On the equivalence of operator and combinatorial approaches for onestep random Markov processes
https://doi.org/10.29235/1561-2430-2022-58-1-21-33
Abstract
Herein, for one-step random Markov processes the comparison of the operator and combinatorial methods based on the use of functional integrals is performed. With the combinatorial approach, the transition from the stochastic differential equation to the functional integral is used. This allows us to obtain the expression for the mean population size in terms of the functional integral. With the operator approach, the transition to the functional integral is performed via the creation and annihilation operators. It is shown that the mean values calculated using the functional integrals arising in the combinatorial and operator approaches coincide.
Keywords
About the Authors
E. A. AyryanRussian Federation
Edik A. Ayryan – Ph. D. (Physics and Mathematics), Head of Sector
6, Joliot-Curie Str., 141980, Dubna
19, Universitetskaja Str., 141980, Dubna
Yerevan, Republic of Armenia
M. Hnatic
Russian Federation
Michal Hnatic – Dr. Sc. (Physics and Mathematics), Professor, Deputy Director
6, Joliot-Curie Str., Dubna
47, Watsonova Str., Košice, Slovak Republic
9, Park Angelinum, Košice, Slovak Republic
V. B. Malyutin
Belarus
Victor B. Malyutin – Dr. Sc. (Physics and Mathematics), Principal Researcher
11, Surganov Str., 220072, Minsk
References
1. Gardiner C. W. A Handbook of Stochastic Methods. Berlin, Heidelberg, Springer, 1983. https://doi.org/10.1007/978-3-662-02377-8
2. Van Kampen N. G. Stochastic Processes in Physics and Chemistry. North Holland, 1981.
3. Demidova A. V., Korolkova A. V., Kulyabov D. S., Sevastianov L. A. The method of stochastization of one-step processes. Mathematical Modeling and Computational Physics. Dubna, JINR, 2013, pp. 67.
4. Demidova A. V., Korolkova A. V., Kulyabov D. S., Sevastyanov L. A. The method of constructing models of peer to peer protocols. 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE Computer Society, 2015, pp. 557–562. https://doi.org/10.1109/ICUMT.2014.7002162
5. Velieva T. R., Korolkova A. V., Kulyabov D. S. Designing installations for verification of the model of active queue management discipline RED in the GNS3. 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE Computer Society, 2015, pp. 570–577. https://doi.org/10.1109/ICUMT.2014.7002164
6. Basharin G. P., Samouylov K. E., Yarkina N. V., Gudkova I. A. A new stage in mathematical teletraffic theory. Automation and Remote Control, 2009, vol. 70, no. 12, pp. 1954–1964. https://doi.org/10.1134/s0005117909120030
7. Hnatič M., Eferina E. G., Korolkova A. V., Kulyabov D. S., Sevastyanov L. A. Operator Approach to the Master Equation for the One-Step Process. EPJ Web of Conferences, 2016, vol. 108, pp. 02027. https://doi.org/10.1051/epjconf/201610802027
8. Korolkova A. V., Eferina E. G., Laneev E. B. et al. Stochastization of one-step processes in the occupations number representation. Proceedings 30th European Conference on Modelling and Simulation, ECMS 2016. 2016, pp. 698–704.
9. Hnatic M., Honkonen J., Lucivjansky T. Field theoretic technique for irreversible reaction processes. Physics of Particles and Nuclei, 2013, vol. 44, no. 2, pp. 316–348. https://doi.org/10.1134/s1063779613020160
10. Hnatic M., Honkonen J., Lucivjansky T. Study of anomalous kinetics of the annihilation reaction A+A→О. Theoretical and Mathematical Physics, 2011, vol. 169, no. 1, pp. 1481–1488. https://doi.org/10.1007/s11232-011-0124-9
11. Dickman R., Vidigal R. Path integrals and perturbation theory for stochastic processes. Brazilian Journal of Physics, 2003, vol. 33, no. 1, pp. 73–93. https://doi.org/10.1590/s0103-97332003000100005
12. Carlin S. A First Course in Stochastic Processes. Academic Press, 1968. https://doi.org/10.1016/c2013-0-12346-x
13. Risken H. The Fokker-Plank Equation: Methods of Solution and Applications. Berlin, Heidelberg, Springer-Verlag, 1984. https://doi.org/10.1007/978-3-642-96807-5
14. Langouche F., Roekaerts D., Tirapegui E. Functional Integration and Semiclassical Expansions. Dordrecht, D. Reidel Pub. Co., 1982. 315 p. https://doi.org/10.1007/978-94-017-1634-5
15. Wio H. S. Path Integration to Stochastic Process: an Introduction. World Scientific Publ. Company, 2012. 176 p. https://doi.org/10.1142/8695
16. Bennati E., Rosa-Clot M., Taddei S. A path integral approach to derivative security pricing I: formalism and analytical results. International Journal of Theoretical and Applied Finance, 1999, vol. 2, no. 4, pp. 381–407. https://doi.org/10.1142/s0219024999000200
17. Schulmann L. S. Techniques and Applications of Path Integration. New York, John Wiley and Sons, 1981. 359 p. 18. Grosche C., Steiner F. Classification of solvable Feynman path integrals. Available at: https://arxiv.org/abs/hepth/9302053