Геометрия двухслойного нанорулона из zigzag нанополосок графена и нитрида бора
https://doi.org/10.29235/1561-2430-2020-56-4-411-418
Анатацыя
Аб аўтарах
Н. ПоклонскийБеларусь
А. Сягло
Беларусь
С. Вырко
Беларусь
С. Раткевич
Беларусь
А. Власов
Беларусь
Ю. Лозовик
Расія
Нгуен Нгок Хиеу
В'ьетнам
Спіс літаратуры
1. Siahlo A. I., Poklonski N. A., Lebedev A. V., Lebedeva I. V., Popov A. M., Vyrko S. A., Knizhnik A. A., Lozovik Yu. E. Structure and energetics of carbon, hexagonal boron nitride, and carbon/hexagonal boron nitride single-layer and bilayer nanoscrolls. Physical Review Materials, 2018, vol. 2, no. 3, pp. 036001 (1–9). https://doi.org/10.1103/PhysRevMaterials.2.036001
2. Perim E., Galvão D. S. The structure and dynamics of boron nitride nanoscrolls. Nanotechnology, 2009, vol. 20, no. 33, pp. 335702 (1–6). https://doi.org/10.1088/0957-4484/20/33/335702
3. Lewars E. G. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Berlin, Springer, 2016. xvi+728 p. https://doi.org/10.1007/978-3-319-30916-3
4. Poklonski N. A., Vyrko S. A., Siahlo A. I., Poklonskaya O. N., Ratkevich S. V., Hieu N. N., Kocherzhenko A. A. Synergy of physical properties of low-dimensional carbon-based systems for nanoscale device design. Materials Research Express, 2019, vol. 6, no. 4, pp. 042002 (1–25). https://doi.org/10.1088/2053-1591/aafb1c
5. Cramer C. J. Essentials of Computational Chemistry: Theories and Models. Chichester, Wiley, 2004. xxii+596 p.
6. Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. Introduction to Algorithms. Cambridge, MIT Press, 2009. xx+1292 p.
7. Brázdová V., Bowler D. R. Atomistic Computer Simulations: A Practical Guide. Weinheim, Wiley-VCH, 2013. xxx+332 p. https://doi.org/10.1002/9783527671816
8. Siahlo A. I., Vyrko S. A., Ratkevich S. V., Poklonski N. A., Vlassov A. T., Hieu N. N., Lozovik Yu. E. Quantum chemical calculations of carbon nanoscroll energy rolled from zigzag graphene nanoribbon. Semiconductors, 2020, vol. 54, no. 12, pp. 1678–1681. https://doi.org/10.1134/s1063782620120350
9. Rashevskii P. K. Course of Differential Geometry. Moscow, GITTL, 1956. 420 p. (in Russian).
10. Kühnel W. Differential Geometry: Curves, Surfaces, Manifolds. Providence, AMS, 2015. xii+402 p.
11. Yankowitz M., Ma Q., Jarillo-Herrero P., LeRoy B. J. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nature Reviews Physics, 2019, vol. 1, no. 2, pp. 112–125. https://doi.org/10.1038/s42254-018-0016-0
12. Galashev A. E., Rakhmanova O. R. Mechanical and thermal stability of graphene and graphene-based materials. Physics Uspekhi, 2014, vol. 57, no. 10, pp. 970–989. https://doi.org/10.3367/UFNe.0184.201410c.1045
13. Poklonski N. A., Vlassov A. T., Vyrko S. A. Finite Symmetry Groups: Fundamentals and Applications. Minsk, P. Brouka Belarusian Encyclopedia, 2011. 464 p. (in Russian).
14. Archimedean spiral. Prokhorov Yu. V. (ed.) Mathematical Encyclopedic Dictionary. Moscow, Sovetskaya entsiklopediya Publ., 1988. pp. 80 (in Russian).
15. Vyrko S. A., Siahlo A. I., Poklonski N. A., Vlassov A. T., Ratkevich S. V., Lozovik Yu. E., Hieu N. N. Data for: Geometry of bilayer nanoscroll rolled from zigzag nanoribbons of graphene and boron nitride. Mendeley Data. 2020. https:// doi.org/10.17632/rz57w938fs