Optical and electrophysical properties of nitride TiAlSiN and carbonitride TiAlSiCN coatings: influence of reactive magnetron deposition regimes
https://doi.org/10.29235/1561-2430-2024-60-2-162-176
Abstract
The development of thin-film thermal control coatings for small spacecraft is relevant. Coatings based on titanium nitride are capable of functioning in unfavorable conditions of near and deep space, due to their high resistance to the irradiation by high-energy particles. Using the reactive magnetron sputtering method, the nanostructured TiAlSiN and TiAlSiCN coatings were formed on the substrates of silicon oxide (SiO2), glass-ceramic CT-1 and single-crystalline silicon (Si(100)). A study of the electrophysical and optical properties of the formed coatings was carried out. The deposited coatings demonstrate a good reflectivity in the infrared range of spectrum (700–2000 nm), what is important for reducing the overheating of the spacecraft (SC) under the influence of the direct sunlight. In the visible range of spectrum (400–700 nm), a low level of total Rtotal reflection is observed. This is promising for satellites designed to observe the Earth’s surface. The values of solar absorption coefficients αs, emissivity coefficients ε0, ratios αs/ε0, as well as the equilibrium temperature Tр for the samples under study were obtained. The values of resistivity ρ and surface resistance R□, electron concentration N and electron mobility μ were determined. It has been discovered that TiAlSiN, TiAlSiCN films are electrically conductive: ρTiAlSiN = (92÷4260) ∙ 10–7 Ω ∙ m, ρTiAlSiCN = (51÷2360) ∙ 10–7 Ω ∙ m. It has been found that adding carbon to the coating composition reduces the resistance. The obtained nanostructured coatings of TiAlSiN nitride and TiAlSiCN carbonitride can be used as temperature control coatings for small spacecrafts.
About the Authors
S. V. KonstantinovBelarus
Stanislav V. Konstantinov – Ph. D. (Physics and Mathematics), Associate Professor, Leading Researcher of
the Elionics Laboratory
7, Kurchatov Str., 220045, Minsk
F. F. Komarov
Belarus
Fadei F. Komarov – Academician of the National Academy of Sciences of Belarus, Dr. Sc. (Physics and Mathematics), Professor, Head of the Elionics Laboratory
7, Kurchatov Str., 220045, Minsk
I. V. Chizhov
Belarus
Igor V. Chizhov – Postgraduate Student
5, Kurchatov Str., 220045, Minsk
V. A. Zaikov
Belarus
Valery A. Zaikov – Senior Researcher at the Department of Physical Electronics and Nanotechnologies
5, Kurchatov Str., 220045, Minsk
References
1. Konstantinov S. V., Komarov F. F., Chizhov I. V., Zaikov V. A. The structure and micromechanical properties of TiAlSiN, TiAlSiCN coatings formed by the method of reactive magnetron sputtering. Vestsі Natsyyanalʼnaiakademіі navuk Belarusі. Seryya fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2023, vol. 59, no. 3, pp. 241–252 (in Russian). https://doi.org/10.29235/1561-2430-2023-59-3-241-252
2. Jyothi J., Biswas A., Sarkar P., Soum-Glaude A., Nagaraja H. S., Barshilia H. C. Optical properties of TiAlC/TiAlCN/ TiAlSiCN/TiAlSiCO/TiAlSiO tandem absorber coatings by phase-modulated spectroscopic ellipsometry. Applied Physics A, 2017, vol. 123, art. ID 496. https://doi.org/10.1007/s00339-017-1103-2
3. Gilmore D. G. (ed.). Spacecraft thermal control handbook. Volume I: Fundamental Technologies. El Segundo, California: 2nd The Aerospace Press, 2002. 836 p. https://doi.org/10.2514/4.989117
4. Brogren M., Harding G. L., Karmhag R., Ribbing C. G., Niklasson G. A., Stenmark L. Titanium-aluminum-nitride coatings for satellite temperature control. Thin Solid Films, 2000, vol. 370, pp. 268–277. https://doi.org/10.1016/S0040-6090(00)00914-7
5. Svechkin V. P., Savelyev A. A., Sokolova S. P., Borozdina O. V. Thermal control coating K-208CP. Technology, properties and their changes in the operation process under the effect of space factors. Kosmicheskaya tekhnika i tekhnologii = Space Engineering and Technology, 2017, vol. 17, no. 2, pp. 99–107 (in Russian).
