Fourier transformation in spherical systems as a tool of structural biology
https://doi.org/10.29235/1561-2430-2020-56-4-496-503
Abstract
About the Authors
A. V. BatyanovskiiBelarus
Alexander V. Batyanovskii – Ph. D. (Physics and Mathematics), Researcher
27, Akademicheskaya Str., 220072, Minsk
V. A. Namiot
Russian Federation
Vladimir A. Namiot – Dr. Sc. (Physics and Mathematics), Senior Researcher
1/2, Leninskie Gory, 119991, Moscow
I. V. Filatov
Russian Federation
Ivan V. Filatov – Ph. D. (Physics and Mathematics), Teacher
9, Institutskii Lane, Dolgoprudny, 141701, Moscow
V. G. Tumanyan
Russian Federation
Vladimir G. Tumanyan – Dr. Sc. (Physics and Mathematics), Professor, Head of the Laboratory of Computational Methods for System Biology
32, Vavilov Str., 119991, Moscow
N. G. Esipova
Russian Federation
Natalia G. Esipova – Ph. D. (Physics and Mathematics), Senior Researcher
32, Vavilov Str., 119991, Moscow
I. D. Volotovsky
Belarus
Igor D. Volotovsky – Academician of the National Academy of Sciences of Belarus, Dr. Sc. (Biology), Professor, Head of the Laboratory of Molecular Cell Biology
27, Akademicheskaya Str., 220072, Minsk
References
1. Batyanovskii A. V., Namiot V. A., Filatov I. V., Esipova N. G., Volotovskii I. D. A Mathematical Approachtha tIncludes the Fourier Transform (Plane Wave sDecomposition Using Spherical Coordinates) for the Study of Simultaneously Complex Movementsin Particular Rotationsand Displacementsin Complicated Molecular Constructions. Biofizika = Biophysics, 2019, vol. 64, no. 2, pp. 239–242 (in Russian). https://doi.org/10.1134/s0006302919020030
2. Taylor W. R., Heringa J., Baud F., Flores T. P. A Fourier analysis of symmetry in protein structure. Protein Engineering, Design and Selection, 2002, vol. 15, no. 2, pp.79–89. https://doi.org/10.1093/protein/15.2.79
3. SaberiFathi S. M., White D. T., Tuszynski J. A. Geometrical comparison of two protein structures using Wigner-D functions. Proteins: Structure, Function, and Bioinformatics, 2014, vol. 82, no. 10, pp. 2756–2769. https://doi.org/10.1002/ prot.24640
4. Mavridis L., Ritchie D. W. 3D-blast: 3D protein structure alignment, comparison, and classification using spherical polar Fourier correlations. Proceedings international conference “Pacific Symposium on Biocomputing 2010”. Hawaii, 2010, pp. 281–292. https://doi.org/10.1142/9789814295291_0030
5. Kozakov D., Brenke R., Comeau S. R., Vajda S. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins: Structure, Function, and Bioinformatics, 2006, vol. 65, no. 2, pp. 392–406. https://doi.org/10.1002/prot.21117
6. Kozakov D., Hall D. R., Bing Xia, Porter K. A., Padhorny D., Yueh C., Beglov D., Vajda S. The ClusPro web server for protein-protein docking. Nature Protocols, 2017, vol. 12, no. 2, pp. 255–278. https://doi.org/10.1038/nprot.2016.169
7. Bajaj C., Chowdhury R., Siddavanahalli V. F2Dock: fast Fourier protein-protein docking. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, vol. 8, no. 1, pp. 45–58. https://doi.org/10.1109/tcbb.2009.57
8. Watson G. N. A Treatise on the Theory of Bessel Functions. Cambridge, The University Press, 1922. 804 p.
9. Qing Wang, Ronneberger O., Burkhardt H. Fourier Analysis in Polar and Spherical Coordinates. Technical Report 1, IIF-LMB, Computer Science Department, University of Freiburg (2008). Available at: https://lmb.informatik.uni-freiburg.de/ Publications/2008/WRB08/wa_report01_08.pdf (accessed 23.07.2019).
10. Radial functions and the Fourier transform. Notes for Math 583A (2008) Available at: https://www.math.arizona. edu/~faris/methodsweb/hankel.pdf (accessed 23.07.2019).
11. Bracewell R. N. The Fourier Transform and Its Applications. McGraw-Hill, 2000. 640 p.