Preview

Известия Национальной академии наук Беларуси. Серия физико-математических наук

Расширенный поиск

Классическое решение смешанных задач из теории продольного удара по упругому полубесконечному стержню в случае отделения ударившего тела после удара

https://doi.org/10.29235/1561-2430-2024-60-2-95-105

Аннотация

Рассматриваются две связанные начально-краевые задачи, которые моделируют процесс продольного удара в полубесконечном стержне на основе теории Сен-Венана. Математическая постановка задачи представляет собой две смешанные задачи для одномерного волнового уравнения с условиями сопряжения. Условия Коши задаются на пространственной полупрямой. Начальное условие для частной производной по временной переменной имеет разрыв первого рода в одной точке. На временной полупрямой задается граничное условие, содержащее неизвестную функцию и ее частные производные первого и второго порядка. Решение строится методом характеристик в явном аналитическом виде. Доказана единственность и установлены условия существования кусочно-гладкого решения. Рассмотрено классическое решение смешанной задачи с условиями сопряжения.

Об авторах

В. И. Корзюк
Институт математики Национальной академии наук Беларуси; Белорусский государственный университет
Беларусь

Корзюк Виктор Иванович – академик Национальной академии наук Беларуси, доктор физико-математических наук, профессор

ул. Сурганова, 11, 220072, Минск;

пр. Независимости, 4, 220030, Минск



Я. В. Рудько
Институт математики Национальной академии наук Беларуси
Беларусь

Рудько Ян Вячеславович – аспирант, магистр (математика и компьютерные науки), младший научный сотрудник

ул. Сурганова, 11, 220072, Минск



Список литературы

1. Stronge W. J. Impact Mechanics. Cambridge, Cambridge University Press, 2000. 280 p. https://doi.org/10.1017/cbo9780511626432

2. Boussinesq J. Du choc longitudinal d’une barre élastique prismatique fixée à un bout et heurtée à l’autre. Comptes Rendus, 1883, vol. 97, no. 2, pp. 154–157 (in French).

3. Saint-Venant B. Mémoire sur le choc longitudinal de deux barres élastiques de grosseurs et de matières semblables ou différentes, et sur la proportion de leur force vive qui est perdue pour la translation ultérieure; Et généralement sur le mouvement longitudinal d’un système de deux ou plusieurs prismes élastiques. Journal de Mathématiques Pures et Appliquées, 1867, vol. 12, pp. 237–376 (in French).

4. Saint-Venant B., Flamant M. Courbes représentatives des lois du choc longitudinal et du choc transversal d’une barre prismatique. Journal de l’École Polytechnique, 1889, vol. LIX, pp. 97–123 (in French).

5. Gajduk S. I. A mathematical study of certain problems concerning longitudinal impact on a finite rod. Differential Equations, 1977, vol. 13, pp. 1399–1411. https://zbmath.org/0449.73029

6. Gaiduk S. I. A mathematical investigation of the problem of longitudinal impact on a relaxing rod. Differential Equations, 1976, vol. 12, pp. 472–483. https://zbmath.org/0382.73043

7. Gaiduk S. I. Some problems related to the theory of longitudinal impact on a rod. Differential Equations, 1976, vol. 12, pp. 607–617. https://zbmath.org/0382.73044

8. Bityurin A. A., Manzhosov V. K. Waves induced by the longitudinal impact of a rod against a stepped rod in contact with a rigid barrier. Journal of Applied Mathematics and Mechanics, 2009, vol. 73, no. 2, pp. 162–168. https://doi.org/10.1016/j.jappmathmech.2009.04.006

9. Bityurin A. A. Mathematical modeling of the amplitude of transverse vibrations of homogeneous rods under longitudinal impact. Mechanics of Solids, 2021, vol. 56, no. 2, pp. 220–229. https://doi.org/10.3103/s0025654421020047

10. Bityurin A. A. Modeling of the maximum deflection of a stepped rod having an initial curvature upon impact against a rigid barrier. Mechanics of Solids, 2019, vol. 54, no. 7, pp. 1098–1107. https://doi.org/10.3103/s0025654419070100

11. Belyaev A. K., Ma C.-C., Morozov N. F., Tovstik P. E., Tovstik T. P., Shurpatov A. O. Dynamics of a rod undergoing a longitudinal impact by a body. Vestnik St. Petersburg University, Mathematics, 2017, vol. 50, pp. 310–317. https://doi.org/10.3103/S1063454117030050

12. Morozov N. F., Belyaev A. K., Tovstik P. E., Tovstik T. P., Shurpatov A. O. Rod Vibrations Caused by Axial Impact. Doklady Physics, 2018, vol. 63, pp. 208–218. https://doi.org/10.3103/s1063454117030050

13. Belyaev A. K., Tovstik P. E., Tovstik T. P. Thin rod under longitudinal dynamic compression. Mechanics of Solids, 2017, vol. 52, pp. 364–377. https://doi.org/10.3103/s0025654417040021

14. Stepanov R., Romenskyi D., Tsarenko S. Dynamics of Longitudinal Impact in the Variable Cross-Section Rods. IOP Conference Series: Materials Science and Engineering, 2018, vol. 317, art. ID 012029. https://doi.org/10.1088/1757-899x/317/1/012029

15. Etiwa R. M., Elabsy H. M., Elkaranshawy H. A. Dynamics of longitudinal impact in uniform and composite rods with effects of various support conditions. Alexandria Engineering Journal, 2023, vol. 65, pp. 1–22. https://doi.org/10.1016/j.aej.2022.09.050

16. Hu B., Eberhard P. Symbolic computation of longitudinal impact waves. Computer Methods in Applied Mechanics and Engineering, 2001, vol. 190, no. 37–38, pp. 4805–4815. https://doi.org/10.1016/s0045-7825(00)00348-0

17. Bityurin A. A. Mathematical Modeling of Longitudinal Impact of Inhomogeneous Rod Systems on a Rigid Barrier with Unilateral Constraints. Ulyanovsk, 2007. 253 p. (in Russian).

