Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Calculation algorithm of the trajectories of electrons in electrostatic and magnetostatic fields of electron-optical systems

https://doi.org/10.29235/1561-2430-2019-55-4-435-444

Abstract

An algorithm for numerical calculation of the trajectories of electrons emitted by plasma in the electron beam moving in axially symmetric electrostatic and magnetostatic fields is proposed. This algorithm is based on the technology of charged particle beam discretization by current tubes and the decomposition method of the computational domain. Field simulation and numerical solution of equations for particle motion are carried out with the use of quasi-structured grids.

About the Authors

A. M. Krot
United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Russian Federation

Alexander M. Krot – Dr. Sc. (Engineering), Professor, Head of the Laboratory of Self-Organization Systems Modeling.

6, Surganov Str., 220012, Minsk



O. N. Petrovich
Polotsk State University
Russian Federation

Olga N. Petrovich – Ph. D. (Engineering), Associate Professor, Head of the Department of Programming Technologies.

29, Blokhin Str., 211440, Novopolotsk



I. S. Rusetski
Polotsk State University
Russian Federation

Igor S. Rusetski – Senior Lecturer at the Department of Energy and Electronic Engineering.

29, Blokhin Str., 211440, Novopolotsk



References

1. Kotel’nikov I. A., Astrelin V. T. Theory of plasma emitter of positive ions.Uspekhi Fizicheskih Nauk = Physics-Uspekhi, 2015, vol. 185, no. 7, pp. 753–771. https://doi.org/10.3367/ufnr.0185.201507c.0753

2. Boers J. E. An interactive version of the PBGUNS program for the simulation of axisymmetric and 2-D, electron and ion beams and guns. Proceedings Particle Accelerator Conference, 1–5 May 1995. IEEE, 1996. P. 2312. https://doi.org/10.1109/pac.1995.505535

3. PBGUNS (Particle Beam GUN Simulations). Available at: https://far-tech.com/pbguns.php

4. KOBRA3-INP, INP, Junkernstr. 99, 65205 Wiesbaden.

5. Spädtke P. Computer Simulation of High-Current DC Ion Beams. Proc. 1984 Linear Accelerator Conf. (LINAC'84), Seeheim, Germany, May 1984, paper THP0012. Seeheim, 1984, pp. 356–358.

6. Astrelin V. T., Ivanov V. Ya. Software package for calculating the characteristics of intense beams of relativistic charged particles. Avtometriya = Optoelectronics, Instrumentations and Data Processing, 1980, no. 3, pp. 92–99 (in Russian).

7. Astrelin V. T. Features of solving the plasma emission electronics problems in CAD POISSON-2. Uspekhi Prikladnoi Fiziki = Advances in Applied Physics, 2013, vol. 1, no. 5, pp. 574–579 (in Russian).

8. Petrovich O. N., Gruzdev V. A. The software package ELIS for simulation of EOS of PES. Prikladnaya Fizika = Applied Physics, 2012, no. 2, pp. 79–85 (in Russian).

9. Petrovich O. N. Simulation of Electron-Optical Systems with a Plasma Emitter. Novopolotsk, 2012. 199 р. (in Russian).

10. Petrovich O. N., Rusetskiш I. S. Numerical methods for calculation of electromagnetic fields on quasi-structured grids in devices of plasma emission electronics. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya S, fundamental'nye nauki = Vestnik of Polotsk State University. Part C, Fundamental Sciences, 2018, no. 4, pp. 124–127 (in Russian).

11. Landau L. D., Lifschitz E. M. Classical Theory of Fields. Reading, Addison-Wesley Publ., 1951.

12. Yavorskii B. M., Detlaf A. A. A Handbook of Physics for Engineers and Students. Moscow, Fizmatgiz Publ., 1963. 848 p. (in Russian).

13. Loitsyanskii L. G. Mechanics of Fluid and Gas. Moscow, Nauka Publ., 1973. 848 p. (in Russian).

14. Landau L. D., Lifschitz E. M. Mechanics. Moscow, Nauka Publ., 1973. 208 p. (in Russian).

15. Molokovskii S. I., Sushkov A. D. Intensive Electron and IonBeams. Moscow, Energoatomizdat Publ., 1991. 304 p. (in Russian).

16. Dodd R. K., Eilbeck J. C., Gibbon J. D., Morris H. C. Solitons and Nonlinear Wave Equations. London, Academic Press, 1984. 630 p.

17. Krot A. M. Development of the generalized nonlinear Schrödinger equation of rotating cosmogonical body formation. Complex Systems: Theory and Applications. Ch. 3. New York, Nova Science Publ., 2017, pp.49–94.


Review

Views: 938


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)