Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Gadolinium contained scintillation glass for neutron detection in a wide energy range.

https://doi.org/10.29235/1561-2430-2021-57-2-217-223

Abstract

Inorganic scintillation glasses form a domain of rapidly evolving detector materials used to measure various types of ionizing radiation. The most widespread are lithium-silicate glasses enriched with the 6Li isotope, which are used to register thermal neutrons. At the same time, due to the specificity of the energy dependence of the neutron cross-section of light nuclei, such materials are of little use for the evaluation of epithermal and more highly energetic neutrons. The use of rare earth elements in the composition of glasses makes it possible to increase the sensitivity to neutrons. In the BaO–Gd2O3–SiO2 system, doped with Ce ions, a scintillation glass with a yield of at least 2500 photons / MeV was created for the first time, which permits to create inexpensive detector elements of a significant volume for registering neutrons. It has been shown that a detector based on BaO–Gd2O3–SiO2 glass has satisfactory properties when detecting neutrons in a wide spectrum of their energies.

About the Author

M. V. Korzhik
Institute of Nuclear Problems of the Belarus State University
Belarus

Mikhail V. Korzhik – D r. Sc. ( Physics a nd Mathematics), Head of the Laboratory

11, Bobruiskaya Str., 220030, Minsk, Republic of Belarus



References

1. Lecoq P., Gektin A., Korzhik M., Inorganic Scintillators for Detecting Systems, Springer, 2017. 408 p.

2. Korjik M. V. Glass-ceramic materials for neutron registration. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2018, no.4, pp. 67–71 (in Russian).

3. Korzhik M., Brinkmann K.-Th., Dosovitskiy G., Dormenev V., Fedorov A., Komar D., Kozemiakin V., Kozlov D., Mechinsky V., Zaunick H.-G., Yashin I., Iyudin A., Bogomolov V., Svertilov S., Maximov I. Detection of neutrons in a wide energy range with crystalline Gd3Al2Ga3O12, Lu2SiO5 and LaBr3 doped with Ce scintillators. Nuclear Instruments and Methods in Physics Research Section A, 2019, vol. 931, pp. 88–91. https://doi.org/10.1016/j.nima.2019.04.034

4. Fedorov A., Gurinovich V., Guzov V., Dosovitskiy G., Korzhik M., Kozhemyakin V., Lopatik A., Kozlov D., Mechinsky V., Retivov V. Sensitivity of GAGG based scintillation neutron detector with SiPM readout. Nuclear Engineering and Technology, 2020, vol. 52, no. 10, pp. 2306–2312. https://doi.org/10.1016/j.net.2020.03.012

5. Tratsiak Y., Fedorov A., Dosovitsky G., Akimova O., Gordienko E., Korjik M., Mechinsky V., Trusova E. Scintillation efficiency of binary Li2O-2SiO2 g lass d oped w ith C e3+ a nd T b3+ ions. Journal of Alloys and Compounds, 2018, vol. 735, pp. 2219–2224. https://doi.org/10.1016/j.jallcom.2017.11.386

6. Dosovitskiy G., Akimova O., Amelina A., Belus S., Fedorov A., Karpyuk P., Kozlov D., Mechinsky V., Mikhlin A., Retivov V., Smyslova V., Volkov P., Korzhik M. Li-Based glasses for neutron detection – classic material revisited. Review Journal of Chemistry, 2020, vol. 10, no. 1–2, pp. 1–11. https://doi.org/10.1134/s207997802001001x

7. Auffray E., Akchurin N., Benaglia A., Borisevich A., Cowden C., Damgov J., Dormenev V., Dragoiu C., Dudero P., Korjik M., Kozlov D., Kunori S., Lecoq P., Lee S. W., Lucchini M., Mechinsky V., Pauwels K. DSB: Ce3+ scintillation glass for future. Journal of Physics: Conference Series, 2015, vol. 587, pp. 012062. https://doi.org/10.1088/1742-6596/587/1/012062

8. Korjik M. V., Vaitkevicius A., Dobrovolskas D., Tret’yak E. V., Trusova E., Tamulaitis G. Distribution of luminescent centers in Ce3+-ion doped amorphous stoichiometric glass BaO–2SiO2 and dedicated glass ceramics. Optical Materials, 2015, vol. 47, pp. 129–134. https://doi.org/10.1016/j.optmat.2015.07.014

9. Romero A., Cruz A., Zeifert B. H., Hallen-Lopez M. Thermodynamic modeling of the BaO-SiO2 and SrO-SiO2 binary melts. Glass Physics and Chemistry, 2010, vol. 36, no. 2, pp. 171–178. https://doi.org/10.1134/s1087659610020045

10. Zhang R., Taskinen P. A thermodynamic assessment of the BaO-MgO, BaO-CaO, BaO-Al2O3 and BaO-SiO2 systems. Aalto University. 2014. Available at: https://aaltodoc.aalto.fi/bitstream/handle/123456789/12848/isbn9789526056135.pdf?sequence=1&isAllowed=y

11. Gundacker S., Turtos R. M., Kratochwil N., Pots R. H., Paganoni M., Lecoq P., Auffray E. Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission. Physics in Medicine & Biology, 2020, vol. 65, no. 2, pp. 025001. https://doi.org/10.1088/1361-6560/ab63b4

12. Bogomolov V., Dosovitskiy G., Iyudin A., Korjik M., Tikhomirov S., Svertilov S., Kozlov D., Yashin I. The Timing and Spectral Characteristics of Detectors Based on a Ce:GAGG Inorganic Scintillator Using Photomultiplier Tubes and Silicon Photodetectors. Pribory i tekhnika experimenta = Instruments and experimental technique, 2020, vol. 63, no. 5, pp. 633–640. https://doi.org/10.1134/s0020441220050097


Review

Views: 868


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)