Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

On the equivalence of operator and combinatorial approaches for onestep random Markov processes

https://doi.org/10.29235/1561-2430-2022-58-1-21-33

Abstract

Herein, for one-step random Markov processes the comparison of the operator and combinatorial methods based on the use of functional integrals is performed. With the combinatorial approach, the transition from the stochastic differential equation to the functional integral is used. This allows us to obtain the expression for the mean population size in terms of the functional integral. With the operator approach, the transition to the functional integral is performed via the creation and annihilation operators. It is shown that the mean values calculated using the functional integrals arising in the combinatorial and operator approaches coincide.

About the Authors

E. A. Ayryan
Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research; State University «Dubna»; A. I. Alikhanyan National Science Laboratory
Russian Federation

Edik A. Ayryan – Ph. D. (Physics and Mathematics), Head of Sector

6, Joliot-Curie Str., 141980, Dubna

19, Universitetskaja Str., 141980, Dubna

Yerevan, Republic of Armenia 



M. Hnatic
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research; Institute of Experimental Physics, Slovak academy of Sciences; Faculty of Sciences, P. J. Šafárik University in Košice
Russian Federation

Michal Hnatic – Dr. Sc. (Physics and Mathematics), Professor, Deputy Director

6, Joliot-Curie Str., Dubna

47, Watsonova Str., Košice, Slovak Republic

9, Park Angelinum, Košice, Slovak Republic 



V. B. Malyutin
Institute of Mathematics of the National Academy of Sciences of Belarus
Belarus

Victor B. Malyutin – Dr. Sc. (Physics and Mathematics), Principal Researcher

11, Surganov Str., 220072, Minsk 



References

1. Gardiner C. W. A Handbook of Stochastic Methods. Berlin, Heidelberg, Springer, 1983. https://doi.org/10.1007/978-3-662-02377-8

2. Van Kampen N. G. Stochastic Processes in Physics and Chemistry. North Holland, 1981.

3. Demidova A. V., Korolkova A. V., Kulyabov D. S., Sevastianov L. A. The method of stochastization of one-step processes. Mathematical Modeling and Computational Physics. Dubna, JINR, 2013, pp. 67.

4. Demidova A. V., Korolkova A. V., Kulyabov D. S., Sevastyanov L. A. The method of constructing models of peer to peer protocols. 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE Computer Society, 2015, pp. 557–562. https://doi.org/10.1109/ICUMT.2014.7002162

5. Velieva T. R., Korolkova A. V., Kulyabov D. S. Designing installations for verification of the model of active queue management discipline RED in the GNS3. 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE Computer Society, 2015, pp. 570–577. https://doi.org/10.1109/ICUMT.2014.7002164

6. Basharin G. P., Samouylov K. E., Yarkina N. V., Gudkova I. A. A new stage in mathematical teletraffic theory. Automation and Remote Control, 2009, vol. 70, no. 12, pp. 1954–1964. https://doi.org/10.1134/s0005117909120030

7. Hnatič M., Eferina E. G., Korolkova A. V., Kulyabov D. S., Sevastyanov L. A. Operator Approach to the Master Equation for the One-Step Process. EPJ Web of Conferences, 2016, vol. 108, pp. 02027. https://doi.org/10.1051/epjconf/201610802027

8. Korolkova A. V., Eferina E. G., Laneev E. B. et al. Stochastization of one-step processes in the occupations number representation. Proceedings 30th European Conference on Modelling and Simulation, ECMS 2016. 2016, pp. 698–704.

9. Hnatic M., Honkonen J., Lucivjansky T. Field theoretic technique for irreversible reaction processes. Physics of Particles and Nuclei, 2013, vol. 44, no. 2, pp. 316–348. https://doi.org/10.1134/s1063779613020160

10. Hnatic M., Honkonen J., Lucivjansky T. Study of anomalous kinetics of the annihilation reaction A+A→О. Theoretical and Mathematical Physics, 2011, vol. 169, no. 1, pp. 1481–1488. https://doi.org/10.1007/s11232-011-0124-9

11. Dickman R., Vidigal R. Path integrals and perturbation theory for stochastic processes. Brazilian Journal of Physics, 2003, vol. 33, no. 1, pp. 73–93. https://doi.org/10.1590/s0103-97332003000100005

12. Carlin S. A First Course in Stochastic Processes. Academic Press, 1968. https://doi.org/10.1016/c2013-0-12346-x

13. Risken H. The Fokker-Plank Equation: Methods of Solution and Applications. Berlin, Heidelberg, Springer-Verlag, 1984. https://doi.org/10.1007/978-3-642-96807-5

14. Langouche F., Roekaerts D., Tirapegui E. Functional Integration and Semiclassical Expansions. Dordrecht, D. Reidel Pub. Co., 1982. 315 p. https://doi.org/10.1007/978-94-017-1634-5

15. Wio H. S. Path Integration to Stochastic Process: an Introduction. World Scientific Publ. Company, 2012. 176 p. https://doi.org/10.1142/8695

16. Bennati E., Rosa-Clot M., Taddei S. A path integral approach to derivative security pricing I: formalism and analytical results. International Journal of Theoretical and Applied Finance, 1999, vol. 2, no. 4, pp. 381–407. https://doi.org/10.1142/s0219024999000200

17. Schulmann L. S. Techniques and Applications of Path Integration. New York, John Wiley and Sons, 1981. 359 p. 18. Grosche C., Steiner F. Classification of solvable Feynman path integrals. Available at: https://arxiv.org/abs/hepth/9302053


Review

Views: 673


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)