6. Zhang J., Chen L., Kong Y. The microstructural, mechanical and thermal properties of TiAlVN, TiAlSiN monolithic and TiAlVN/TiAlSiN multilayered coatings. Journal of Alloys and Compounds, 2022, vol. 899, pp. 163332. https://doi.org/10.1016/j.jallcom.2021.163332
7. Liew W. Y. H., Lim H. P., Melvin G. J. H., Dayou J., Jiang Z.-T. Thermal stability, mechanical properties, and tribological performance of TiAlXN coatings: understanding the effects of alloying additions. Journal of Materials Research and Technology, 2022, vol. 17, pp. 961–1012. https://doi.org/10.1016/j.jmrt.2022.01.005
8. Xu K., Du M., Hao L., Mi J., Yu Q., Li S. A review of high-temperature selective absorbing coatings for solar thermal applications. Journal of Materiomics, 2020, vol. 6, no. 1, pp. 167–182. https://doi.org/10.1016/j.jmat.2019.12.012
9. Hendaoui A., Émond N., Dorval S., Chaker M., Haddad E. VO2-based smart coatings with improved emittance-switching properties for an energy-efficient near room-temperature thermal control of spacecrafts. Solar Energy Materials and Solar Cells, 2013, vol. 117, pp. 494–498. https://doi.org/10.1016/j.solmat.2013.07.023
10. Bonnici M., Mollicone P., Fenech M., Azzopardi M. A. Analytical and numerical models for thermal related design of a new pico-satellite. Applied Thermal Engineering, 2019, vol. 159, pp. 113908. https://doi.org/10.1016/j.applthermaleng.2019.113908
11. Zhang X., Li J., Xiao J., Pi J., He G., Chen L., Zeng Y., Jiang J. Effects of Si addition on structure and mechanical properties of TiAlSiCN coatings. Surface and Coatings Technology, 2019, vol. 362, pp. 21–26. https://doi.org/10.1016/j.surfcoat.2019.01.056
12. Guo F., Li K., Huang X., Xie Z., Gong F. Understanding the wear failure mechanism of TiAlSiCN nanocomposite coating at evaluated temperatures. Tribology International, 2021, vol. 154, pp. 106716. https://doi.org/10.1016/j.triboint.2020.106716
13. Valleti K., Krishna D. M., Joshi S. V. Functional multi-layer nitride coatings for high temperature solar selective applications. Solar Energy Materials and Solar Cells, 2014, vol. 121, pp. 14–21. https://doi.org/10.1016/j.solmat.2013.10.024
14. Lee S.-Y., Wang S.-C., Chen J.-S., Huang J.-L. Effects of deposition and post-annealing conditions on electrical properties and thermal stability of TiAlN films by ion beam sputter deposition. Thin Solid Films, 2006, vol. 515, no. 3, pp. 1069–1073. https://doi.org/10.1016/j.tsf.2006.07.172
15. Yun E.-Y., Lee W.-J., Wang Q. M., Kwon S.-H. Electrical and Corrosion Properties of Titanium Aluminum Nitride Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition. Journal of Materials Science and Technology, 2017, vol. 33, no. 3, pp. 295–299. https://doi.org/10.1016/j.jmst.2016.11.027
16. Wahlström U., Hultman L., Sundgren J.-E., Adibi F., Petrov I., Greene J.E. Crystal growth and microstructure of polycrystalline Ti1−xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering. Thin Solid Films, 1993, vol. 235, no. 1–2, pp. 62–70. https://doi.org/10.1016/0040-6090(93)90244-J
17. Komarov F. F., Konstantinov S. V., Chizhov I. V., Zaikov V. A., Zubar T. I., Trukhanov A. V. Nanostructured TiAlCuN and TiAlCuCN coatings for spacecraft: effects of reactive magnetron deposition regimes and compositions. RSC Advanced, 2023, no. 13, pp. 18898–18907. https://doi.org/10.1039/D3RA02301J
18. Konstantinov S. V., Komarov F. F., Chizhov I. V., Zaikov V. A. Structural-phase states and micromechanical properties of nanostructured tialcun coatings TiAlCuN. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2023, vol. 67, no. 2, рр. 101–110 (in Russian). https://doi.org/10.29235/1561-8323-2023-67-2-101-110
