Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Low-frequency capacitor with hopping electrical conductivity of the working substance (on the example of a-Si:H)

https://doi.org/10.29235/1561-2430-2024-60-2-153-161

Abstract

We propose a structural and electrical schemes of a capacitor based on a 3 μm thick a-Si:H (amorphous hydrogenated silicon) layer separated from the metal plates by 0.3 μm thick dielectric layers of SiO2 (silicon dioxide). We consider room temperatures (T ≈ 300 K) when in the absence of illumination for a-Si:H the hopping mechanism of electron migration via point defects of the structure prevails. For such a capacitor, the dependencies of the capacitance on the frequency of the measuring signal ω/2π in the range from 0.1 to 300 Hz are calculated for the a-Si:H layer with stationary hopping electrical conductivity σdc ≈ 1 ∙ 10−10 (Ohm ∙ cm)−1. It is assumed that there is no end-to-end electron transfer between the a-Si:H layer, dielectric layers and capacitor plates in the small-signal mode of capacitance measurement. It is shown that the real part of the capacitance of the capacitor decreases with increasing angular frequency ω, and the imaginary part is negative and depends non-monotonically on ω. The decrease in the real part of the device capacitance to the geometric capacitance of the series-connected oxide layers and the a-Si:H layer with increasing ω is due to a decrease in the electrical resistance of the capacitor. As a result, with increasing ω, the imaginary part of the capacitance is shunted by the hopping electrical conductivity of the capacitor. The phase shift for a sinusoidal electrical signal supplied to the capacitor is determined depending on the frequency ω/2π in the range of 0.1–300 Hz for the values of electrical conductivities of the hydrogenated amorphous silicon layer σdc ≈ 1 ∙ 10−11, 1 ∙ 10−10, and 1 ∙ 10−9 (Ohm ∙ cm)−1 at the temperature 300 K. With an increase in the electrical conductivity σdc of the a-Si:H layer, the minimum absolute value of the phase shift angle (≈65°) shifts to the high- frequency region (from 1 to 100 Hz). The proposed low-frequency capacitor can find application in electrical circuits for detecting low-frequency electrical signals for the purposes of biomedicine.

About the Authors

N. A. Poklonski
Belarusian State University
Belarus

Nikolai A. Poklonski – Corresponding Member of the National Academy of Sciences of Belarus, Dr. Sc. (Physics and Mathematics), Professor

4, Nezavisimosti Ave., 220030, Minsk



I. I. Anikeev
Belarusian State University
Belarus

Ilya I. Anikeev – Postgraduate Student

4, Nezavisimosti Ave., 220030, Minsk



S. A. Vyrko
Belarusian State University
Belarus

Sergey A. Vyrko – Ph. D. (Physics and Mathematics), Senior Researcher

4, Nezavisimosti Ave., 220030, Minsk



References

1. Joannopoulos J. D., Lucovsky G. (eds.). The Physics of Hydrogenated Amorphous Silicon I: Structure, Preparation, and Devices. Berlin, Springer, 1984. xiv + 290 p. https://doi.org/10.1007/3-540-12807-7

2. Joannopoulos J. D., Lucovsky G. (eds.). The Physics of Hydrogenated Amorphous Silicon II: Electronic and Vibrational Properties. Berlin, Springer, 1984. xii + 360 p. https://doi.org/10.1007/3540128077

3. Andreev A. A., Sidorova T. A., Kazakova E. A., Ablova M. S., Vinogradov A. Ya. Electrical conductivity and structure of amorphous silicon films. Soviet Physics: Semiconductors, 1986, vol. 20, no. 8, pp. 922–926.

4. Street R. A. (ed.). Technology and Applications of Amorphous Silicon. Berlin, Springer, 2000. xii + 418 p. https://doi. org/10.1007/978-3-662-04141-3

5. Rudan M., Brunetti R., Reggiani S. (eds.). Springer Handbook of Semiconductor Devices. Cham, Springer, 2023. xxiv + 1680 p. https://doi.org/10.1007/978-3-030-79827-7

6. Radscheit H., Breitschwerdt K. G. Ac and Dc conductivity in amorphous silicon-hydrogen films. Solid State Communications, 1983, vol. 47, no. 3, pp. 157–161. https://doi.org/10.1016/0038-1098(83)90699-3

7. Djurić Z., Smiljanić M., Tjapkin D. Static characteristics of the metal–insulator–semiconductor–insulator–metal (MISIM) structure–II. Low frequency capacitance. Solid-State Electronics, 1975, vol. 18, no. 10, pp. 827–831. https://doi.org/10.1016/0038-1101(75)90002-7

8. Poklonski N. A., Anikeev I. I., Vyrko S. A. High-frequency capacitor with working substance “insulator–undoped silicon–insulator”. Pribory i metody izmerenij = Devices and Methods of Measurements, 2022, vol. 13, no. 4, pp. 247–255. https://doi.org/10.21122/2220-9506-2022-13-4-247-255

9. Pribylov N. N., Pribylova E. I. Electrical losses in high-resistivity silicon with deep levels. Semiconductors, 1996, vol. 30, no. 4, pp. 344–346.

