1. Математический аппарат, включающий Фурье преобразование (разложение по плоским волнам с использованием сферических координат), позволяющий одновременно исследовать сложные перемещения, в том числе повороты и смещения, в сложных молекулярных конструкциях / А. В. Батяновский [и др.] // Биофизика. - 2019. - Т. 64, № 2.- С. 239-242. https://doi.org/10.1134/s0006302919020030
2. A Fourier analysis of symmetry in protein structure / W. R. Taylor [et al.] // Protein Engineering, Design and Selection. - 2002. - Vol. 15, № 2. - P. 79-89. https://doi.org/10.1093/protein/15.2.79
3. SaberiFathi, S. M. Geometrical comparison of two protein structures using Wigner-D functions / S. M. SaberiFathi, D. T. White, J. A. Tuszynski // Proteins. - 2014. - Vol. 82, № 10. - P. 2756-2769. https://doi.org/10.1002/prot.24640
4. Mavridis, L. 3D-blast: 3D protein structure alignment, comparison, and classification using spherical polar Fourier correlations / L. Mavridis, D. W. Ritchie // Pacific Symposium on Biocomputing 2010: proc. Int. conf. - Hawaii, 2010. - P. 281-292. https://doi.org/10.1142/9789814295291_0030
5. PIPER: an FFT-based protein docking program with pairwise potentials / D. Kozakov [et al.] // Proteins: Structure, Function, and Bioinformatics. - 2006. - Vol. 65, № 2. - P. 392-406. https://doi.org/10.1002/prot.21117
6. The ClusPro web server for protein-protein docking / D. Kozakov [et al.] // Nature Protocols. - 2017. - Vol. 12, № 2. - P. 255-278. https://doi.org/10.1038/nprot.2016.169
7. Bajaj, C. F2Dock: fast Fourier protein-protein docking / C. Bajaj, R. Chowdhury, V. Siddavanahalli // IEEE/ACM Trans. Comput. Biol. Bioinformatics. - 2011. - Vol. 8, № 1. - P. 45-58. https://doi.org/10.1109/tcbb.2009.57
8. Watson, G. N. A Treatise on the Theory of Bessel Functions / G. N. Watson. - Cambridge: University press, 1922. - 804 p.
9. Qing Wang. Fourier Analysis in Polar and Spherical Coordinates [Electronic resource] / Qing Wang, O. Ronneberger, H. Burkhardt. - 2008. - Mode of access: https://lmb.informatik.uni-freiburg.de/Publications/2008/WRB08/wa_report01_08. pdf. - Date of access: 23.07.2019.
10. Radial functions and the Fourier transform [Electronic resource] // Notes for Math 583A (2008). - Mode of access: https://www.math.arizona.edu/~faris/methodsweb/hankel.pdf. - Date of access: 23.07.2019.
11. Bracewell, R. N. The Fourier Transform and Its Applications / R. N. Bracewell. - McGraw-Hill, 2000. - 640 p.