 220030, Minsk
N. A. Likhoded
Russian Federation
Nikolai A. Likhoded – Dr. Sc. (Physics and Mathematics)
4, Nezavisimosti Ave., 220030, Minsk
References
1. Samarskii A. A., Nikolaev E. S. Numerical Methods for Grid Equations. Vol. 1. Direct Methods. Birkhauser Verlag, 1989. 242 p.
2. Heller D. Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems. SIAM Journal on Numerical Analysis. 1976, vol. 13, no. 4, pp. 484–496. https://doi.org/10.1137/0713042
3. Akimova E. N. Parallelization of the matrix sweep algorithm. Matematicheskoe modelirovanie = Mathematical Models, 1994, vol. 6, no. 9,pp. 61–67 (in Russian).
4. Akimova E. N, Belousov D. V. Parallel algorithms for solving the systems of equations with block-three-diagonal matrices on multiprocessors computer systems. Vestnik UGATU[Scientific Journal of Ufa State Aviation Technical University], 2011 vol. 15, no. 5,pp. 87–93 (in Russian).
5. Hirshman S. P., Perumalla K. S., Lynch V. E., Sanchez R. BCYCLIC: A parallel block tridiagonal matrix cyclic solver. Journal of Computational Physics, 2010, vol. 229, no. 18, pp. 6392–6404. https://doi.org/10.1016/j.jcp.2010.04.049
6. Davina A. Lamas, Roman J. E. MPI-CUDA parallel linear solvers for block-tridiagonal matrices in the context of SLEPc’seigensolvers. Parallel Computing, 2018, vol. 74, pp. 118–135. https://doi.org/10.1016/j.parco.2017.11.006
7. Yanenko N. N., Konovalov A. N., Bugrov A. N., Shustov G. V. Organization of Parallel Computing and the Thomas Algorithm Parallelization. Chislennye metody mekhaniki sploshnoi sredy [Numerical Methods in Continuum Mechanics], 1978, vol. 9, no. 7,pp. 139–146 (in Russian).
8. Wang H. H. A parallel method for tridiagonal equations. ACM Transactions on Mathematical Software, 1981, vol. 7, no. 2, pp. 170–183. https://doi.org/10.1145/355945.355947
9. Buzbee B. L., Golub G. H., Nielson C. W. On direct methods for solving Poisson’s equations.SIAM Journal on Numerical Analysis, 1970, vol. 7, no. 4, pp. 627–656. https://doi.org/10.1137/0707049
10. Austin T. M., Berndt M., Moulton J. D. A memory efficient parallel tridiagonal solver. Preprint LA-VR-03-4149, 2004. 13 p.