10. Iniewski K. (ed.). Radiation Effects in Semiconductors. Boca Raton, CRC Press, 2011. xvi + 416 p. https://doi.org/10.1201/9781315217864

11. Claeys C., Simoen E. Radiation Effects in Advanced Semiconductor Materials and Devices. Berlin, Heidelberg, Springer, 2002. xxii + 402 p. https://doi.org/10.1007/978-3-662-04974-7

12. Karunakaran C., Bhargava K., Benjamin R. (eds.). Biosensors and Bioelectronics. Amsterdam, Elsevier, 2015. xii + 332 p. https://doi.org/10.1016/C2014-0-03790-2

13. Plonsey R., Barr R. C. Bioelectricity: A Quantitative Approach. New York, Springer, 2007. xiv + 528 p. https://doi.org/10.1007/978-0-387-48865-3

14. Willner I., Katz E. (eds.). Bioelectronics: From Theory to Applications. Weinheim, Wiley, 2005. xviii + 476 p. https://doi.org/10.1002/352760376X

15. Rawlins J. C. Basic AC Circuits. Boston, Newnes, 2000. x + 542 p. https://doi.org/10.1016/B978-075067173-6/50006-7

16. Rahmani-Andebili M. AC Electrical Circuit Analysis: Practice Problems, Methods, and Solutions. Cham, Springer, 2021. x + 230 p. https://doi.org/10.1007/978-3-030-60986-3

17. Krupski J. Interfacial capacitance. Physica Status Solidi B, 1990, vol. 157, no. 1, pp. 199–207. https://doi.org/10.1002/pssb.2221570119

18. Rahmani-Andebili M. DC Electrical Circuit Analysis: Practice Problems, Methods, and Solutions. Cham, Springer, 2020. x + 262 p. https://doi.org/10.1007/978-3-030-50711-4

19. Maddock R. J., Calcutt D. M. Electronics for Engineers. Harlow, Longman, 1994. xiv + 720 p.

20. Barsoukov E., Macdonald J. R. (eds.). Impedance Spectroscopy: Theory, Experiment, and Applications. Hoboken, Wiley, 2018. xviii + 528 p. https://doi.org/10.1002/9781119381860

21. Tooley M. Electronic Circuits: Fundamentals and Applications. London, Routledge, 2020. xii + 510 p. https://doi.org/10.1201/9780367822651

22. Pollak M., Geballe T. H. Low-frequency conductivity due to hopping processes in silicon. Physical Review, 1961, vol. 122, no. 6, pp. 1742–1753. https://doi.org/10.1103/PhysRev.122.1742

23. Long A. R. Frequency-dependent loss in amorphous semiconductors. Advances in Physics, 1982, vol. 31, no. 5, pp. 553–637. https://doi.org/10.1080/00018738200101418

24. Castro R., Kononov A., Anisimova N. High-frequency conductivity of amorphous and crystalline Sb2Te3 thin films. Coatings, 2023, vol. 13, no. 5, pp. 950 (1–10). https://doi.org/10.3390/coatings13050950

25. Elliott S. R. A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Advances in Physics, 1987, vol. 36, no. 2, pp. 135–218. https://doi.org/10.1080/00018738700101971

26. Klimkovich B. V., Poklonskii N. A., Stel’makh V. F. Alternating-current hopping electrical conductivity of covalent semiconductors with deep-level defects. Soviet Physics: Semiconductors, 1985, vol. 19, no. 5, pp. 522–524.

27. Yamazaki M., Nakata J., Imao S., Shirafuji J., Inuishi Y. AC conductivity of undoped a-Si:H and µc-Si:H in connection with morphology and optical degradation. Japanese Journal of Applied Physics, 1989, vol. 28, no. 4R, pp. 577–585. https://doi.org/10.1143/JJAP.28.577

28. Chen B., Tay F. E. H., Iliescu C. Development of thick film PECVD amorphous silicon with low stress for MEMS applications. Proceedings of SPIE, 2008, vol. 7269, pp. 72690M (1–11). https://doi.org/10.1117/12.810441


Review

Views: 157


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)