18. Korzyuk V. I., Rudzko J. V., Kolyachko V. V. Solutions of problems with discontinuous conditions for the wave equation. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika = Journal of the Belarusian State University. Mathematics and Informatics, 2023. vol. 3, pp. 6–18 (in Russian).

19. Korzyuk V. I., Rudzko J. V. Classical Solution of One Problem of a Perfectly Inelastic Impact on a Long Elastic SemiInfinite Bar with a Linear Elastic Element at the End. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika = Journal of the Belarusian State University. Mathematics and Informatics, 2022, vol. 2, pp. 34–46 (in Russian). https://doi.org/10.33581/2520-6508-2022-2-34-46

20. Korzyuk V. I., Rudzko J. V. The classical solution of one problem of an absolutely inelastic impact on a long elastic semi-infinite bar. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2021, vol. 57, no. 4, pp. 417–427 (in Russian). https://doi.org/10.29235/1561-2430-2021-57-4-417-427

21. Korzyuk V. I., Rudzko J. V. The classical solution of the mixed problem for the one-dimensional wave equation with the nonsmooth second initial condition. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2021, vol. 57, no. 1, pp. 23–32 (in Russian). https://doi.org/10.29235/1561-2430-2021-57-1-23-32

22. Korzyuk V. I. Equations of Mathematical Physics. Moscow, URSS Publ., 2021. 480 p. (in Russian).

23. Yurchuk N. I., Novikov E. N. Necessary conditions for existence of classical solutions to the equation of semi-bounded string vibration. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2016, no. 4, pp. 116–120 (in Russian).

24. Korzyuk V. I., Rudzko J. V. Classical Solution of the Third Mixed Problem for the Telegraph Equation with a Nonlinear Potential. Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya XXXIV: Materialy mezhdunarodnoi Voronezhskoi vesennei matematicheskoi shkoly, posvyashchennoi 115-letiyu so dnya rozhdeniya akademika L. S. Pontryagina, 3–8 maya 2023 g. [Modern methods of the theory of boundary value problems. Pontryagin readings XXXIV: Materials of the international Voronezh spring mathematical school dedicated to the 115th anniversary from the birth of academician L. S. Pontryagin, May 3–8, 2023]. Voronezh, 2023, pp. 442–444.

25. Korzyuk V. I., Kozlovskaya I. S. Classical Solutions of Problems for Hyperbolic Equations. Part 2. Minsk, Belarusian State University, 2017. 52 p. (in Russian).

26. Korzyuk V. I., Kovnatskaya O. A. Solutions of problems for the wave equation with conditions on the characteristics. Vestsі Natsyyanalʼnai akademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2021, vol. 57, no. 2, pp. 148–155 (in Russian). https://doi.org/10.29235/1561-2430-2021-57-2-148-155

27. Korzyuk V. I., Stolyarchuk I. I. Classical Solution of the First Mixed Problem for Second-Order Hyperbolic Equation in Curvilinear Half-Strip with Variable Coefficients. Differential Equations, 2017, vol. 53, no. 1, pp. 74–85. https://doi.org/10.1134/S0012266117010074

28. Korzyuk V. I., Rudzko J. V. Classical Solution of the Second Mixed Problem for the Telegraph Equation with a Nonlinear Potential. Differential Equations, 2023, vol. 59, no. 9, pp. 1216–1234. https://doi.org/10.1134/S0012266123090070

29. Rabotnov Yu. N. Mechanics of Deformable Solid. Moscow, Nauka Publ., 1979. 744 p. (in Russian).

30. Goldsmith W. Impact: The Theory and Physical Behavior of Colliding Solid. London, Arnold, 1960. 379 p.

31. Moiseev E. I., Kholomeeva A. A. Optimal boundary control by displacement at one end of a string under a given elastic force at the other end. Proceedings of the Steklov Institute of Mathematics, 2012, vol. 276, pp. 153–160. https://doi.org/10.1134/s0081543812020125

32. Il’in V. A., Moiseev E. I. Optimization of the boundary control of string vibrations by an elastic force on an arbitrary sufficiently large time interval. Differential Equations, 2006, vol. 42, no. 12, pp. 1775–1786. https://doi.org/10.1134/S0012266106120123

33. Il’in V. A., Moiseev E. I. Optimization of the boundary control by shift or elastic force at one end of string in a sufficiently long arbitrary time. Automation and Remote Control, 2008, vol. 69, no. 3, pp. 354–362. https://doi.org/10.1134/s0005117908030028


Рецензия

Просмотров: 264


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)