Local vibrational modes of vacancy-oxygen-related complexes at room temperature
https://doi.org/10.29235/1561-2430-2020-56-4-480-487
Abstract
About the Authors
E. A. TolkachevaBelarus
Ekaterina A. Tolkacheva – Ph. D. (Physics and Mathematics), Senior Researcher
19, P. Brovki Str., 220072, Minsk
V. P. Markevich
United Kingdom
Vladimir P. Markevich – Ph. D. (Physics and Mathematics), Senior Researcher, Photon Science Institute and School of Electrical and Electronic Engineering
Manchester M13 9PL, United Kingdom
L. I. Murin
Belarus
Leonid I. Murin – Ph. D. (Physics and Mathematics), Leading Researcher
19, P. Brovki Str., 220072, Minsk
References
1. Chroneos A., Sgourou E. N., Londos C. A., Schwingenschlögl U. Oxygen defect processes in silicon and silicon germanium. Applied Physics Reviews, 2015, vol. 2, pp. 021306 (1–15). https://doi.org/10.1063/1.4922251
2. Lindström J. L., Murin L. I., Hallberg T., Markevich V. P., Svensson B. G., Kleverman M., Hermansson J. Defect engineering in Czochralski silicon by electron irradiation at different temperatures. Nuclear Instruments and Methods in Physics Research B, 2002, vol. 186, no. 1–4, pp. 121–125. https://doi.org/10.1016/s0168-583x(01)00871-0
3. Pajot B., Clerjaud B. Optical Absorption of Impurities and Defects in Semiconducting Crystal: Electronic Absorption of Deep Centres and Vibrational Spectra. Berlin, Heidelberg, Springer, 2013. 463 p.
4. Murin L. I., Lindstrom J. L., Markevich V. P., Misiuk A., Londos C. A. Thermal double donor annihilation and oxygen precipitation at around 650 °C in Czochralski-grown Si: local vibrational mode studies. Journal of Physics: Condensed Matter, 2005, vol. 17, no. 22, pp. S2237–S2246. https://doi.org/10.1088/0953-8984/17/22/011
5. Korshunov F. P., Bogatyrev Yu. V. Radiation technology for manufacturing powerful semiconductor devices. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-technichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2008, no. 4, pp. 106–114 (in Russian).
6. Tolkacheva E. A., Markevich V. P., Murin L. I. Optical Properties and the Mechanism of the Formation of V2O2 and V3O2 Vacancy–Oxygen Complexes in Irradiated Silicon Crystals. Semiconductors, 2018, vol. 52, no. 9, pp. 1097–1103. https:// doi.org/10.1134/s1063782618090221
7. Tolkacheva E. A., Murin L. I. Influence of the isotopic composition of natural silicon on local vibrational modes of vacancy-oxygen complexes. Journal of Applied Spectroscopy, 2013, vol. 80, no. 4, pp. 571–575. https://doi.org/10.1007/s10812- 013-9807-3
8. Londos C. A. IR studies of oxygen-vacancy related defects in irradiated silicon. Defect and Diffusion Forum, 1999, vol. 171–172, pp. 1–32. https://doi.org/10.4028/www.scientific.net/ddf.171-172.1
9. Pajot B. Optical Absorption of Impurities and Defects in Semiconducting Crystal: I. Berlin, Springer, Hydrogen-like centres, 2010. 470 p.
10. Markevich V. P., Peaker A. R., Hamilton B., Lastovskii S. B., Murin L. I., Coutinho J., Rayson M. J., Briddon P. R., Svensson B. G. The trivacancy and trivacancy-oxygen family of defects in silicon. Solid State Phenomena, 2014, vol. 205– 206, pp. 181–190. https://doi.org/10.4028/www.scientific.net/ssp.205-206.181