19. Ashcroft N., Mermin N. Physics of Solid State. Volume 2. Moscow, Mir Publ., 1979. 419 p. (in Russian).
20. An L., Ali S. T., Søndergaard T., Nørgaard J., Tsao Y.-C., Pedersen K. Оptimization of TiAlN/TiAlON/Si3N4 solar absorber coatings. Solar Energy, 2015, vol. 118, pp. 410–418. https://doi.org/10.1016/j.solener.2015.05.042
21. Brodskii A. M., Urbakh M. I. The effect of the microscopic structure of metal surfaces on their optical properties. Soviet Physics Uspekhi, 1982, vol. 25, pp. 810–832. https://doi.org/10.1070/pu1982v025n11abeh004661
22. Wainstein D. L., Vakhrushev V. O., Kovalev A. I. Control of optical properties of metal-dielectric planar plasmonic nanostructures by adjusting their architecture in the case of TiAlN/Ag system. Journal of Physics: Conference Series, 2017, vol. 857, art. ID 012054. https://doi.org/10.1088/1742-6596/857/1/012054
23. Jyothi J., Biswas A., Sarkar P., Soum-Glaude A., Nagaraja H. S., Barshilia H. C. Sarkar Optical properties of TiAlC/ TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO tandem absorber coatings by phase-modulated spectroscopic ellipsometry. Applied Physics A, 2017, vol. 123, art. ID 496. https://doi.org/10.1007/s00339-017-1103-2
24. Veszelei M., Veszelei E. Optical properties and equilibrium temperatures of titanium-nitride-and graphite-coated Langmuir probes for space application. Thin Solid Films, 1993, vol. 236, no. 1–2, pp. 46–50. https://doi.org/10.1016/0040-6090(93)90640-b
25. Kauder L. Spacecraft Thermal Control Coatings References. NASA Goddard Space Flight Center Greenbelt, MD, United States, 2005. 130 p.
26. Klimovich I. M., Komarov F. F., Zaikov V. A. Influence of substrate heating and bias potential on the Ti–Al–C–N coatings optical characteristics. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2018, vol. 62, no. 4, pp. 415–422 (in Russian). https://doi.org/10.29235/1561-8323-2018-62-4-415-422
27. Haynes W. M. (ed.). CRC Handbook of Chemistry and Physics. 95th Ed. Boca Raton, CRC Press, 2014. 2704 p. https://doi.org/10.1201/b17118
28. Eranna G. Crystal Growth and Evaluation of Silicon for VLSI and ULSI. Boca Raton, CRC Press, 2014. 430 p. https://doi.org/10.1201/b17812
29. Lengauer W., Binder S., Aigner K., Ettmayer, P., Guillou A., Buigne J., Groboth G. Solid state properties of group IVb carbonitrides. Journal of Alloys and Compounds, 1995, vol. 217, no. 1, pp. 137–147. https://doi.org/10.1016/0925-8388(94)01315-9
30. Klimovich I. M., Zaikov V. V., Komarov F. F., Romanov I. A., Pilko V. V., Ludchik O. R. Electrophysical properties of TiAlN coatings prepared using controlled reactive magnetron sputtering. Materials and Structures of Modern Electronics: Collection of Scientific Works. Proceedings of the 6th International scientific and technical conference, Minsk, October 8–9, 2014, BSU. Minsk, 2014, pp. 5–8.
31. Tillmann W., Grisales D., Stangier D., Thomann C., Debus J., Nienhaus A., Apel D. Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS. Surface and Coatings Technology, 2021, vol. 406, pp. 126664. https://doi.org/10.1016/j.surfcoat.2020.1266645
32. Komarov F. F., Konstantinov S. V., Zaikov V. A., Pil’ko V. V. Effects of Protone Irradiation on the StructuralPhase State of Nanostructured TiZrSiN Coatings and Their Mechanical Properties. Journal of Engineering Physics and Thermophysics, 2021, vol. 94, no. 6, pp. 1609–1618. https://doi.org/10.1007/s10891-021-02442-2
33. Konstantinov S. V., Komarov F. F. Effects of nitrogen selective sputtering and flaking of nanostructured coatings TiN, TiAlN, TiAlYN, TiCrN, (TiHfZrVNb)N under helium ion irradiation. Acta Physica Polonica A, 2019, vol. 136, no. 2, pp. 303–309. https://doi.org/10.12693/APhysPolA.136.303
34. Konstantinov S. V., Komarov F. F., Pilko V. V., Kukareko V. A. Wear resistance and radiation tolerance of He+ - irradiated magnetron sputtered TiAlN coatings. High Temperature Material Processes, 2014, vol. 18, no. 1–2, pp. 135–141. https://doi.org/10.1615/hightempmatproc.2015015569